Mathematik 3 für Informatik

Größe: px
Ab Seite anzeigen:

Download "Mathematik 3 für Informatik"

Transkript

1 Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Präsenzaufgaen zum 8und 9 Lösungshinweise (onhe Garantie auf Fehlerfreiheit Sei f : D R mit D {(x, y R : x, y > } und f(x, y x sin(x y + xy (a Bestimmen Sie die partiellen Aleitungen f x und f y und geen Sie den Gradienten von f an der Stelle (x ; y (; an f x x sin(x y + x cos(x y + y (mit Produktregel und f y x cos(x y + x (mit Kettenregel Es folgt grad f(; ( fx(; f y(; ( sin + cos + cos + ( 5 ( Geen Sie die Gleichung für die Tangentialeene von f an der Stelle (x ; y (; an T (x, y f(; + f x (; (x + f y (; (y + 5(x 6(y (c Bestimmen Sie mit Hilfe der Tangentialeene in (x ; y (; eine Näherung für f(, ;, f(, ;, T (, ;, + 5, 6,, 9 (d Bestimmen Sie die Richtungsaleitungen von f an der Stelle (x ; y (; in Richtung der Vektoren v ( und w (, 6, 8 v (; grad f(;, v ( 5, ( w (; grad f(;, w 5 (, (, 6, 8 und 3 4, 8, 8 Bei einem rechtwinkligen Dreieck werden die Katheten a cm und 5 cm mit einer Genauigkeit von jeweils ±, cm gemessen Bestimmen Sie mittels einer linearen Approximation des Fehlers, mit welcher Genauigkeit sich daraus (a die Hypotenuse c a + erechnen lässt (a Es ist dc c c a da + d a a + da + ( der Winkel α arctan a a + d Es folgt (mit c a a c a a + + a + 3, cm also ist c 3 ±, 3 cm ( Mit der Kettenregel und arctan x +x erhält man α a +( a +a dα α α da a d a da + d +a und α a +( a a +a 7, cm 3, cm, 3 cm, und somit Es folgt α a + ( a + a 69 (5 +,, rad, 58o Mit arctan 5 67, 38o folgt α 67, 4 o ±, 6 o

2 3 (a Bestimmen Sie die ersten und zweiten partiellen Aleitungen der Funktion f(x, y ln(x + y 3 x3 y Mit Hilfe der Kettenregel mit x + y als innerer Funktion ( alle auftretenden inneren Aleitungen sind erhält man f x x+y x, f y x+y, f xx (x+y x sowie f xy f yx f yy (x+y ( Finden Sie alle lokalen Extremwerte von f Bei der Bestimmung der Nullstellen des Gradienten stellt man fest, dass f y x+y x+y x + y y x Daraus folgt dann durch Nullsetzen der partiellen Aleitung nach x f x x+y x x x x ± Somit git es zwei Nullstellen des Gradienten als Kandidaten für lokale Extrema: und ( x y ( ( x y ( Diese sind in die HesseMatrix H f auftretende Term H f (; ( 3 (x+y ( fxx f xy einzusetzen Daei stellt man fest, dass der mehrfach f yx f yy für die Kandidaten immer den Wert annimmt und erhält det H f (; 3 > Wegen f xx (; 3 < liegt an der Stelle (; ein lokales Maximum vor, der zugehörige Funktionswert ist f(; 3 ( Weiter ist H f ( ; det H f ( ; < Somit liegt hier ein Sattelpunkt vor 7 Berechnen Sie die folgenden estimmten Integrale: (a (x5 3x + 7 dx 6 x6 3 x + 7x (zur Stammfunktion siehe Aufgae 5 ( π/ sin(π x dx ( cos(π x π/ (Stammfunktion in ( und (c jeweils mit linearer Sustitution (c dx 3 7x+ (7x + /3 dx 7 3 (7x + /3 cos cos π ( ( 3 4 8/3 3 4 /3 3 4 (4 9 4 (d Mit partieller Integration mit u x und v cos x v sin x: π/ x cos x dx x sin x π/ π/ sin x dx π sin π sin π/ sin x dx + cos x π/ cos π cos ( (e Mit der Sustitution y x + dy x dx und entsprechender Sustitution der Grenzen: x x + dx dy y y, 43 (f Mit der Sustitution y x dy x dx und Sustitution der Grenzen erhält man cos x x dx / cos y dy sin y / sin + sin, 48 +, 84, 36

3 5 Berechnen Sie die folgenden unestimmten Integrale: (a (x 5 3x + 7 dx 6 x6 3 x + 7x + c (mit x α dx α+ xα+ und Linearität des Integrals ( e x dx e x + c mit linearer Sustitution 3 (c x dx 3 x dx 3x + c 3 x + c (d 3 cos(4x 5 dx 3 4 sin(4x 5 mit linearer Sustitution (e Mit partieller Integration u x + und v : (x + dx (x + dx (x + + c (x + c (f x dx x ex x ex dx x x ex + 4 ex + c ( x x + + c mit zweimaliger partieller Integration und linearer Sustition, im vorletzten Schritt wird enutzt x ex dx x dx x ex ex dx x ex 4 ex + c (g x dx e y dy e y + c + c (mit der Sustitution y x dy x dx (h Mit partieller Integration u ln x und v x erhält man F (x ln x x dx ln x ln x x ln x dx (ln x F (x F (x (ln x F (x (ln x + c Bemerkung: Dieses Integral kann alternativ auch mit Hilfe der Sustitution y ln x erechnet werden (i Mit partieller Integration: 3 x ln x dx x 3/ ln x x 3/ x dx x3/ ln x x / dx x 3/ ln x 3 x3/ + c x 3/ (ln x 3 + c (j Mit der Sustitution y + 3 dy dx dx y erhält man + 3 dx y dy ln y + c ln(ex c 6 (a Bestimmen Sie zwei Stammfunktionen F und F von f(x x 4 + 3x mit F ( 5 und F ( 3 Die allgemeine Form der Stammfunktion ist x 4 + 3x dx 5 x5 + 3 x x + c Die Bedingung F ( 5 liefert eine Gleichung für c: 5 F ( c c , 3, also F (x 5 x5 + 3 x x + 4, 3 Analog erhält man 3 F ( c c 3 6, , 4 also F (x 5 x5 + 3 x x 3, 4 ( Finden Sie eine Funktion F mit F (x x und F ( und F ( Man erhält F (x x dx 3 x3 x + c mit F ( 3 + c c , also F (x 3 x3 x Dann ist F (x 3 x3 x dx x4 x x + c mit F ( c c , also F (x x4 x x 9 4

4 8 Prüfen Sie, o die folgenden uneigentlichen Integrale existieren und erechnen Sie sie gegeenenfalls: (a e x dx Mit Aufgae 5( erhält man e x dx e x e + e e Für stret und somit e Es folgt, dass das uneigentliche Integral konvergiert mit e x dx ( e x dx Analog zu (a erhält man a e x dx + e a Für a stret a und somit auch e a gegen, womit das uneigentliche Integral von is und damit auch von is nicht existiert (c x +x dx Mit y + x dy x dx folgt mit lim ( + x dx +x y / dy y + c + x + c, Da kein endlicher Grenzwert existiert, divergiert das uneigentliche Integral (d x dx +x Da nach (c der Grenzwert für nicht existiert, ist klar, dass das uneigentliche Integral divergiert Der Grenzwert für a raucht dann nicht mehr etrachtet zu werden (auch dieser Grenzwert ist unendlich (e cos x x dx Wie in Aufgae 7(f folgt cos x x dx sin y / sin + sin Für stret Mit der Stetigkeit der Sinunsfunktion folgt cos lim x x dx sin + lim sin sin + sin sin, 48 Somit existiert das uneigentliche Integral und hat den Wert, 48 (f x e x dx Mit partieller Integration mit u x und v e x v e x erhält man x e x dx x e x + e x e + e e x e e + e e e Mit lim e lim (z B mit der Regel von l'hospital und lim e e folgt, dass das uneigentliche Integral existiert mit x e x dx (g dx x Es handelt sich um ein uneigentliches Integral, da der Integrand für x nicht deniert ist Es ist dx x x + (Stammfunktion mit linearer Sustitution Für erhält man mit der Stetigkeit der Wurzelfunktion lim Daher existiert das uneigentliche Integral mit (h dx dx x + Es handelt sich um ein uneigentliches Integral, da der Integrand für x nicht deniert ist Zur Bestimmung einer Stammfunktion kann y dy dx sustituiert werden: dx dy y y + c + c Damit erhält man a ex dx e e a mit lim a e a e (folgt aus der Stetigkeit der e und der Wurzelfunktion Somit konvergiert das uneigentliche Integral gegen ex dx e, 6

5 4 Sei f(x, y + 3y y 3 + cos(x y (a Berechnen Sie den Gradienten und die HesseMatrix von f ( ( grad f fx sin(x y f y 6y 3y + sin(x y und ( ( H f fxx f xy 4 cos(x y cos(x y f yx f yy cos(x y 6 6y cos(x y ( Bestimmen Sie den Gradienten und die Gleichung für die Tangentialeene an der Stelle (x ; y ( π 4 ; ( Es ist f π x 4 ; sin π und f ( π y 4 ; + sin π und somit grad f ( π 4 ; ( Mit f ( ( ( π 4 ; + cos π folgt T (x, y +, x π 4 ( x π y 4 + y (c Berechnen Sie an der Stelle (x ; y ( π ( 4 ; die Richtungsaleitungen in Richtung der Vektoren u 3 5 ; 4 5, v 5 (; und w (; Mit dem grad f ( ( π 4 ; aus ( erhält man u grad f ( π 4 ;, u ( (,, 6,, 8,, 8 v grad f ( π 4 ;, v ( ( 5, und w grad f ( π 4 ;, w ( (,, (d Prüfen Sie an den Stellen (x ; y (; und (x ; y (;, o ein lokales Maximum, ein lokales Minimum oder ein Sattelpunkt vorliegt Es ist grad f(x ; y grad f(x ; y Weiter ist H f (x ; y ( 4 5 ( det H f (x ; y 4 < Es folgt, dass f an der Stelle (x ; y (; einen Sattelpunkt hat Mit H f (x ; y ( 4 7 det H f (x ; y +4 > folgt, dass f an der Stelle (x ; y (; einen lokalen Extremwert hat Wegen f xx (; 4 < handelt es sich um ein lokales Maximum

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT 3 (Analysis für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 015/016 Geben

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Stetigkeit und Dierenzierbarkeit im R n

Stetigkeit und Dierenzierbarkeit im R n Stetigkeit und Dierenzierbarkeit im R n 1 Stetigkeit Wir übertragen den Stetigkeitsbegri auf mehrstellige reellwertige Funktionen. Denition 1. Sei M R n. Eine Funktion f : M R heiÿt stetig in a M gdw.

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Mathematik II Sammlung von Klausuraufgaben

Mathematik II Sammlung von Klausuraufgaben Mathematik II Sammlung von Klausuraufgaben Die Klausur wird aus etwa 10 Aufgaben bestehen. Die folgenden Aufgaben sollen einen Eindruck vom Typ der Aufgaben vermitteln, die Bestandteil der Klausur sein

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1)

a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) Aufgabe 1 a) Wir verwenden Partialbruchzerlegung (PBZ). Der Nenner des Integranden ist x 4 + x 2 = x 2 (x 2 + 1) und hat somit bei x = eine doppelte und bei x = ±i zwei nicht-reelle Nullstellen. Damit

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Ableitungen von Funktionen

Ableitungen von Funktionen Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Mathematik II Lösung 6. Lösung zu Serie 6

Mathematik II Lösung 6. Lösung zu Serie 6 Lösung zu Serie 6. a) In einem kritischen Punkt (x, ) von f gelten f x (x, ) x + und f (x, ) x, also x. Ferner gelten f xx (x, ) f (x, ) und f x (x, ), insbesondere also f xx (, ) < und f xx (, )f (, )

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen KLAUSUR Analysis (E-Techniker/Mechatroniker/W-Ingenieure) 4.3.27 Dr. habil. Sebastian Petersen Dr. Anen Lakhal Version mit Lösungsskizzen Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur sollten

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Funktionen in mehreren Variablen Lösungen

Funktionen in mehreren Variablen Lösungen Funktionen in mehreren Variablen en Jonas Funke 5.08.008 1 Stetigkeit und partielle Dierentiation 1 Stetigkeit und partielle Dierentiation 1.1 Aufgabe Gegeben ist die Funktion: { (x + y 1 ) sin( ) (x,

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Funktionen mehrerer Veränderlicher

Funktionen mehrerer Veränderlicher Funktionen mehrerer Veränderlicher Betrachtet werden Funktionen f : D R mit Denitionsbereich D R n und Wertebereich R, d. h. man hat die Funktionsgleichung y = f (x) = f (x, x 2,..., x n ) Beispiele: f

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Übung 8: Lösungen. x x 2 3x + 2 = (x 1)(x 2) = a. b = lim. = log x log x 2 = log. f(2) = 3 14 = α β.

Übung 8: Lösungen. x x 2 3x + 2 = (x 1)(x 2) = a. b = lim. = log x log x 2 = log. f(2) = 3 14 = α β. Technische Universität München SS 4 Zentrum Mathematik 4.6.4 Prof. Dr. K. Buchner Dr. W. Aschacher Analysis II Üung 8: Lösungen Aufgae T (Integrationstechnik, 3: Partialruchzerlegung) (a) 3 + Der Nennergrad

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Probeklausur xj = 3x

Probeklausur xj = 3x Probeklausur.) (4P) Bestimmen Sie die Lösungen von j4 xj = 3x.) (3P) Berechnen Sie mittels Horner-Schema die Polynomdivision f(x) : (x+) mit Rest, wobei f(x) = x 3 +x 5 ist. Welchen Funktionswert können

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 2. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 7 3.9.7 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure.. 7, 3. - 6. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr