Mathematica Scripta 1. Praktische Mathematik I
|
|
|
- Alwin Hafner
- vor 8 Jahren
- Abrufe
Transkript
1 Mathematica Scripta 1 H. Werner Praktische Mathematik I Methoden der linearen Algebra Vorlesung gehalten im Wintersemester 1968/69 Nach einem von R. Schaback angefertigten Skriptum, herausgegeben mit Unterstützung von R. Runge und U. Ebert Springer-Verlag Berlin Heidelberg GmbH
2 ISBN ISBN (ebook) DOI / Das Werk ist urheberrechdich geschützt. Die dadutch begründeten Rechte, insbesondere die der Übersetzung, des Nachdruckes, der Funksendung, der Wiedetgabe auf photomechanischem oder ähnlichem Wege und der Speicherung in DatenverarbeitungsanlaBen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Bei Vervielfältigungen für gewerbliche Zwecke ist gemäß 54 UrhG eine Vergütung an den Verlag zu zahlen, deren Höhe mit dem Verlag zu vereinbaren ist. S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g Ursprünglich erschienen bei Springer-Verlag Berlin Heide1berg 1970 Softcoverreprint ofthe bardeover Istedition 1970 Libiary o( Congress Catalog Number Titel-Nr. 2940
3 Herrn Professor Dr. LOTHAR COLLATZ zum 60. Geburtstag am 6. Juli 1970 gewidmet
4 Vorwort Diese Vorlesungsnachschrift enthält den Stoff einer vierstündigen, einsemestrigen Vorlesung, die ich seit mehreren Jahren zur Einführung in die algebraischen Probleme der numerischen Mathematikfür die Studenten mittlerer Semester an der Universität Münster halte. Da in diesem Gebiet die Methoden in außerordentlich schneller Entwicklung begriffen sind, muß man damit rechnen, daß manches morgen schon überholt ist. Dieses Schicksal hat offenbar einige Lehrbücher dieses Gebietes, nur wenige Jahre alt, bereits ereilt. Zum anderen ist es heute wichtig, den immer zahlreicher werdenden Studenten der angewandten Mathematik einen Leitfaden in die Hand zu geben. Wir hoffen, daß der durch die mathematischen Grundvorlesungen vorbereitete Student lernt, wie man mit den in dieser Vorlesung entwickelten abstrakten Begriffen zu konkreten Ergebnissen kommen kann. Aber auch der Praktiker sollte die (z.z.) modernen Methoden für die behandelten algebraischen Probleme finden. In einer Vorlesung lassen sich natürlich vielefragen nur andeuten. Für eingehendere Untersuchungen sei deshalb auf die zitierte Lehrbuchliteratur verwiesen. Die Aufgabenstellungen der Analysis (Differentiation, Integration, numerische Lösung von Differentialgleichungen) pflege ich in Münster in einer zweiten Vorlesung zu behandeln. Diesem Text liegt eine von Herrn Dr. SCHABACK im Wintersemester 1968/69 angefertigte Vorlesungsausarbeitung zugrunde. Beim Korrekturlesen unterstützten uns die Herrn Dipl. Math. R. RUNGE und U. EBERT. Für die Mitarbeit und Unterstützung möchte ich ihnen herzlich danken. Wesentliche Impulse für die Vorlesungen erhielt ich während meiner Tätigkeit am Institut für Angewandte Mathematik der Universität Harnburg durch Herrn Prof. Dr. L. COLLATZ. Zum Dank dafür ist ihm dieses Skriptum gewidmet. Münster, August 1970 H. WERNER
5 Inhaltsverzeichnis Einleitung I. KaEitel: Hilfsmittel der Eraktischen Mathematik 7 Übersicht und Typeneinteilung 7 1. Tischrechenmaschine und Rechenschieber 8 2. Tafelwerke, Interpolation Nomogramme Theoretische Grundlagen der digitalen elektronischen Rechenautomaten Programmsteuerung, Flußdiagramme, Programmiersprachen, Software Fehlerfortpflanzung, Rundungsfehler in digitalen Rechenanlagen Elektronische Analogrechner 58 II. Kapitel: Numerische Methoden zur Lösun9 von Gleichun9en Das Iterationsverfahren für kontrahierende Abbildungen 65 '2. Praktische Formulierung des Fixpunktsatzes Nullstellen reeller Funktionen, Konvergenzgeschwindigkeit Operatoren in Banachräumen Newton' sches Verfahren für Gleichungssysteme Nullstellen von' Polynomen Einschließungssätze für Nullstellen von Polynomen Sätze über die Anzahl der reellen Nullstellen von Polynomen mit reellen Koeffizienten 127 III. KaEitel: Lineare Gleichun9ssysteme 135 Bemerkungen zur Schreibweise von Matrizen und Vektoren Direkte Methoden, Gaußsehe Elimination Fehleranalyse nach Wilkinson, Konditionszahlen 150
