LOOPING. Berechnung der Ablösung für den Übergang in den Schiefen Wurf. r F N

Größe: px
Ab Seite anzeigen:

Download "LOOPING. Berechnung der Ablösung für den Übergang in den Schiefen Wurf. r F N"

Transkript

1 De Looping one Reibung Ein Eiswüfel de Masse m, im olgenden kuz Köpe genannt, statet im Punkt S utsct die tangentiale Ebene inunte danac duc den etikalen Looping Reibung bleibt außen o, so dass nu konseatie Käfte oliegen etacten wi typisce agen a Zeicnen Sie im öcsten Punkt H im tiefsten Punkt des Loopings alle Käfte mit ien ezeicnungen ein, welce an dem Köpe angeifen enennen Sie diese geben Sie die jeweilige Usace diese Kaft an Einneung: Die Usacen de Käfte sind zum einen die Gaitation G zum andeen die Zwangskaft edingung de an Die Zentipetalkaft in H ist Z= + G b Geben Sie eine kuze egündung, wesalb de Köpe den Looping aus de Höe = selbst one igendwelce Reibungseluste nict ducollen kann Was gesciet in diesem all? Gemäß Enegiesatz wäe die kinetisce Enegie in H gleic goß wie in S, also J De Köpe wäe also in H nict me in ewegung, auc nict in eine Keisbewegung Es ist somit auc keine Zentipetalkaft oanden, jedoc wikt die Gewictskaft etikal nac unten Also fällt de Köpe on de Sciene nac unten Alledings fällt de Köpe o dem Eeicen des öcsten Punktes on de Sciene, da scon oe die omalkaft null wid c Wie goß muss die Gescwindigkeit im öcsten Punkt H mindestens sein, damit de Looping nict elassen wid? Aus Z G folgt g d De Statpunkt S wid so gewält, dass de Köpe die Looping-Sciene auc im öcsten Punkt H noc deutlic beüt > Aus welce Höe muss de Köpe aus de Rue folglic staten? ipp: Enegieealtung E + E = mg mg+ m = mg g + g< g 4+ < pot kin = > g c Die Statöe ist folglic mit 5 < anzunemen ü 5 = ist = in H e Geben Sie die Käfte in an, die auf den Scienen lasten, wenn die Masse des Köpes kg, de Radius des Loopings m die Höe = 3m betägt Die angentialgescwindigkeit in betägt fü = m nac de Enegieealtung g = g damit die Zentipetalkaft Z= m = m = 6mg Die omalkaft in betägt, = Z+ G= 6mg+ mg= 7mg, also m, = 7 kg 9,8 s= 68,67 S G G H G = mg z= m = + Z, G = Z, H G > H PD D e nat abil Get Hillebandt

2 eecnung de Ablösung fü den Übegang in den Sciefen Wuf Die Zelegung de lokalen Gaitationsbescleunigung g in die omal- angentialkomponente zeigt eine negatie escleunigung auf den Köpe, da e aufsteigt Die angente omale im Auflagepunkt des Köpes kann dae als bewegtes Koodinatensystem betactet weden Die omalkaft ist eine Zwangskaft, die duc die Untelage ausgeübt wid De Köpe state nun in eine Höe < 5 < E wid die Loopingban elassen, wenn = eecnen wi die zugeöige Höe Dazu wid die ditte Raumkoodinate null gesetzt Es seien Re s= + G= ma Z p Re s = = maz Dann sind also cos sin Z= m, < < π, G = mg cos = mg sin sin, m cos cos cos Z sin sin sin mg sin m g = = + = sin Die omalkaft ist folglic genau dann null, wenn Enegiesatz zeigt, dass = g olglic ist sin sin sin 3 sin sin 3 de Winkel mittels g sin g = = sin De = mit = + sin = = =, beecnet weden Die Genzfälle 3 5 = sin, = liefen 5 Somit kann = =,5 entspecend Allgemein finden wi die Ablöseöe die zugeöige Gescwindigkeit 3 = 3 = + g Dies ist die Anfangsgescwindigkeit eines sciefen Wufes in Rictung 3 5 = sin, S, also g H G = + sin 3 = = π sin cos, wobei Ein eale Looping muss natülic zwei Eigenscaften an den Übegangsstellen efüllen Die angente die Kümmung müssen übeeinstimmen, damit sic Gescwindigkeit escleunigung nict sclagatig änden, es sei denn, es ist ewünsct Die Anfodeungen an angente Kümmung sind efüllt, wenn die esten beiden Ableitungen übeeinstimmen Z Res G Gt PD D e nat abil Get Hillebandt

