FORMELSAMMLUNG PHYSIK. by Marcel Laube

Größe: px
Ab Seite anzeigen:

Download "FORMELSAMMLUNG PHYSIK. by Marcel Laube"

Transkript

1 FORMELSAMMLUNG PHYSIK by Marcel Laube

2 INHALTSVERZEICHNIS INHALTSVERZEICHNIS 1 Die gradlinige Bewegung: 3 Die gleichförmig gradlinige Bewegung: 3 Zurückgelegter Weg: 3 Die gleichmässig beschleunigte geradlinige Bewegung: 3 Endgeschwindigkeit: 3 Zurückgelegter Weg: 3 Verzögerte Bewegung: 4 Zurückgelegter Weg: 4 Anfangsgeschwindigkeit: 4 Die ungleichmässig veränderte geradlinige Bewegung: 4 Der freie Fall: 4 Fallhöhe: 4 Fallzeit: 4 Fallgeschwindigkeit: 4 Der senkrechte Wurf: 5 Wurfhöhe: 5 Endgeschwindigkeit: 5 Notwendige Anfangsgeschwindigkeit: 5 Maximale Würfhöhe: 5 Die Kreisbewegung: 6 Die gleichförmige Kreisbewegung: 6 Winkelgeschwindigkeit : 6 Umfangsgeschwindigkeit: 6 Drehzahl: 6 Dauer einer Umdrehung: 6 Über- und Untersetzung: 7 Die gleichmässig beschleunigte Kreisbewegung: 7 Winkelbeschleunigung: 7 Tangentiale Beschleunigung: 7 Der Wurf: 7 Der waagrechte Wurf: 7 Der schiefe Wurf: 8 Maximale Höhe: 8 Fallzeit: 8 Wurfweite: 8 Die krummlinige Bewegung: 9 Tangentialbeschleunigung: 9 Radialbeschleunigung: 9 Radialbeschleunigung der Kreisbewegung: 9 Dynamik Kräfte am bewegten Massenpunkt: 9 Trägheitskraft: 9 TS-Zürich Seite / ML

3 Impulsgesetz: 9 Impulserhaltungssatz: 10 Das dynamische Grundgesetz bei der Drehbewegung: 10 Drehmoment: 10 Trägheitsmoment: 10 Drehimpuls: 10 Die Fliehkraft: 11 Die Corioliskraft: 11 Reibung: 11 In waagrechten Ebenen: 11 Die Reibungskraft: 11 Die Zugkraft: 11 In schiefen Ebenen: 1 Reibungskraft: 1 Hangabtriebskraft: 1 Steigung: 1 Roll- und Fahrwiderstand: 13 Rollwiderstand: 13 Fahrwiderstand: 13 Das Wellendrehmoment: 13 Die Leistung: 13 Arbeit, Leistung und Wirkungsgrad: 14 Arbeitsformen / Energieformen 14 Wirkungsgrad 15 Gesamtwirkungsgrad 15 TS-Zürich Seite / ML

4 Die gradlinige Bewegung: Die gleichförmig gradlinige Bewegung: Zurückgelegter Weg: s v* t [m] v = Geschwindigkeit [m/s] t = Zeit [s] Die gleichmässig beschleunigte geradlinige Bewegung: Endgeschwindigkeit: v v 0 a * t v 0 = Anfangsgeschwindigkeit [m/s] a = Beschleunigung [m/s ] t = Zeit [s] s = Zurückgelegter Weg [m] 0 v v as [m/s] Zurückgelegter Weg: a * t s v0 * t [m] v 0 = Anfangsgeschw. [m/s] t = Zeit [s] a = Beschleunigung [m/s ] v0 v s * t [m] v = Endgeschwindigkeit [m/s] v v0 s [m] a TS-Zürich Seite / ML

5 Verzögerte Bewegung: Zurückgelegter Weg: v0 s [m] a V 0 = Anfangsgeschw. [m/s] a = Beschleunigung [m/s ] Anfangsgeschwindigkeit: v as 0 [m/s] s = Zurückgelegter Weg [m] Die ungleichmässig veränderte geradlinige Bewegung: Der freie Fall: Fallhöhe: h g * t [m] g = Erdbeschleunigung (9.81[m/s ]) = Fallzeit [s] Fallzeit: h t [s] g Fallgeschwindigkeit: v g * h [m/s] TS-Zürich Seite / ML

6 Der senkrechte Wurf: Wurfhöhe: g * h vo * [m] v 0 = Anfangsgeschw. [m/s] = Wurfzeit [s] g = Erdbeschleunigung [m/s ] Endgeschwindigkeit: v vo g * [m/s] v v o g * h [m/s] Das Minuszeichen gilt jeweils beim Wurf nach oben! Notwendige Anfangsgeschwindigkeit: v o gh max [m/s] Maximale Würfhöhe: h max v0 [m] g TS-Zürich Seite / ML

7 Die Kreisbewegung: Die gleichförmige Kreisbewegung: Winkelgeschwindigkeit : [rad/s] [s -1 ] = Drehwinkel [rad] = Zeitintervall [s] n [s -1 ] n = Drehzahl [s -1 ] Umfangsgeschwindigkeit: V u r * [m/s] r = Radius [m] = Winkelgeschw. [rad/s] [s -1 ] d = Durchmesser [m] d n V u 60 n = Drehzahl [min -1 ] Drehzahl: N n [s -1 ] N = Anzahl Umdrehungen = Zeitintervall [s] Anzahl Umdrehungen pro Sekunde wird auch als Frequenz f angegeben! 1[Hz] ^=1[s -1 ] Dauer einer Umdrehung: T 1 1 [s] n f TS-Zürich Seite / ML

8 Über- und Untersetzung: i d d 1 [-] i < 1 Übersetzung 1 n n i > 1 Untersetzung Die gleichmässig beschleunigte Kreisbewegung: Winkelbeschleunigung: [rad/s ] [s - ] = Winkelgeschw. [rad/s] [s -1 ] = Zeitintervall [s] Tangentiale Beschleunigung: r * a t [m/s] r = Radius [m] = Winkelgeschw. [rad/s] [s -1 ] = Zeitintervall [s] a t r * [m/s] = Winkelbeschl. [rad/s ] [s -1 ] Der Wurf: Der waagrechte Wurf: x V * t [m] 0 V 0 x g * t y [m] V 0 V t g * x y [m] * V 0 y TS-Zürich Seite / ML

9 Der schiefe Wurf: x V *cos * t [m] 0 g * t y V0 *sin * t [m] g y x* tan x [m] * V *cos 0 Maximale Höhe: h max V0 *sin [m] g Fallzeit: * V0 *sin t [s] g Wurfweite: * V0 *sin * cos s [m] g V0 *sin s [m] g TS-Zürich Seite / ML

10 Die krummlinige Bewegung: Tangentialbeschleunigung: a t vt [m/s ] Radialbeschleunigung: a r vr [m/s ] Radialbeschleunigung der Kreisbewegung: v [m/s] r a r a r r * [m/s] = Winkelbeschl. [rad/s ] [s - ] Dynamik Kräfte am bewegten Massenpunkt: Trägheitskraft: F T a * m [N] Impulsgesetz: F * t m* v m* v F [N] TS-Zürich Seite / ML

11 Impulserhaltungssatz: p1 p p 3 p konst. p = Impuls Ges Das dynamische Grundgesetz bei der Drehbewegung: Drehmoment: M J * [Nm] J = Trägheitsmoment [kg m ] = Winkelbeschleunigung [s -1 ] J * F * r = M r = Radius [m] M J * J * [Nm] Trägheitsmoment: J m ( l rn ) [kg m ] n Wenn Drehachse nicht gleich Symetrieachse: J 0 *l J s m [kg m ] J o = Trägheitsm. bez. auf Drehachse Js = Trägheitsm. bez. auf Schwerachse l = Abstand der Symetrieachse zur Drehachse Drehimpuls: M J * J * [Nm] J * 1 J * konst. TS-Zürich Seite / ML

12 Die Fliehkraft: F z m* r r m* r * [N] Die Corioliskraft: Die Corioliskraft tritt immer auf, wenn ein Körper sich auf einer kreisenden Unterlage nach aussen inne bewegt. F c * m* v* [N] Reibung: In waagrechten Ebenen: Die Reibungskraft: F R * F N [N] = Reibungskoeffizient F N = Normalkraft [N] tan = Reibungswinkel Die Zugkraft: Wenn die Zugkraft nicht parallel zur Bewegung ist: F F R F g F N * F g F [N] cos *sin TS-Zürich Seite / ML

13 In schiefen Ebenen: F F R F g F N F (sin *cos ) [N] F g Ist das Gleiche wie: F F g sin F *cos * [N] F g *sin = Hangabtriebskraft (F H ) * g F g *cos * = Reibungskraft (F R ) Reibungskraft: F R m * g * * cos Hangabtriebskraft: F H m* g *sin [N] Steigung: Steigung 5 tan TS-Zürich Seite / ML

14 Roll- und Fahrwiderstand: r F f l Rollwiderstand: f F FRoll FN * [N] r In der Praxis: F * Z = Zapfenreibungszahl R F N Z Fahrwiderstand: F * [N] F = Fahrwiderstandszahl W F N F Das Wellendrehmoment: Welche aufgewendet werden muss, um den Körper ins rollen zu bringen. M F * r F * r [Nm] R R N Z * Die Leistung: P * [W] R M R TS-Zürich Seite / ML

15 Arbeit, Leistung und Wirkungsgrad: Arbeit: W F * s [J] bei Drehmoment => [Nm] Beispiel: F s W=F*cos * s Arbeitsformen / Energieformen Arbeitsform Formel Energie Reibungsarbeit ( Verschiebungsarbeit) V=konstant F R * s (F R =F N * ) Reibungsenergie (wird in Wärme abgeführt -> Verlust) Hubarbeit m*g*h Lageenergie Potentielle Energie Beschleunigungsarbeit mv Kinetische Energie V konstant Rotationsarbeit (allgemein) W=M* Rotationsenergie Kinetische J * (Anfangsgeschw. = 0) W Kinetische (Anfangsgeschw. 0) Federspannarbeit *( W J c* s W 0 ) Spannungsenergie TS-Zürich Seite / ML

16 Wirkungsgrad P P n a W W n a P n = Nutzleistung P a = Aufgewendete Leistung Gesamtwirkungsgrad P * P n 1 * * 3 * Pz Ges z TS-Zürich Seite / ML

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel:

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel: Prüfungshinweise Physik 1. Prüfungstermine: Hauptprüfung: 27.03.03 / Nachprüfung: 07.04.03 2. Bearbeitungszeit: 120 Minuten 3. Anzahl und Art der Aufgaben: sechs Aufgaben 4. Zugelassene Hilfsmittel: Zeichengerät,

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik Joachim Stiller Formelsammlung Mechanik Alle Rechte vorbehalten Formelsammlung Mechanik Ich möchte in den nächsten Wochen einmal eine Formelsammlung zur Mechanik erstellen, die ich aus dem Telekolleg Mechanik

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

Formelsammlung Biomechanik

Formelsammlung Biomechanik Formelsammlung Biomechanik Größe Symbol Formel Einheit Masse m - kg Frequenz f Zyklen/Zeiteinheit 1/s, Hertz [Hz] Länge, Weg s - m Zeit t - s Geschwindigkeit v v = D! Beschleunigung a a = D$ #! #! % Winkel

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Formelsammlung Physik

Formelsammlung Physik Energie, Arbeit, Leistung: Arbeit [J] W = F s Wärme [J] Q = c m Δθ Elektrische Energie [J] E = U I t Spannenergie [J] E = 1 2 Ds Kinetische Energie [J] E "# = 1 2 mv Potentielle Energie [J] E "# = mgh

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Inhaltsverzeichnis. Arbeitspläne... Lehrbeispiele... Übungen... Tabellenverzeichnis...

Inhaltsverzeichnis. Arbeitspläne... Lehrbeispiele... Übungen... Tabellenverzeichnis... VII Arbeitspläne..................................... Lehrbeispiele.................................... Übungen........................................ Tabellenverzeichnis..................................

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL M MECHANIK Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl I. Kinematik 10/2005 koh Bewegung auf gerader Bahn; Geschwindigkeit, Beschleunigung

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom:

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom: Übungsaufgaben zu 3.1 und 3.2 Wiederholung zur Dynamik 1) An welchen beiden Wirkungen kann man Kräfte erkennen? 2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt.

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2015/2016 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

5 Kreisbewegung und Rotation (rotación, la)

5 Kreisbewegung und Rotation (rotación, la) 5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden!

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden! Stand Bereich: Mathematik Darf in der Klausur verwendet werden! sin = a c ; cos = b c ; tan = a b sin 2 cos 2 =1 Additionstheoreme für sinus und cosinus: sin ± =sin cos ± cos sin cos ± =cos cos sin sin

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Rechenübungen II. Physik und Umwelt I Rechenübungen II

Rechenübungen II. Physik und Umwelt I Rechenübungen II 2-1. Ein Personenkraftwagen mit einer Masse von 1,85 t wird innerhalb von 6,2 s von der Geschwindigkeit v a = 125 km/h auf die Geschwindigkeit v e = 22 km/h abgebremst. a) Welche durchschnittliche Geschwindigkeit

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

1.2 Eindimensionale Bewegung

1.2 Eindimensionale Bewegung . Eindimensionale Bewegung Bewegungen von Körpern (gleichförmige oder beschleunigte) sind uns aus dem Alltag her bekannt (Versuch Luftkissenbahn). Beispiel Schnecke, Autofahrt Zur Analyse einer Bewegung

Mehr

Klassenarbeit Nr. 3 Physik Kinematik SJ

Klassenarbeit Nr. 3 Physik Kinematik SJ Klassenarbeit Nr. 3 Physik Kinematik SJ Version 1: Name: Hinweise: Bitte immer auf zwei Nachkommastellen runden. (t in Sekunden, v in Meter pro Sekunde, 0 8 ; 0 50 ). & Geschwindigkeits-Zeit- Funktionen

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Übung Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Wissensfragen 1. Welches sind die Grundeinheiten des SI-Systems? Nennen Sie die Größen, den Namen der Einheiten und

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Grundwissen. Physik. Jahrgangsstufe 10

Grundwissen. Physik. Jahrgangsstufe 10 Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Formelsammlung. Newtonsche Bewegungsgleichung: F = m a. Gleichförmige Bewegung: h = v 0

Formelsammlung. Newtonsche Bewegungsgleichung: F = m a. Gleichförmige Bewegung: h = v 0 ( Physik, Oberstufe ) Version: Mai.2009 Newtonsche Bewegungsgleichung: F = m a Gleichförmige Bewegung: s = v t Beschleunigte Bewegung: ohne Anfangsgeschwindigkeit (v 0 =0) v = a t s = 2 a t² v² = 2as mit

Mehr

Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation. Zusammensetzung und Komponentenzerlegung von Kräften

Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation. Zusammensetzung und Komponentenzerlegung von Kräften Hier geht es um die Ursachen für die Änderung des Bewegungszustandes eines Massenpunktes: Die Kräfte F Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation Zusammensetzung und Komponentenzerlegung

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Klausur ( ) Experimentalphysik für Naturwissenschaftler I Universität Erlangen Nürnberg WS 2011/12

Klausur ( ) Experimentalphysik für Naturwissenschaftler I Universität Erlangen Nürnberg WS 2011/12 Nur vom Korrektor auszufüllen! 1 3 4 5 6 7 8 9 10 Note Name (in Druckbuchstaben): Experimentalphysik für Naturwissenschaftler I Universität Erlangen Nürnberg WS 011/1 Klausur (10..01) Studiengang: Bitte

Mehr

In dem Fach Physik werden alle Gebiete der Technik durchgenommen und anhand von Praxisbeispielen soll verdeutlicht werden, wie die Anwendung erfolgt.

In dem Fach Physik werden alle Gebiete der Technik durchgenommen und anhand von Praxisbeispielen soll verdeutlicht werden, wie die Anwendung erfolgt. Einstieg in das Fach Physik In dem Fach Physik werden alle Gebiete der Technik durchgenommen und anhand von Praxisbeispielen soll verdeutlicht werden, wie die Anwendung erfolgt. Im Laufe Ihres Studiums

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Mechanik-Fragen 2003

Mechanik-Fragen 2003 Mechanik-Fragen 2003 1. Welche physikalischen Grundgrößen gibt es und wie sind deren Maßeinheiten definiert? Meter m Längeneinheit Kilogramm kg Masseneinheit Sekunde s Zeiteinheit Kelvin K Einheit der

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Drei Arten der mechanischen Arbeit

Drei Arten der mechanischen Arbeit Die folgenden Stichworte und auch die handgezeichneten Abbildungen sind zum größten Teil Lehrmaterial, welches Prof. William Brewer erstellt hat (Prof. William D. Brewer, FB Physik, FU Berlin). Herzlichen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

Mechanik. Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt. Version: 15. Februar 2017

Mechanik. Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt. Version: 15. Februar 2017 Mechanik Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt Version: 15. Februar 2017 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung

Mehr

6. Knappstein Kinematik und Kinetik

6. Knappstein Kinematik und Kinetik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 6. Knappstein Kinematik und Kinetik Inhaltsverzeichnis 0 Einleitung

Mehr

Über die Autoren 7 Danksagung 7. Einleitung 17

Über die Autoren 7 Danksagung 7. Einleitung 17 Inhaltsverzeichnis Über die Autoren 7 Danksagung 7 Einleitung 17 Über dieses Buch 17 Konventionen in diesem Buch 17 Falsche Voraussetzungen 17 Wie dieses Buch aufgebaut ist 18 Teil I: Physik anwenden 18

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

PN 1 Klausur Physik für Chemiker

PN 1 Klausur Physik für Chemiker PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Mechanik Kinematik der geradlinigen Bewegung

Mechanik Kinematik der geradlinigen Bewegung Mechanik Kinematik der geradlinigen Bewegung 18.1.17 Physik1_WS17/18 1 3. Kinematik Kinematik ist die Lehre on Bewegungen der Körper, in der die Ursachen der Bewegungen (die beteiligten Kräfte) sowie die

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Probeklausur Physik für Ingenieure 1

Probeklausur Physik für Ingenieure 1 Probeklausur Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

Vorkurs Mathematik-Physik, Teil 9 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 9 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 9 c 2016 A. Kersch 1 Erhaltungsgrößen und Erhaltungssätze 1.1 Überblick Als Erhaltungssatz bezeichnet man in der Physik die Formulierung der beobachteten Tatsache, dass

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten)

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) Zusammenfassung Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) 2. quantitativ (zahlenmäßig in Bezug auf eine Vergleichsgröße,

Mehr

MEAU 4. Klasse - Mechanik Schritt für Schritt 1.87

MEAU 4. Klasse - Mechanik Schritt für Schritt 1.87 1 Kinematik... 3 1.1 Bewegungsformen... 3 1.1.1 Translation oder Parallelbewegung... 3 1.1. Rotation oder Drehbewegung... 4 1.1.3 Superpositionsgesetz... 4 1. Kinematische Größen... 4 1..1 Geschwindigkeit...

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

Physikalische Aufgaben

Physikalische Aufgaben Physikalische Aufgaben Bearbeitet von Helmut Lindner 1. Auflage 2013. Buch. 339 S. Hardcover ISBN 978 3 446 43753 1 Format (B x L): 12,1 x 19 cm Gewicht: 365 g Weitere Fachgebiete > Physik, Astronomie

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

4. Dynamik der Massenpunkte und starren Körper

4. Dynamik der Massenpunkte und starren Körper 4. Dynamik der Massenpunkte und starren Körper Bisher: Die Ursache von Bewegungen blieb unberücksichtigt Im Folgenden: Es sollen die Ursachen von Wirkungen untersucht werden. Dynamik: Lehre von den Kräften

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm 2. Kinematik Physikalische Grundlagen Vorlesung 2.1. Mechanische Bewegung Zusammenfassung 1. Semester / 2. Thema /

Mehr

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Mechanik Dipl. Ing. (FH) Michael Schmidt März 2016 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 7 2. Kinematik 9 2.1. Einführung..............................

Mehr