6 VIII QR-Zerlegung von Matrizen Iterative Behandlung linearer Gleichungssysteme Konvergenzbeschleunigung bei der iterativen Behandlung linearer Gleichungssysteme; sukzessive Overrelaxation Fehlerabschätzungen mit Hilfe von Monotoniebetrachtungen IV. Kapitel: fi Eigenwertaufgaben bei Matrizen Transformation von Matrizen auf Hessenbergform Eine direkte Methode zur Berechnung der Eigenwerte einer Hessenbergmatrix Das Iterationsverfahren nach von Mises zur Bestimmung eines Eigenwertes und eines Eigenvektors Methoden zur Konvergenzverbesserung; Extrapolation nach Aitken Inverse Iteration nach Wielandt Deflation beim Eigenwertproblem Das LR- und QR-Verfahren von Rutishauser Das J acobi-verfahren für symmetrische Matrizen Lokalisationssätze für die Eigenwerte symmetrischer und normaler Matrizen Literaturverzeichnis Stichwortverzeichnis
7 Symbolverzeichnis 0 II II [o-,ß] (o-,ß) [ xi} ca l'a 2 J Op(a 1,a 2 ) 1\ V leere Menge siehe Norm,... S. 91 Matrixnorm oder Operatornorm,... S. 94 Eine Aufstellung aller auftretenden Normen: S. 99 abgeschlossenes Intervall c R offenes Intervall c R Abkürzende Schreibweise für die Folge x 1, x 2, s. 95 s. 94 s. 38 s. 38 s. 38 s. 39 s. 39 s. 39 L)' < AT c cn c CE CG C(B) Cn(B) s. 41 n n LJ' a.. := L) a.. i = 1 1 ] i = 1 1 ] ii.i Halbordnung,... S. 198 Transponierte einer Matrix,... S. 135 Körper der komplexen Zahlen n-dimensionaler Vektorraum über <I:. ab Kapitel III i. a. eine Iterationsmatrix im Sinne von S. 172 Iterationsmatrix des Einzelschrittverfahrens,... S. 184 Iterationsmatrix des Gesamtschrittverfahrens,... S. 184 Menge der auf B stetigen Funktionen Menge der auf B n-mal stetig differenzierbaren Funktionen 1 falls i = j } Kroneckersymbol, = [ 0 falls i.,; j
8 X lln(x 0,,xn)f d(x,y) ll,d E e. 1 F' xo gl H(i) J ~ t ( A ) Kr(x) L A M(j) N N N(A) pik cp (A ) "' ' "' [f] Q R R!R P (A) sgn x "T" Tij (a) Tmax' Tmin W(a 0,,an) n-ter Differenzenquotient,... S. 19 Distanzfunktion,... S. 66 ab Kapitel III. i. a. Diagonalmatrizen Einheitsmatrix i-ter Einheitsvektor Frechetableitung in x 0,... S. 101 Gleitkomma-Operator,... S. 53 Householder-Transformation,... S. 164 Jordanmatrix,... S. 173 Konditionszahl,... S s. 75 ab Kapitel III i. a. eine Subdiagonalmatrix,... S. 138 i. a. ein Eigenwert,... S. 212 elementare Matrizen,... s. 214 Menge der natür 1 ichen Zahlen : [ 1, 2, } ab Kapitel III: N = [ 1,, n}, n E N.... s. 250 Landau' sehe Symbole,... S. 104 Relaxationskoeffizient,... S. 187 (ab Kapitel III) s s. 18 Permutationsmatrix,... S. 214 ab Kapitel IV: charakteristisches Polyno11J,... S. 212 i. a. Iterationsfunktionen ab Kapitel III: eine orthogonale Matrix (QQT =E) ab Kapitel 111: eine superdiagonale Matrix,... S. 138 Körper der reellen Zahlen n-dimensionaler Vektorraum über IR. ab Kapitel II: metrischer Raum,... S. 66 Spektralradius der Matrix A,... S. 175 { 1 falls x > 0 = 0 falls x = 0-1 falls x< 0 Transpositionssymbol.... S. 135 ebene Drehung,... S. 168 s. 202 s. 127 Weitere Symbole finden sich in der Symbolliste für Analogrechner ( S ) und in den Bemerkungen zur Schreibweise von Gleitkommazahlen ( S. 52), von Interpolationsgrößen ("S ) sowie von Matrizen und Vektoren (S ).
Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung
Horst Niemeyer Edgar Wermuth Lineare Algebra Analytische und numerische Behandlung v FriedrVieweg & Sohn Braunschweig/Wiesbaden VIII Inhaltsverzeichnis Symbolverzeichnis XII 1 Die euklidischen Vektorräume
Numerische Mathematik für Ingenieure und Physiker
Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin
Numerische Mathematik
Numerische Mathematik Von Martin Hermann 2., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Vorwort zur ersten Auflage Vorwort zur zweiten Auflage V VII 1 Wichtige Phänomene des numerischen
De Gruyter Studium. Numerische Methoden. Bearbeitet von Hermann Friedrich, Frank Pietschmann
De Gruyter Studium Numerische Methoden Bearbeitet von Hermann Friedrich, Frank Pietschmann 1. Auflage 2010. Buch. 538 S. ISBN 978 3 11 021806 0 Format (B x L): 17 x 24 cm Gewicht: 896 g Weitere Fachgebiete
Numerische Mathematik mit Matlab
Günter Grämlich Wilhelm Werner Numerische Mathematik mit Matlab Eine Einführung für Naturwissenschaftler und Ingenieure ГЗ I dpunkt.verlag Inhaltsverzeichnis 1 Einleitung 1 2 MATLAB-Grundlagen 5 2.1 Was
Numerische Methoden 2
Numerische Methoden 2 von I. S. Beresin und N. P. Shidkow Mit 11 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1971 INHALT 6. Lösung von linearen algebraischen Gleichungssystemen 9 6.1.
Heidelberger Taschenbücher Band 114
Heidelberger Taschenbücher Band 114 J. Stoer R. B ulirsch Einführung in die Numerische Mathematik II unter Berücksichtigung von Vorlesungen von F. L. Bauer Zweite, neubearbeitete und erweiterte Auflage
Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.
Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis
Begleitmaterial zur Vorlesung Numerik II
Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik
Mathematik für die ersten Semester
Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen
Einführung in die Numerische Mathematik
Einführung in die Numerische Mathematik Thomas Richter [email protected] Thomas Wick [email protected] Universität Heidelberg 25. Juli 2012 (In Bearbeitung) Inhaltsverzeichnis
WALTER NEF LEHRBUCH DER LINEAREN ALGEBRA
WALTER NEF LEHRBUCH DER LINEAREN ALGEBRA MATHEMATISCHE REIHE BAND 31 LEHRBÜCHER UND MONOGRAPHIEN AUS DEM GEBIETE DER EXAKTEN WISSENSCHAFTEN Lehrbuch der linearen Algebra von WALTER NEF Professor an der
Übungsbuch zur Linearen Algebra und analytischen Geometrie
Springer-Lehrbuch Dietlinde Lau Übungsbuch zur Linearen Algebra und analytischen Geometrie Aufgaben mit Lösungen Zweite, überarbeitete und ergänzte Auflage 123 Prof. Dr. Dietlinde Lau Institut für Mathematik
Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren
Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;
Mathematik. für die ersten Semester von Prof. Dr. Wolfgang Mückenheim. OldenbourgVerlag München
Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim OldenbourgVerlag München Inhaltsverzeichnis I 1 2 3 3.1 11 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 5.6 Grundlagen Logik 3 Mengen 7 Relationen
Numerik I Einführung in die Numerik
Numerik I Einführung in die Numerik M. Gutting 18. Oktober 2016 Termine Termine Vorlesung: dienstags von 12:15 Uhr bis 13:45 Uhr in ENC-D 201 und freitags von 14:15 Uhr bis 15:45 Uhr in ENC-D 223, Übung:
Numerische Mathematik
Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM VIEWEG+, TEUBNER / Iahalt Einleitung 13 1 Fehlertheorie 15 1.1 Fehlerarten 15 1.2 Zahldarstellung 16 1.3 Rundungsfehler
Begleitmaterial zur Vorlesung Numerik I
Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik
Hohere Mathematik. fur Ingenieure, Physiker und Mathematiker von Dr. Dr. h.c. Norbert Herrmann Leibniz Universitat Hannover 2., uberarbeitete Auflage
Hohere Mathematik fur Ingenieure, Physiker und Mathematiker von Dr. Dr. h.c. Norbert Herrmann Leibniz Universitat Hannover 2., uberarbeitete Auflage Oldenbourg Verlag MunchenWien Inhaltsverzeichnis Einleitung
NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure
NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure Eine computerorientierte Einführung Von Prof. Dr. sc. nat. HUBERT SCHWETLICK Prof. Dr. sc. nat. HORST KRETZSCHMAR Mit 74 Bildern und 34 Tabellen
Höhere Mathematik für Ingenieure Band II
Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.
Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10
Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames
Inhaltsverzeichnis. 1 Einleitung... 1
Inhaltsverzeichnis 1 Einleitung................................................. 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität...... 11 2.1 Kondition eines Problems................................
Iterative Verfahren, Splittingmethoden
Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem
Numerik für Informatiker
Numerik für Informatiker Lars Grüne Lehrstuhl für Angewandte Mathematik Mathematisches Institut Universität Bayreuth 95440 Bayreuth [email protected] www.math.uni-bayreuth.de/ lgruene/ Karl Worthmann
Numerische Mathematik
Hans Rudolf Schwarz I Norbert Köckler Numerische Mathematik 8., aktualisierte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhalt Einleitung 13 1 1.1 1.2 1.3 1.4 1..5 1.6 1.7 2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2
Gisela Engeln-Müllges Klaus Niederdrenk Reinhard Wodicka. Numerik-Algorithmen
Gisela Engeln-Müllges Klaus Niederdrenk Reinhard Wodicka Numerik-Algorithmen Verfahren, Beispiele, Anwendungen Neunte, vollständig überarbeitete und erweiterte Auflage mit zahlreichen Abbildungen und Beispielen
Überbestimmte Gleichungssysteme
Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare
Numerik gewöhnlicher Differentialgleichungen
Numerik gewöhnlicher Differentialgleichungen Band 2 Mehrschrittverfahren Von Dr. phil. nat. Rolf Dieter Grigorieff o. Professor an der Technischen Universität Berlin unter Mitwirkung von Dr. phil. nat.
der Wahrscheinlichkeitsrechnung
A.Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung Reprint Springer-Verlag Berlin Heidelberg New York 1973 AMS Subject Classif"ications (1970): 60-02, 60-03, 60A05 ISBN 978-3-642-49596-0 ISBN
VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei
Numerische Mathematik
».- Numerische Mathematik Von Dr. sc. math. Hans Rudolf Schwarz o. Professor an der Universität Zürich Mit einem Beitrag von Dr. sc. math. Jörg Waldvogel Titularprofessor an der Eidg. Technischen Hochschule
KAPITEL 1. Einleitung
KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme
Mathematik für Ingenieure 1
A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don
Numerische Mathematik
Numerische Mathematik Von Prof. Dr. sc. math. Hans Rudolf Schwarz Universität Zürich Mit einem Beitrag von Prof. Dr. sc. math. Jörg Waldvogel Eidg. Technische Hochschule Zürich 4., überarbeitete und erweiterte
Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.
Nebenfach Mathematik im Informatik-Studium Martin Gugat [email protected] FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert
ANALYSE NUMERISCHER VERFAHREN
ANALYSE NUMERISCHER VERFAHREN von Eugene Isaacson Professor für Mathematik Leiter des Rechenzentrums Courant Institute of Mathematical Sciences New York University und Herbert Bishop Keller Professor für
W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004
W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15
Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 25.
Nebenfach Mathematik im Informatik-Studium Martin Gugat [email protected] FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 25. Oktober 2017 Motivation Die rigorose Analyse von Algorithmen erfordert
Leitfäden und Monographien der Informatik. K. Kiyek/F. Schwarz Mathematik für Informatiker 1
Leitfäden und Monographien der Informatik K. Kiyek/F. Schwarz Mathematik für Informatiker 1 Leitfäden und Monographien der Informatik Herausgegeben von Prof. Dr. Hans-Jürgen Appelrath, Oldenburg Prof.
Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge
Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.
Franz Pfuff. Mathematik für Wirtschaftswissenschaftler 2
Franz Pfuff Mathematik für Wirtschaftswissenschaftler 2 vieweg studium Basiswissen Diese Reihe wendet sich an die Studierenden der mathematischen, naturwissenschaftlichen und technischen Fächer. Ihnen
Lehr- und Übungsbuch Mathematik für Informatiker
Lehr- und Übungsbuch Mathematik für Informatiker Lineare Algebra und Anwendungen Bearbeitet von Wolfgang Preuß, Günter Wenisch 1. Auflage 1996. Buch. 328 S. Hardcover ISBN 978 3 446 18702 3 Format (B x
Übungsbuch Makroökonomik
Springer-Lehrbuch Bernhard Felderer Stefan Homburg Dritte, verbesserte Auflage Übungsbuch Makroökonomik Mit 38 Abbildungen Springer-Verlag Berlin Heidelberg GmbH Professor Dr. Bernhard Felderer Universität
Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme
Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te
Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017
Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die
Lehr- und Übungsbuch MATHEMATIK. Lineare Algebra und Anwendungen. Mit 104 Bildern, 174 Beispielen und 222 Aufgaben mit Lösungen
Lehr- und Übungsbuch MATHEMATIK für Informatiker Lineare Algebra und Anwendungen Mit 104 Bildern, 174 Beispielen und 222 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis
8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren
8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor
Mathematik I/II für Verkehrsingenieurwesen 2007/08/09
Prof. Dr. habil. M. Ludwig Mathematik I/II für Verkehrsingenieurwesen 2007/08/09 Inhalt der Vorlesung Mathematik I Schwerpunkte: 0 Vorbetrachtungen, Mengen 1. Lineare Algebra 1.1 Matrizen 1.2 Determinanten
Mathematik für Ingenieure
Mathematik für Ingenieure Grundlagen - Anwendungen in Maple Bearbeitet von Ziya Sanal 3., vollständig überarbeitete und erweiterte Auflage 2015. Buch mit CD-ROM. XII, 816 S. Kartoniert ISBN 978 3 658 10641
EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME
HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H.BOSECK MIT 14 ABBILDUNGEN Zweite^ berichtigte Auflage
Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen
Albrecht Beutelspacher Lineare Algebra Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen Mit liebevollen Erklärungen, einleuchtenden Beispielen und lohnenden Übungsaufgaben, nicht
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Mathematik für Ingenieure 1
A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don
Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden.
Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer.
Höhere Mathematik für Naturwissenschaftler und Ingenieure
Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine
Probleme? Höhere Mathematik!
Hans LTrinkaus Probleme? Höhere Mathematik! Eine Aufgabensammlung zur Analysis, Vektor- und Matrizenrechnung Zweite, unveränderte Auflage Mit 307 Abbildungen Springer-Verlag Berlin Heidelberg New York
Walter Gander. Computermathematik. Lösungen der Aufgaben mit TURBO PASCAL- Programmen. Birkhäuser Verlag Basel Boston Stuttgart
Walter Gander Computermathematik Lösungen der Aufgaben mit TURBO PASCAL- Programmen Birkhäuser Verlag Basel Boston Stuttgart Inhaltsverzeichnis Vorwort 9 1 Rechnen mit Computer 13 Aufgaben 1.2-1.4, Endliche
Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.
Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.
Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die
Mathematik für Ingenieure
Ziya ~anal Mathematik für Ingenieure Grundlagen, Anwendungen in Maple und C++ 2., aktualisierte und erweiterte Auflage STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Grundwissen 1.1 Absolutwert............
Mathematische Probleme lösen mit Maple
Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >
Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die
Arbeitsbuch zur Linearen Algebra
Arbeitsbuch zur Linearen Algebra Uwe Storch Hartmut Wiebe Arbeitsbuch zur Linearen Algebra Aufgaben und Lösungen Prof. Dr. Uwe Storch Ruhr-Universität Bochum Fakultät für Mathematik Bochum, Deutschland
Iterative Löser: Einführung
Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,
MATRIZEN. und Determinanten. und ihre Anwendung in Technik und Ökonomie. von Dr. rer. nat. Günter Dietrich und Prof. Dr.-Ing.
MATRIZEN und Determinanten und ihre Anwendung in Technik und Ökonomie von Dr. rer. nat. Günter Dietrich und Prof. Dr.-Ing. Henry Stahl 5., neubearbeitete Auflage Mit 63 Bildern und 133 Beispielen und Lösungen
Großes Lehrbuch der Mathematik für Ökonomen
Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg
Mathematik für Ingenieure
A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,
Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort
Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende
Lineare Algebra I & II Algebra und Diskrete Mathematik I & II
Lineare Algebra I & II Algebra und Diskrete Mathematik I & II Vorlesungen mit Übungen von Prof. Dr. Hans Bernd Knoop gehalten an der Gerhard-Mercator Universität Gesamthochschule Duisburg Fachbereich 11
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Lineare Gleichungssysteme
Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der
Nebenfach Mathematik Studienplan
Nebenfach Mathematik Studienplan Studienbeginn im Wintersemester 3. Semester Numerische Analysis I 4. Semester Computeralgebra 5. Semester Funktionentheorie Numerisches Praktikum Nebenfach Mathematik Studienplan
Lineare Algebra. Albrecht Beutelspacher. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen 7., aktualisierte Auflage STUDIUM
Albrecht Beutelspacher Lineare Algebra Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen 7., aktualisierte Auflage Mit liebevollen Erklärungen, einleuchtenden Beispielen und lohnenden
Lineare Algebra. U. Stammbach. Professor an der ETH-Zürich
Lineare Algebra Professor an der ETH-Zürich . Vorwort Dieser Text über lineare Algebra ist aus einer Vorlesung im ersten Studienjahr an der Abteilung für Mathematik und Physik der ETH Zürich entstanden;
Mathematik für Ingenieure
A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills,
Mathematik für Ingenieure mit Maple
Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage
Kurze Geschichte der linearen Algebra
Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung
Einführung in die höhere Mathematik 2
Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden
Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005
Ina Kersten Mathematische Grundlagen in Biologie und Geowissenschaften Kurs 2004/2005 TgX-Bearbeitung von Ben Müller und Christian Kierdorf Universitätsdrucke Göttingen 2004 Zahlen und Abbildungen 10 1
IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen
Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit
Institut für Geometrie und Praktische Mathematik
RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen
Mathematik für Ingenieure mit Maple
Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300
Numerische Mathematik für Ingenieure (SoSe 2013)
Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit
Mathematik für Informatik und Biolnformatik
M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und Biolnformatik Springer Inhaltsverzeichnis 1. Einleitung und Überblick... 1 1.1 Ziele und Entstehung des Buchs... 1 1.2 Wozu dient die Mathematik