3 eecnung mit eine Rotation eine Kugel Rollt eine Kugel mit Radius K - one zu gleiten zu eiben - mit Looping, so ealten wi die Mindeststatöe,7<, denn duc den E + E + E = mg mg+ m + Jω = mg mg+ m + J = mg J= 5 m 7 mg+ m = mg g + 7 g< g,7 < = > g c pot kin ot K K = 7 Statet nun die Kugel aus de Höe <, 7, so eecnet sic de Winkel, die Höe die Gescwindigkeit fü = wie folgt ü das Quadat de Gescwindigkeit folgt g Mit g sin = = + sin folgt aus de Winkel die Höe sowie die Gescwindigkeit g sin= g sin 7 7 sin= 7 7 sin= 7 7 = sin, = + = = g 7 Solange keine Reibung angenommen wid, ist die Lösung imme mit dem Enegieealtungssatz möglic In diesem all weden nu konseatie Käfte betactet Mit Reibung Dissipation ist es scwee, da ein längee Weg auc me Entopie liefet Definition Eine Kaft eißt konseati, wenn die ewegung eines Köpes zwiscen zwei Punkten A unabängig on dem Weg zwiscen A ist Da die Kaft eine Pfaffsce om ψ ist, folgt auc, dass dies äquialent ist zu = ψ ode d ψ = auf einem einfac zusammenängenden Gebiet G In diesem all existiet eine unktion α mit geöige Potential dα=ψ α eißt das zu ψ PD D e nat abil Get Hillebandt 3

4 De Looping mit Reibung In diesem all soll eine Reibung des Eiswüfels, kuz Köpe, beücksictigt weden De Reibungskoeffizient sei µ In diesem seien alle weiteen Velustfaktoen wie Lufteibung, Scallabgabe etc beücksictigt Die Reibungsenegie ist auf dem Geadenstück de Länge l S einfac zu beecnen, da sic die Käfte nict änden ü die Höe im Looping wid de Zusammenang sin π δ = cosδ beücksictigt De Winkel = beginnt im iefpunkt Die escleunigung des Köpes ma egibt sic aus + R+ G= ma, wobei R= µ, mit µ µ = Aus diese Dastellung weden die angential- Zentalbescleunigung, also a entnommen Dazu bieten sic die otonomalen Eineitsektoen gebildet aus den Keiskoodinaten an De Enegieealtungssatz lautet wobei die Statöe ist Sciefe Ebene on S bis Zunäcst zu den Käften Es gilt sinδ = mg cosδ cosδ, somit S sinδ cosδ cosδ sinδ E + E + E = mg pot kin R sinδ cosδ R= µ = mg cosδ µ = µ mg cosδ cosδ sinδ sowie, G a Z = mg sinδ cosδ cosδ a= a= g cosδ + µ g cosδ + g = g µ cosδ sinδ cosδ sinδ sinδ Insbesondee ist m a = δ = tan µ De Köpe muss einen Impuls in S bekommen s R G G t δ R π δ Z H G t G Z G t G R G Z = + sin R Res G Gt 4 PD D e nat abil Get Hillebandt

5 Die Reibungskaft ist längs des Weges sciefe Ebene S konstant Die Reibungsenegie cosδ beecnet sic folglic mit s= l S sinδ zu cosδ cosδ E = i s= µ mg cosδ µ mg cosδ R R = sinδ il S sinδ l S Mit sinδ= S ER= mgµ cotδ Die Enegie damit die Gescwindigkeit in kann jetzt beecnet weden Sie betägt l folgt E + E + E = mg pot, kin, R, mg m mg mg + + µ cotδ= + g = g Duc Einsetzen on sin π δ = = cosδ folgt endlic die Eintittsgescwindig- keit in den Looping Insbesondee gilt nun sclagatig µ cotδ = g µ cotδ Z m Damit lautet die escleunigung in : a= a + a Z = g + cosδ µ cotδ = mit = g cosδ µ cotδ δ cosδ cosδ sin sinδ = + g cos g g δ + + µ + cosδ sinδ cosδ sinδ cosδ g cosδ µ cos cos sin cos g δ g δ = g δ δ sinδ cosδ sinδ sinδ sinδ cosδ cosδ = + g cosδ g cosδ + µ cos sin cos cos + g δ g δ δ δ sinδ sinδ µ g cosδ g sinδ sinδ cosδ = + cosδ + sinδ Looping zwiscen Die angentialbescleunigung a t lautet jetzt cos δ ξ at= µ + g cos δ ξ g sin δ ξ, ξ δ π < sin δ ξ Ab dem Punkt gilt beim Eintitt in den Looping mit = cosδ = g + cosδ µ cotδ de Enegieealtungssatz E pot+ Ekin+ ER= mg + m PD D e nat abil Get Hillebandt 5

6 Mit G mg = sin δ ξ, G cos n = mg δ ξ cos δ ξ wobei ξ δ folgt ma= + R+ G = Z G + µ n + G = + µ µ + Z Z Gn Gt cos δ ξ G = sin t G G = mg δ ξ n sin δ ξ, sin δ ξ cosδ ξ = m µ m sin cos cos g δ ξ g δ ξ δ ξ sin δ ξ Also gilt cosδ ξ R= µ = m + g cos δ ξ sin δ ξ olglic ist mit de Reibungsenegie E = b = µ b = µ m + g cos δ ξ ξ de Höe = cos δ ξ de R R ξ Enegieealtungssatz ü ξ Epot+ Ekin+ ER= mg+ m mg+ m + µ m cos + µ mg δ ξ ξ= mg + m g+ µξ + µ gξ cos δ ξ = g+ µξ + g cos δ ξ + µ gξ cos δ ξ = g cosδ = m ξ δ + g + cosδ µ cotδ µξ + g µξ cos δ ξ = gcosδ + g + cosδ µ cotδ ER= R bδ = µ = µ m + g δ die Enegiegleicung = folgt mit µδ + g µδ = g cosδ+ g + cosδ µ cotδ = g g cot g µδ µ δ µ δ µδ = g µ cotδ + µ g cotδ δ = g µ cotδ + µ cotδ δ µδ Aufg de Reibung muss die angentialbescleunigung a t spätestens jetzt in diesem Inteall o escwinden Aus de angentialbescleunigung cos δ ξ at= µ + g cos δ ξ g sin δ ξ, ξ δ π < sin δ ξ folgt µ + g cosδ ξ g sinδ ξ = µ = g sin δ ξ µ g cos δ ξ, ξ δ< π 6 PD D e nat abil Get Hillebandt

7 Mit de Zentipetalbescleunigung cos cot cos cos + δ µ δ δ µξ δ ξ = g µξ folgt endlic gµ cosδ µ cotδ cosδ µξ cos δ ξ = µξ gsin δ ξ µ g cos δ ξ µ cosδ µ cotδ cosδ = µξ sinδ ξ µ cosδ ξ + µµξ cos δ ξ µ µ cotδ µ sinδ = µξ sin δ ξ + µ µξ 3 cos δ ξ Diese letzte nictlineae Gleicung muss fü ξ gelöst weden Insbesondee bestätigen noc einmal die letzten Gleicungen fü µ= keine Reibung oanden, dass = g + cosδ µ cotδ 3 Looping zwiscen H De Köpe statet nun mit de Gescwindigkeit, um den Looping zu eklimmen Mit = g G= mg, folgt sin = mg cos cos ma= + R+ G = Z G + µ n + G = + µ µ + Z Z Gn Gt cos G = sin t G G = mg n sin, wobei π sin cos = m + µ m sin cos cos + g + g sin cos R= µ = + sin olglic ist mit de Reibungsenegie Also gilt m g cos cos ER= R b= µ b= µ m + g de Höe = cos de Enegieealtungssatz wobei cos mg m m g m + + µ + =, = g µ cotδ + µ cotδ δ µδ ac küzen de Masse g g cos + + µ + = un können folgende agen beantwotet weden PD D e nat abil Get Hillebandt 7

8 Aus welce Höe muss de Köpe staten, damit e den öcsten Punkt H one eunte zu fallen ducutsct? Im öcsten Punkt H muss natülic g gelten Außedem ist = π Einsetzen liefet cot cot µ δ + µ δ δ g+ + µ + g cos = g µδ µ cotδ + µ cotδ δ g + g+ µ g g π= g µδ,5 µδ µ cotδ δ = µ cotδ De Eiswüfel muss nun aus de Höe staten, damit e im Looping bleibt,5+ µ 6δ cotδ = µ cotδ,5+ µ 6δ cotδ = µ cotδ Auc die age: In welce Höe get de Eiswüfel in den Sciefen Wuf übe, wenn e untealb de geade eecneten Höe statet? kann nun beantwotet weden Wi bleiben allgemeine! sein Mit Hilfe des Enegieealtungssatz m g cos g cos, π atülic müssen = + = = < < = cos π µ cotδ + µ cotδ δ mg+ m + µ m + g cos = mg µδ folgt µ cotδ + µ cotδ δ g cos g cos= g µδ µ cotδ+ µ cotδ δ cos= 3 3 µδ damit de Winkel µ cotδ+ µ cotδ δ = cos 3 3 µδ Die Höe ist mit = cos folglic µ cotδ + µ cotδ δ µδ + µ δ cot 3 3 µδ 3 3 µδ = LE = LE leibt nu noc die Gescwindigkeit g cos = Sie betägt 8 PD D e nat abil Get Hillebandt

9 µ cotδ + µ cotδ δ = g 3 µδ cos Auc in diesem all beginnt ein sciefe Wuf in Rictung sin Rollende Kugel Im all eine Kugel beginnen Sie mit olgen Sie den Scitten des Eiswüfels R= mg m E mg Reale Looping Ein eale Looping sollte folgende Anfodeungen an den Übegängen efüllen Links- ectsseitige Ableitungen angenten die Kümmungen stimmen übeein De Kümmungsadius x wid duc x = + f x 3 f x bescieben, wobei f eine beliebige unktion ist Dies wid in de Analysisolesung ode in eine Übung dazu gezeigt Waum weden bei einem Paabelstück imme de Sceitelpunkt de ußpunkt unteste Punkt des Loopings als Übegang gewält? Abscließende emekung Zum besseen Veständnis wid neben dem Enegieealtungssatz gleiczeitig dessen Enegiestom Leistung betactet E + E + E = E Eɺ + Eɺ + Eɺ = pot kin R pot kin R Hiebei wid esictlic, dass gleiczeitig die Enegie on de potentiellen Enegie zu kinetiscen dissipatien Enegie stömt, denn in beiden esceint Desalb kann in diesem elati einfacen all auf ein Integal ezictet weden eim Aufstieg in dem Looping nimmt die potentielle Enegie zu die kinetisce Enegie ab Eɺ + Eɺ + Eɺ = pot kin R ttps://dewikipediaog/wiki/k%c3%cmmungskeis PD D e nat abil Get Hillebandt 9

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Aufgabe 9: Prisma mit maximalem Volumen

Aufgabe 9: Prisma mit maximalem Volumen Lösungen de Extemwetpoleme im Skipt, Ascnitt 86 Aufgae 9: Pisma mit maximalem olumen Wete > 0 sind natülic sinnlos! ( x ) ( 00 x ) ( 60 x) x 0 50 0 0 0 ( ) 0 0 0 0 0 5 0 5 0 5 0 5 0 5 50 olumenfunktion:

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

. Es genügt den Energieerhaltungssatz anzuwenden. , die der zweiten mit h 2. bzw. Im ersten Fall sehen wir von Rollreibung ab.

. Es genügt den Energieerhaltungssatz anzuwenden. , die der zweiten mit h 2. bzw. Im ersten Fall sehen wir von Rollreibung ab. Weollen Zei idenisce Kugeln ollen in gleice Höe los und kommen auf gleice Höe iede ins Ziel Welce de Kugeln is abe zues im Ziel? Dabei sollen beide Kugeln niemals uscen, sonden imme ollen! Die sciefe bene

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

H Aufgabenlösungen zu Kapitel 8

H Aufgabenlösungen zu Kapitel 8 H Aufgabenlösungen zu Kapitel 8 H. ösung de Übungsaufgabe 8. Zu Beecnung des Pfadvelustes beim Zweiwegemodell geen wi von Bild H. aus. Empfänge (a) Sende d d Boden Empfänge (a) Sende d T d Boden T Bild

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Wir teilen das Intervall [a,b] in n Teilintervalle der Breite x (Skizze: n = 5). Wir ersetzen die im k-ten Teilintervall f x und der

Wir teilen das Intervall [a,b] in n Teilintervalle der Breite x (Skizze: n = 5). Wir ersetzen die im k-ten Teilintervall f x und der olumen von Rotationsköpen Die Fläce zwiscen de stetigen Kuve y = f(x), de x-acse und den Paallelen x = a und x = b ezeugt bei Rotation um die x-acse einen sogenannten Rotationsköpe. Gesuct ist das olumen

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

kann in guter Näherung mit dem Lennard-Jones-Potential beschrieben werden: werden wir dieses Potential in den nachfolgenden Abschätzungen durch

kann in guter Näherung mit dem Lennard-Jones-Potential beschrieben werden: werden wir dieses Potential in den nachfolgenden Abschätzungen durch Qualitative Beandlung eines adäsiven Kontaktes Pysikalisce Hintegund Elektisc neutale Atome ode Köpe in einem Abstand gleic ode göße eines inteatomaen Abstandes zieen sic mit den sogenannten Dispesions-

Mehr

Modul 3.4 Geometrie: Kubus, Quader, Zylinder

Modul 3.4 Geometrie: Kubus, Quader, Zylinder Seite 1 1. Volumen Hie lenst du, Volumen von folgenden Köpen zu beecnen: De Begiff Volumen kennzeicnet nicts andees als den Inalt eines Köpes. Den Inalt eecnest du, indem du zunäcst die Gundfläce ausecnest

Mehr

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS4100 Grkurs IV (Pysik, Wirtscaftspysik, Pysik Leramt Otmar Marti, (otmar.marti@pysik.uni-ulm.de 28. 4. 2005 oder 29. 4. 2005 1 Aufgaben 1. Nemen Sie an, dass eine Kugel mit dem Radius

Mehr

Mathematikaufgabe 85

Mathematikaufgabe 85 Home Statseite Impessum Kontakt Gästebuch Aufgabe: Leiten Sie ie Hypefläche es schiefen Wufs he un untesuchen Sie ie Etemwete iese Funktion Welche Rolle spielt eine solche Hypefläche in einem natülichen

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben:

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan SS Klausur am 11. Juli Folgendes bitte deutlich schreiben: Facoccule Aalen Studiengang Witcaftingenieuween Pyik II D. Haan SS 005 Klauu a. uli 005 Folgende bitte deutlic ceiben Nae Vonae Gebuttag Matikelnue Sie aben fü die Klauu 90 Minuten Zeit. Löungen zälen

Mehr

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew.

2.2 Beschleunigte Bezugssysteme Gleichf. beschl. Translationsbew. . Beschleunigte Bezugssysteme..1 Gleichf. beschl. Tanslationsbew. System S' gleichf. beschleunigt: V = a t (bei t=0 sei V = 0) s S s gleichfömige beschleunigte Tanslationsbewegung System S System S' x,

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! hysik 1 / Klausu Ende SS 0 Heift / Kutz Name: Voname: Matikel-N: Unteschift: Fomeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenechne! Heftung nicht lösen! Kein zusätzliches

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Ferienkurs Experimentalphysik Übung 1-Musterlösung

Ferienkurs Experimentalphysik Übung 1-Musterlösung Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen

Mehr

2. Welle-Teilchen Dualismus

2. Welle-Teilchen Dualismus 1. De-Boglie-Wellenlänge. Die Wellenfunktion. Welle-Teilcen Dualismus 3. Heissenbegsce Unscäfe-Relation 4. Scödingegleicung 5. Ewatungswete und Obsevablen 6. Potentiale 7. Tunneleffekt Matin zu Nedden

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1

Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1 Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts (3) O. on de Lühe und U. Landgaf Beispiele zu Ipuls- und Enegiesatz - Rakete Eine Rakete it de Masse fliegt it de Geschindigkeit i leeen, käftefeien Rau

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Realschulabschluss/Sekundarabschluss I 2013 Mathematik

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Realsculabscluss/Sekundarabscluss I 0 Matematik Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacer. Sie ist keine offizielle Lösung des Niedersäcsiscen Kultusministeriums. Hauptteil. a) Zur Berecnung

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5

Prof. U. Stephan Studiengang BAU 1. Fachsemester Übung 1 TFH Berlin, FB II LV Mathematik Seite 1 von 5 Pof U Stepan Studiengang BAU Facemete Übung TFH Belin, FB II LV Matematik Seite von Hinweie: Etellen Sie in den Fällen, wo die Aufgabe keine Skizze entält, et eine Skizze Benutzen Sie die in de Aufgabe

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

15 / 16 I GK EF Übung 2 Dez.15

15 / 16 I GK EF Übung 2 Dez.15 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung)

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

EP-Vorlesung #5. 5. Vorlesung EP

EP-Vorlesung #5. 5. Vorlesung EP 5. Volesung EP EP-Volesung #5 I) Mechanik 1. Kinematik (Begiffe Raum, Zeit, Ot, Länge, Weltlinie, Geschwindigkeit,..) 2. Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft

Mehr

Mögliche Portfolios: Zulässiger Bereich

Mögliche Portfolios: Zulässiger Bereich Veeinfachende nnahme: zwei Finanztitel ( und ) ekannte Infomationen: ~ ~ ~, Va, t1 Cov~ Ewatete Renditen, t1,, t1 Vaianzen de Renditen Va ~, t 1 Kovaianz zwischen den Renditen, ~, t1, t1 Man kann unteschiedliche

Mehr

( ) ( ) ( ) ( ) 4. Arbeit, Leistung, Energie. W = F dr = F cos F dr dr. F = 0 ; F = 0 ; F = mg. W = F dr = mg dz. W mg z mg z z.

( ) ( ) ( ) ( ) 4. Arbeit, Leistung, Energie. W = F dr = F cos F dr dr. F = 0 ; F = 0 ; F = mg. W = F dr = mg dz. W mg z mg z z. 4. Abeit, Leistung, negie 4.. Abeit W = F d = F cos F d d Abeit de Schweaft F = ; F = ; F = g x y z z W = F d = g dz z z == = z > z W < ; z < z W > W g z g z z z Die Abeit W ist nu vo Anfangs- und ndpunt

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

Über die Lage von Schwerpunkten

Über die Lage von Schwerpunkten Edga önige Kantnesleite 95512 Neudossenfeld Übe die Lage von Scwepunkten A. Pysikalisce Gundlagen und Fomelgleicungen De Scwepunkt eines pysikaliscen Köpes ist ein Punkt im Inneen ode außealb dieses Köpes

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen

Ferienkurs Theoretische Mechanik 2009 Newtonsche Mechanik, Keplerproblem - Lösungen Physi Depatment Technische Univesität München Matthias Eibl Blatt Feienus Theoetische Mechani 9 Newtonsche Mechani, Keplepoblem - en Aufgaben fü Montag Heleitungen zu Volesung Zeigen Sie die in de Volesung

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Zur Gültigkeit der Newton schen Mechanik muss in S die Trägheitskraft einführen

Zur Gültigkeit der Newton schen Mechanik muss in S die Trägheitskraft einführen .. Besceunigte Bezugssysteme Betactet ystem o bezügic Inetia- ystem (I). Geainig besceunigt. mit - const. geet (späte)... Geainig besceunigte Bezugssysteme Y I Y a const (t) X X Im I: ma In ma ma ma Tägeitskaft

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

P eine waagrechte Tangente besitzt.

P eine waagrechte Tangente besitzt. Mtemtik MB Üungsltt Temen: unktionsuntesucungen, Etem mit und one Neenedingungen DHBW STUTTGART MB MATHEMATI SEITE VON Aufge A: Gegeen ist die unktion, in impliite om ) Bestimmen Sie die Tngentensteigung

Mehr

Musterlösung Serie 4

Musterlösung Serie 4 D-MATH Lineae Algeba I HS 218 Pof Richad Pin Mustelösung Seie 4 Summen Podute und Matizen 1 Beweisen Sie: (a Fü jede ganze Zahl n gilt n ( n 2 n (b Fü alle ganzen Zahlen n gilt ( ( n n n (c Fü alle ganzen

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter

Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter 8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

7 Kurvenintegrale und die Greensche Formel

7 Kurvenintegrale und die Greensche Formel nalysis III, WS 2/22 Montag 3. $Id: geen.tex,v.9 22//3 5:4:52 hk Exp $ 7 Kuvenintegale und die Geensche Fomel 7.5 Rotation und die Geensche Fomel m Ende de letzten Sitzung hatten wi die geometische Definition

Mehr

gibt die Richtung, die Pfeilspitze den Richtungssinn der Geschwindigkeit a) allgemeine Darstellung b) fahrendes Auto c) fallender Körper

gibt die Richtung, die Pfeilspitze den Richtungssinn der Geschwindigkeit a) allgemeine Darstellung b) fahrendes Auto c) fallender Körper Kinematik Zur vollständigen Kennzeicnung einer Gescwindigkeit sind demnac außer dem Betrag noc Angaben über Rictung und Rictungssinn erforderlic. Eine solce pysikalisce Größe bezeicnet man als Vektor (gerictete

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt?

= 45 erreicht? c. Welche Gesamtbeschleunigung a. hat das Motorrad in diesem Punkt? Fchhochschule Hnnove Klusu MA 9.6. Fchbeeich Mschinenbu Zeit: 9 min Fch: Physik im SS Hilfsmittel: Fomelsmmlung zu Volesung. Motoäde fhen Kuven mit Schäglge (chkteisiet duch den Winkel α im ild echts,

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

4. Variable, Lebensdauer. Variable in imperativen Sprachen. Vorlesung Grundlagen der Programmiersprachen SS 2014 / Folie 401. Themen dieses Kapitels:

4. Variable, Lebensdauer. Variable in imperativen Sprachen. Vorlesung Grundlagen der Programmiersprachen SS 2014 / Folie 401. Themen dieses Kapitels: 4. Vaiable, Lebensdaue Temen dieses Kapitels: Vaiablenbegiff und Zuweisung untesciedlice Lebensdaue von Vaiablen Laufzeitkelle als Speicestuktu fü Vaiablen in Aufufen GPS-4-1 Volesung Gundlagen de Pogammiespacen

Mehr