Physik für Wirtschaftsingenieure

Größe: px
Ab Seite anzeigen:

Download "Physik für Wirtschaftsingenieure"

Transkript

1 Phsik fü Wischafsingenieue Chisophe Diemaie, Mahias Mändl ISBN Lesepobe Weiee Infomaionen ode Besellungen une hp:// sowie im Buchhandel

2 Mechanik Bild. Bewegung eines Asonauen une dem Einfluss de Gaviaion auf eine Keisbahn um die Ede [NASA] Die Mechanik beschäfig sich mi de Bewegung von Köpen une dem Einfluss von Käfen. Meh noch als Phänomene aus andeen phsikalischen Gebieen (Elekomagneismus, Themodnamik, Aomphsik) pägen mechanische Vogänge unsee Allagsefahungen. Wi sind sändig umgeben von Köpen, deen Bewegung wi beobachen. Die Anwendung mechanische Gesemäßigkeien is nich wegudenken aus Technik und Indusie. Die Unesuchung de Bewegung von Köpen gehö u den gundlegendsen Gegensänden de Phsik. Die Begiffe, Konepe und Gesee, die aus diese Unesuchung hevogingen (. B. Geschwindigkei, Kaf, Enegie, Abei ec.), spielen fü die gesame Phsik eine wichige Rolle. Bei Köpen unescheide man sae und defomiebae Köpe. Sae Köpe sellen eine Idealisieung da, welche in vielen Fällen weckmäßig und geechfeig is. Eine weiegehende Idealisieung is die Dasellung eines saen Köpes als Massenpunk, die dann beache wid, wenn man nu an de Bewegung des Schwepunkes eines Köpes ineessie is. Wi wollen in diesem Kapiel die gundlegenden Begiffe, Konepe und Gesee de Mechanik dasellen, weshalb wi uns auf die Mechanik de Massenpunke und de saen Köpe beschänken.

3 6 Mechanik. Mechanik de Massenpunke Wenn in diesem Abschni von Köpen die Rede is, so sind dami imme Massenpunke bw. die Schwepunke de Köpe gemein. In de Kinemaik wid die Bewegung von Köpen (Massenpunken) beschieben, ohne die Bewegung u begünden. Die Begündung eine besimmen Bewegung duch Käfe und die Fage, wie sich ein Köpe une dem Einfluss von Käfen beweg, is Gegensand de Dnamik... Kinemaik de Massenpunke Geadlinige Bewegung Beweg sich ein Köpe enlang eine Geaden, so kann de O des Köpes duch die Posiion ( auf eine Koodinaenachse beschieben weden, die auf de Geaden lieg. Diese Posiion ände sich i. Allg. mi de Zei und is dami eine Funkion de Zei. Sie heiß Osfunkion. Osfunkion ( Die Geschwindigkei v ( gib an, wie bw. wie schnell sich de O mi de Zei ände. Sie is die Ableiung de Osfunkion nach de Zei. d Geschwindigkei v = & = ( (.) d Die Ableiung nach de Zei wid duch einen Punk (und nich wie in de Mahemaik üblich duch einen Sich) dagesell. Ände sich die Geschwindigkei, so spich man von Beschleunigung (auch ein Bemsvogang is in diesem Sinne eine Beschleunigung). Die Beschleunigung is die Ableiung de Geschwindigkei nach de Zei. d d Beschleunigung a & = & ( = ( (.) d d Aus den Beiehungen (.) und (.) folg unmielba duch Inegaion:

4 . Mechanik de Massenpunke 7 = 0 + v( τ)dτ mi = ) (.3) 0 0 ( 0 v 0 + a( τ)dτ mi v ) (.4) 0 0 ( 0 Is die Geschwindigkei v konsan, so spich man von eine gleichfömigen Bewegung. In diesem Fall folg aus (.3): Gleichfömige Bewegung = + v( ) mi = ) (.5) ( 0 0 Fü 0 = 0 wid daaus 0 ( 0 = 0 + v mi 0 = (0) (.6) Is die Beschleunigung a konsan, so spich man von eine gleichfömig beschleunigen Bewegung. In diesem Fall folg aus (.4): Gleichfömig beschleunige Bewegung v + a( ) mi v ) (.7) ( ( 0 = 0 + v 0 ( 0 ) + a( 0 ) mi 0 = ( 0 ) und v 0 ( 0 ) (.8) Fü 0 = 0 wid daaus v 0 + a mi v 0 (0) (.9) = 0 + v 0 + a mi 0 = (0) und v 0 (0) (.0) Beispiel. Bemsen eines Kf Wie schnell daf ein Kf höchsens fahen, wenn de Bemsweg beim Bemsen mi eine konsanen Beschleunigung a = 0 m / s höchsens s = 45 m beagen soll? Is v 0 die gesuche Geschwindigkei und die Zei, bis das Faheug um Sillsand komm, so folgen aus (.9) und (.0) die Gleichungen v ( ) 0 + a = 0 und ( ) 0 + a = s. Auflösen de esen Gleichung nach und Einseen in die weie Gleichung füh u v 0 = s v 0 = as. Man ehäl die Geschwindigkei v 0 = 30 m/s = 08 km/h. a

5 8 Mechanik Bewegung in Raum Beweg sich ein Köpe im Raum, so kann de O eines Köpes duch die Koodinaen, (, ( in einem kaesischen Koodinaenssem beschieben weden. Diese dei eiabhängigen Koodinaen sind die Komponenen eines Vekos, de Osveko heiß und de den O de Köpes angib. Osveko = ( (, (, ( ) (.) Die eiliche Ändeung des Osvekos wid duch den Geschwindigkeisveko v ( beschieben. ( + v( = lim = lim 0 0 = lim ( ( + (, ( + (, ( + ( ) = ( &, &, & ) 0 Bild. Geschwindigkei v = ( &, &, & ) = ( v, v, v ) (.) Aus Bild. geh hevo, dass de Geschwindigkeisveko angenial u Bahn geiche is. Die Geschwindigkei is die Ableiung des Oes nach de Zei. Sie enhäl wei Infomaionen: Die Richung des Vekos v ( gib die Richung an, in die sich de Köpe beweg. De Beag v ( des Vekos v ( gib an, wie schnell sich de Köpe auf seine Bahn beweg. Die eiliche Ändeung de Geschwindigkei wid beschieben duch die Beschleunigung, welche die eiliche Ableiung de Geschwindigkei is. Beschleunigung a = ( v&, v&, v& ) = ( &&, && (, & ) ( a, a, a ) = (.3) Die Beiehungen (.3) bis (.0) im eindimensionalen Fall gelen im deidimensionalen Fall komponenenweise, d. h. jeweils fü die -, - und -Komponene,. B. gil

6 . Mechanik de Massenpunke 9 v 0 + a ( τ)dτ mi v v ) = ( 0 v 0 + a ( τ)dτ mi v v ) 0 0 = ( 0 v 0 + a ( τ)dτ mi v v ) 0 = ( 0 Bei konsane Beschleunigung a = a, a, a ) gil. B. ( = 0 + v 0 + a mi 0 = (0) und v 0 (0) (.4) = 0 + v 0 + a mi 0 = (0) und v 0 (0) (.5) = 0 + v 0 + a mi 0 = (0) und v 0 (0) (.6) Diese dei Gleichungen lassen sich usammenfassen u de Vekogleichung = 0 + v 0 + a mi = 0 (0) und v = ) 0 v(0 (.7) Fü die wischen den Zeien und uückgelege Secke s gil: s = v( d mi v = v( (.8) v ( is de Beag de Geschwindigkei: v( = v = v + v + v ( Beispiel. Wufpaabel Ein Massenpunk wede vom Anfangso ( 0) = 0 = 0 mi de Anfangsgeschwindigkei v 0) = ( v, v,0) schäg nach oben gewofen (s. Bild.3). Die nach unen geichee Schwekaf bewik bei de -Komponene die Beschleunigung a = g = 9,8 m / s.

7 0 Mechanik a = ( a, a, a v ) = (0, g,0) v v = ( g ( ( = g Mi den Beeichnungen = ( und = ( ehäl man duch Einseen von = / v 0 in 0 g die Bahn des Massenpunkes in de Fom eine Funkionsgleichung: v 0 g = v v 0 0 Bild.3 Von besondeem Ineesse bei Bewegungen in eine Ebene is die Keisbewegung. Wi beachen die Bewegung auf einem Keis in de Ebene = 0 mi Mielpunk im Uspung. Bild.4 Fü diese Bewegung gil (s. Bild.4): = ( cosϕ(, sinϕ(,0) v = ( ϕ& sinϕ(, ϕ& cosϕ(,0) = ϕ& ( sinϕ(,cosϕ(,0) (.9) Die Göße ϕ& ( heiß Winkelgeschwindigkei. Sie gib an, wie schnell sich de Winkel ϕ ände.

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt

Grundbegriffe Geschwindigkeit und Beschleunigung. r = r dt Gundbegiffe Geschwindigkei und Beschleunigung Die Geschwindigkei eines Köpes is ein Maß fü seinen je Zeieinhei in eine besimmen Richung zuückgelegen Weg. Sie is, wie de O, ein Veko und definie duch die

Mehr

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book):

Leseprobe. Dietmar Mende, Günter Simon. Physik. Gleichungen und Tabellen. ISBN (Buch): ISBN (E-Book): Lesepobe Diema Mende, Güne Simon Physik Gleichungen und Tabellen ISBN (Buch): 978-3-446-43754-8 ISBN (E-Book): 978-3-446-43861-3 Weiee Infomaionen ode Besellungen une hp://www.hanse-fachbuch.de/978-3-446-43754-8

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

5.5. Anwendungsaufgaben aus der Physik

5.5. Anwendungsaufgaben aus der Physik .. Anwendungsaufgaben aus de Physik Aufgabe 1: Kinemaik Skizzieen Sie die Geschwindigkeis-Zei- und Weg-Zei Diagamme im Beeich < < 1 s und sellen Sie die Funkionsgleichungen fü v() und s() auf. a) Ein Köpe

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort Kaffelde Die Kaf auf eine Masse kann an eschiedenen Oen uneschiedlich sein. Zu ollsändigen Angabe uss fü jeden O jede Punk die Kaf die Richung de Tangene an die Kaflinie ha. Scheibweise: de Kafeko angegeben

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

4a Kinematik Mehrdimensionale Bewegungen

4a Kinematik Mehrdimensionale Bewegungen 4a Kinemaik Mehdimensionale Bewegungen Zusammenfassung Kinemaik in eine Dimension Kinemak bescheib die Bewegung on Köpen Die Bescheibung muss imme in Beug auf ein Refeenssem efolgen. In de Regel is dies

Mehr

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort

Kraftfelder. Die Kraft auf eine Masse kann an verschiedenen Orten unterschiedlich sein. Zur vollständigen Angabe muss für jeden Ort Kaffelde Die Kaf auf eine Masse kann an eschiedenen Oen uneschiedlich sein. Zu ollsändigen Angabe muss fü jeden O F F, F, F Scheibweise:,, de Kafeko angegeben weden. Kaffeld Gafische Dasellung F F,,, F,,,

Mehr

Kapitel 2 Dynamik eines Massenpunktes

Kapitel 2 Dynamik eines Massenpunktes 1 Kpiel Dnmik eines Mssenpunkes Mechnik eines Mssenpunkes Ielisiees Gebile : lle Msse es Köpes in einem Punk konenie Keine Beücksichigung e Ausehnung eines Köpes Ausehnung sei iel kleine ls ie Dimensionen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Mechanik. 1 Kinematik

Mechanik. 1 Kinematik Mechanik Kinemaik - Beschreibung der Bewegung eines Körpers durch Or, Geschwindigkei und Beschleunigung - Körper wird als Punkmasse (PM) beschrieben.. Modell der Punkmasse und Koordinaensseme (KS) Def.

Mehr

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 6 c 2016 A. Kersch Vorkurs Mahemaik-Physik, Teil 6 c 6 A. Kersch Kinemaik In der Kinemaik geh es um die Frage: wie kann ich Bewegungen, also Bahnen von punkförmigen (Kinemaik der Translaion) oder ausgedehnen Körpern (Kinemaik

Mehr

Integralrechnung III.Teil

Integralrechnung III.Teil Inegalechnung III.eil 1 Inegalechnung III.eil ngewande Mahemaik GM Wolgang Kugle Inegalechnung III.eil Inhalsvezeichnis 1. Mielwee peiodische Signale 1.1 Deiniion des aihmeischen Mielwees 1. Deiniion des

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung:

Zur Erinnerung. Winkelmaße: Radiant und Steradiant. Stichworte aus der 3. Vorlesung: Zu inneung Sichwoe aus de 3. Volesung: inkelaße: Radian und Seadian die (gleichföige) Keisbewegung als beschleunige Bewegung (Richungsändeung von v) Dasellung de kineaischen Gößen duch die inheisvekoen

Mehr

Maxwellsche Gleichungen. James Clerk Maxwell ( )

Maxwellsche Gleichungen. James Clerk Maxwell ( ) Mawellsche Gleichungen James Clek Mawell 1831-1879 bisheige Gundgleichungen... Ladungen ezeugen elekische Felde: div s gib keine Ladungen die magneische Felde ezeugen: Söme ezeugen magneische Wibel-Felde:

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet.

Die Eckpunkte A und E liegen in der y-z-ebene; Es wird ein dritter Schnittpunkt der y-z-ebene mit dem Körper berechnet. Lösungen Abiu Leisungsus Mahemai Seie von 9 P Analyische Geomeie. Dasellung de Veoen: BE + FG = BH. C F = AF AF + F = C AF + FC = AC AC FC = AF A ( ;;) B ( ; 4; ) C ( ;; ) D ( ;;) E ( ;;) F ( ; 4; ) G

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Fachhochschule Hannover

Fachhochschule Hannover Fachhochschle annove 8..5 Fachbeeich Maschinenba Zei: 9 min Fach: Physik im WS 4/5 ilfsmiel: Fomelsammlng z Volesng. in PKW(, de mi konsane Geschwindigkei von 7 kmh - fäh, wid von einem andeen PKW( mi

Mehr

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule

C Die Gleichung. Passive Netzwerke Differentialgleichungen H. Friedli. Darstellung der passiven Bauelemente Widerstand Kondensator Spule Passive Neweke Diffeenialgleichungen H. Fiedli Dasellung de passiven auelemene Widesand Kondensao Spule du U R I( ) I U& di( ) ( ) U L L I& d d Mi diesen Definiionen lassen sich alle passiven Kombinaionen

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mahemaik fü Ingenieue Eemweaufgaben (Opimieung une Nebenbedingungen) Eemweaufgaben - Einfühung In de Pais een häufig Pobleme auf, bei denen es daauf ankomm, einen opimalen We zu besimmen; z. B. den maimalen

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen leomagneische Wellen In einem Wechselsomeis mi Spule und Kondensao (Schwingeis wechsel die negie peiodisch wischen -Feld im Kondensao und -Feld in de Spule. Spule und Kondensao sind geschlossen aufgebau

Mehr

2 Mechanik des Massenpunkts und starrer Körper

2 Mechanik des Massenpunkts und starrer Körper 8 Mechanik des Massenpunks und sae Köpe MEV Mechanik des Massenpunks und sae Köpe Bewegung In diese Kapiel geh es u Bewegung: Geschwindigkei, Beschleunigung, Roaion ec Und zwa nu u den Velauf de Bewegung,

Mehr

Kinematik und Dynamik (Mechanik II)

Kinematik und Dynamik (Mechanik II) TECHNISCHE UNIVERSITÄT BERLIN Fakulä V Vekehs- und Maschinensysee - Insiu fü Mechanik FG Sysedynaik und Reibungsphysik Pof D e na V Popov wwweibungsphysikde Kineaik und Dynaik (Mechanik II) Volesungsnoizen

Mehr

Der Luftwiderstand soll bei allen Bewegungen vernachlässigt werden.

Der Luftwiderstand soll bei allen Bewegungen vernachlässigt werden. Lösunen fü Teie de Püfunskausu om..7 eichmäßi bescheunie Lineabeweun M. Ein Sein wid mi eine eschwindikei om and eine Kippe de Höhe h senkech nach oben ewofen. a) Nach weche Zei eeich e das unee Ende de

Mehr

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t

Ausgangspunkt zur Herleitung der Wellengleichung sind die Maxwell-Gleichungen v E = t. v v v v. D t Insiu fü hsi und hsialische Technologien de TU Claushal Mä 6 Nichlineae Opi WS 5/6 leomagneische Wellen. Wellengleichung Ausgangspun u eleiung de Wellengleichung sind die Mawell-Gleichungen B D ρ B D Ladungen

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phamazeuen und Biologen (PPh Mechanik, Elekiziäslehe, Opik Übung : Volesung: Tuoials: Monags 13:15 bis 14 Uh, Buenand-HS Monags 14:15 bis 15:45, Liebig HS Monags 16:00 bis 17:30,

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker

Beiblätter zur Vorlesung Physik 1 für Elektrotechniker und Informatiker, Maschinenbauer und Mechatroniker Beibläe zu Volesung Physik fü Elekoechnike und Infomike, Mschinenbue und Mechonike WS 4/5 Pof. D. Min Senbeg, Pof. D. Eckehd Mülle Ohne Veändeungen zugelssen zu Klusu GPH Kinemik Dynmik Abei und Enegie

Mehr

Zykloiden und Epizykloiden DEMO. Text Nummer Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Zykloiden und Epizykloiden DEMO. Text Nummer Mai 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Zykloiden und Epizykloiden Tex Numme 540 0. Mai 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 540 Zykloiden Vowo Die Zykloiden sind beühme und seh of vewendee Beispiele fü Kuven. Vo allem

Mehr

Die Beugung am Spalt. paralleles Licht. Schirm. Lichtquelle f 1. f 1 f 2 Spalt I

Die Beugung am Spalt. paralleles Licht. Schirm. Lichtquelle f 1. f 1 f 2 Spalt I Die Beugung am Spal Lichquelle f 1 paalleles Lich a Schim x Die wegen des Huygens schen Pinzips am Spal gebeugen Wellen inefeieen mieinande, was zu eine Inensiäsveeilung mi Maxima und Minima füh. f 1 f

Mehr

Astroteilchenphysik I

Astroteilchenphysik I Asoeilchenphysik I Winesemese 2012/1 Volesung # 2, 25.10.2012 Guido Dexlin, Insiu fü Expeimenelle Kenphysik Fühes Univesum - Hubble-Expansion - Uknall: Gundlagen - Expansionsdynamik: a & Zusandsgleichungen

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

(2) Kinematik. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(2) Kinematik. Vorlesung Animation und Simulation S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU () Kinemaik Vorlesung Animaion und Simulaion S. Müller KOBLENZ LANDAU Wiederholung I roblem (ersmal): Kamerainerpolaion Augpunk und Blickrichung Gue Wahl: Hermie-Splines Definiion von Keyframes Knoenpunk

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

18 Homogene lineare Gleichungssysteme

18 Homogene lineare Gleichungssysteme Lieae Algeba II SS 0 - Pof. D.. afed Leiz Kapiel V: Lieae Gleichgssyseme 8: Homogee lieae Gleichgssyseme 8 Homogee lieae Gleichgssyseme A Zm Begiff lieaes Gleichgssysem B Theoeische Gdlage C Lösgsvefahe

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Inhalt de Volesung Epeimentalphysik I Teil 1: Mechanik 4. Gavitation 5. Enegie und Abeit 6. Bewegte Bezugsysteme 6.1 Inetialsysteme 6. Gleichfömig bewegte Systeme 6.3 Beschleunigte Bezugssysteme 6.4 Rotieende

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

Bezugsysteme. P(x,y) P(x,y ) dx dt. = = a'

Bezugsysteme. P(x,y) P(x,y ) dx dt. = = a' y ezugyeme Die phyikalichen egiffe Ruhe und ewegung haben nu dann einen eindeuigen inn, wenn ein ezugyem angegeben wid. eipiel: Koffe im Zug Zwei ezugyeme: Da ezugyem x y beweg ich mi konane Gechwindigkei

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhal der Vorlesung A1 1. Einführung Mehode der Physik Physikalische Größen Übersich über die orgesehenen Themenbereiche. Teilchen A. Einelne Teilchen Beschreibung on

Mehr

WACHSTUM VON POPULATIONEN

WACHSTUM VON POPULATIONEN WACHSTUM VO POPULATIOE I II Exponenielles Wachsum Logisisches Wachsum Bei auseichenden Resoucen und fehlende Einwikung duch naüliche Feinde ode sonsige Einflußgößen, die das Wachsum beschänken, komm es

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen.

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen. 6.6 Fequenzgang Neben de Übeagungfunkion zu Becheibung de Signalübeagung in einem lineaen Übeagungglied im Bildbeeich wid in vechiedenen Teilgebieen de Elekoechnik noch eine andee Kennfunkion benuz, de

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v

( ) ( ) () () 4.1 Superpositionsprinzip. a v. g v. 4.1 Test des Superpositionsprinzip. v v. h v 4. Supeposiionspinip Beweun in 3 Koodinaenicunen sind unabäni oneinande! Beispiel: Sciefe Wuf ( ) ( ) a () nfansbedinunen Beweun in de --Ebene Eliminaion on () ( ) () ( ) 4. Tes des Supeposiionspinip fei

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2009/2010

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2009/2010 Landesweewe Mahemaik Baden-Wüemeg Muselösungen Runde 009/00 Aufgae In die sechs Felde de unesen Zeile des Sufendeiecks weden sechs veschiedene naüliche Zahlen eingeagen Die Zahlen zweie enachae Felde weden

Mehr

1. Ebene Bewegung eines Punktes

1. Ebene Bewegung eines Punktes Prof. V. Prediger: ufgaen zur Lehrveransalung Kinemaik und Kineik. Eene ewegung eines Punkes ufgae.: Es is ekann, dass die ewegung eines Körpers im Zeiereich 0 0s nach dem folgenden Gesez safinde: 2 3

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe:

g T Zahlenbeispiel zum freien Fall: Fallzeit T einer Kapsel im Bremer Fallturm aus H = 110 m Höhe: Phsik I U Domund WS7/8 Gudun Hille Shauka Khan Kapiel Zahlenbeispiel zum feien Fall: Fallzei eine Kapsel im Beme Fallum aus H = m Höhe: h h H h m H H H ms 9,8m 4,74 s Wähend diese Zei hesch in de Kapsel

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Epeimenlphik I Inhl de Voleun Epeimenlphik I Teil : Mechnik. Phikliche Gößen und Einheien. Kinemik on Mepunken. Menpunke. Gechwindikei.3 Bechleuniun.4 Mehdimenionle Beweun.5 Keibeweun 3. Dnmik on Mepunken

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON

Bewertungsformeln für Barrier Options im klassischen Optionspreismodell von BLACK, SCHOLES und MERTON Beweungsfomeln fü Baie Opions im klassischen Opionspeismodell von BLACK, SCOLES und MERON ANDREAS PECL Es wid zunächs die eellweige Funkion 3 F : mi x x log log y ρ υ y ρ υ F( x, y, z;, υρ, : x z e ρ =

Mehr

Notizen zur Vorlesung über Kurven

Notizen zur Vorlesung über Kurven Noizen zur Vorlesung über Kurven Michel Krow, TU-Berlin krow@mh.tu-berlin.de November 6, 9 Definiion: Eine prmerisiere Kurve is eine seige Abbildung x : R I R n, wobei I ein (offenes, hlboffenes oder bgeschlossenes)

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen,

Definition. Definition. 1 Q eine endliche Menge von Zuständen, 2 Σ eine endliche Menge von Eingabesymbolen, Diskee Mahemaik OLC mpuaional gic Main Avanzini Ane Dü Chisoph Kolleide Geog Mose Zusammenfassung de lezen LV Zusammenfassung de lezen LV deeminisische TM mi k Bänden einbändige, deeminisische TM M, sodass

Mehr

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier

ervoanriebsechnik.de Weiere Unerlagen, die im Zusammenhang mi diesem Dokumen sehen: Applicaion Guide: Ideale Geriebeunersezung /5 Regel für Posiionier ervoanriebsechnik.de / Regel für Direkanriebe Posiionierung mi Rampen 5 Winkelgeschwindigkei [rad/s] ω(, 0 5 0 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9 Zei [s] APPLICAION GUIDE Handbuch yp: Applicaion Guide

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen

Physik PHB3/4 (Schwingungen, Wellen, Optik) 3.4 Eigenschaften von elektromagnetischen Wellen Herleitung von elektromagnetischen Wellen Phsi PH3/4 (Shwingungen, Wellen, Opi Seie 8_lmagWellen1_a_A.do - 1/7 3.4 igenshafen von eleomagneishen Wellen 3.4.1 Heleiung von eleomagneishen Wellen 1 Qualiaive, anshaulihe Heleiung (nih gan ihig eshleunige

Mehr

2. Kinematik punktförmiger Körper

2. Kinematik punktförmiger Körper . Kinemaik punkförmier Körper Beschleuniun: Körper werden als Massenpunke idealisier. Beweun im -dimensionalen Raum d( ) a( ) ɺ ( ) ɺɺ ( ) d Konenion: : Zei [s] (,y,) : Or [m] : Geschwindikei [m/s] a :

Mehr

Jahrbuch des DBSV. Lesen - mit Augen, Ohren und Händen DBSV /\."' Deutscher Blinden- und Sehbehindertenverband e. V.

Jahrbuch des DBSV. Lesen - mit Augen, Ohren und Händen DBSV /\.' Deutscher Blinden- und Sehbehindertenverband e. V. Jahbuch des DBSV Lesen - mi Augen, Ohen und Händen DBSV /\."' Deusche Blinden- und Sehbehindeenveband e. V.

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1. Inenion O, Geschwindigkei und Beschleunigung eines Köpes zu jedem Zeipunk bescheiben. z e e z e () Oseko: () R. Giwidz 1 1.1 Eindimensionle, gedlinige Bewegung Eindimensionles Koodinenssem: 1 Veeinfchend

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft KA LK M2 13 18. 11. 05 I. ANALYSIS Leisungsfachanforderungen Für jedes > 0 is eine Funkion f gegeben durch f (x) = x + 1 e x ; x IR. Der Graph von f sei G. a) Unersuche G auf Asympoen, Nullsellen, Exrem-

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

Theorie klassischer Teilchen und Felder I

Theorie klassischer Teilchen und Felder I Mustelösungen Blatt 9.0.006 Theoetische Physik I: Theoie klassische Teilchen und Felde I Pof. D. G. Albe Dipl.-Phys. O. Ken Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die Potentialfunktion U x x gilt mit

Mehr

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet.

, die Anzahl der Perioden in einem Gitter wird im Folgenden mit m bezeichnet. .. Gie.. Baufomen Mi de Bezeichnun Gie is im Folenden eine Suku emein, bei de eine peiodische Ändeun des Bechunsindex enlan eine Raumichun volie. Gie weden in Halbleielasen vo allem in zwei Baufomen einesez.

Mehr

Hochschule Bremen Technische Physik (Kapitel 1) / Prof. Dr.-Ing. Dieter Kraus 1. Unter Naturwissenschaft versteht man

Hochschule Bremen Technische Physik (Kapitel 1) / Prof. Dr.-Ing. Dieter Kraus 1. Unter Naturwissenschaft versteht man . Einführung Aus der Neugierde des Menschen enwickele sich das Ineresse die ihn umgebende Wel zu ersehen. Um die Vielfal der Beobachungen (Ereignisse) zu ordnen haben sich unerschiedliche Herangehensweisen

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr