3. Elektrischer Strom
|
|
|
- Alke Beckenbauer
- vor 7 Jahren
- Abrufe
Transkript
1 3. Eletrischer Strom in diesem Kapitel nur stationäre Ströme = Gleichströme a) Stromstäre 3.1. Stromstäre und Stromdichte eletrischer Strom ist Ladungstransport Betrachte Leiter mit Querschnitt und angelegter Spannung U U ist mit eletrischen Feld E vernüpft E wirt Kraft auf Ladungsträger Q aus Stromfluss Definition Stromstäre I: Ladungsmenge dq, die pro Zeit dt durch Querschnitt des stromführenden Leiters fließt (Stromrichtung Querschnitt): dq I [I] = s/s = = mpere dt Beachte: I entlang E, deshalb entspricht I Bewegung der positiven Ladungsträger! b) Stromdichte Die Stromdichte j ist Strom der pro Querschnittsfläche des Leiters fließt. Der Vetor der Stromdichte j gibt Bewegungsrichtung der positiven Ladungsträger an. j ist in Richtung der Normalen zum Fächenelement da : di j e bzw. a da I j da mit da e [j] = /m 2 a da 1
2 c) Driftgeschwindigeit Driftgeschwindigeit v D ist Geschwindigeit der Ladungsträger unter Wirung eines E -Feldes (Geschwindigeit des eletrischen Stromes) dx = v D dt dq I I qnv D j qnvd dt Driftgeschwindigeit v D : bzw. n Ladungsträgeronzentration Ladung dq die durch Querschnitt in Zeit dt fließt: dq = q n dv = q n v D dt j qnv D v ( - Raumladungsdichte) v D j j qn D Beachte: - vd veff ( v eff - effetive bzw. thermische Geschwindigeit der Ladungsträger, trägt nicht zum Strom bei) - Bei Existenz von Ladungen mit verschiedenen Vorzeichen (Halbleiter, Gasentladung) ist die Gesamtladungsdichte n q n q gesamt und die Gesamtstromdichte j n q v n q v mit D D v D v D 2
3 d) Kontinuitätsgleichung (in nalogie zum Massenstrom bei Fluiden, vgl. Mechani Kapitel ) Betrachten pro Zeiteinheit dt aus Volumen V durch Fläche ausströmende Ladung dq: dq dt I j da mit Q dv V (Ladung strömt aus V aus: Minus-Zeichen) geschlossene Integationsfläche Gausscher Integralsatz: V jda dv t V jda div jdv V div jdv t V dv allgemeine Kontinuitätsgleichung: div j 0 t (Ladungserhaltung!) für stationäre Ströme ( E, j const. ): 0 E da Q ums const. spezielle Kontinuitätsgleichung: div j 0 t 0 für stationäre Ströme (Was rein geht, muss auch wieder heraus! Es gibt eine Strom-Quellen und eine Strom-Senen ) 3
4 3.2. Widerstand und Leitfähigeit Ohmsches Gesetz a) Widerstand Eletrischer Leiter (Draht) mit Querschnitt und Länge l. Welcher Zusammenhang besteht zwischen I und U? Experiment: Strom-Spannungsennlinie eines Ohmschen Widerstandes (I U) Ergebnis: I U Strom-Spannungs-Kennlinie: Ohmsches Gesetz: I 1 U mit eletrischen Widerstand: R R [R] = V/ = = Ohm Ursache (U) und Wirung (I) Beachte: Ohmsches Gesetz ist ein Spezialfall und im allgemeinen nicht erfüllt (im allg.: R = R(I) ) Von was hängt R ab? Experiment: Ohmscher Widerstand ( I l -1, : I ) Ergebnis: R l -1 s l R mit spezifischen Widerstand s [ s ] = m 4
5 b) Leitfähigeit Leitfähigeit: 1 s l R [] = (m) -1 Bsp.: eletrischer Leiter (Draht) mit Länge l und Querschnitt Strom: I j da j Spannung: U l Er dr E l 0 Ohmsches Gesetz: U = R I l E l = R j j E mit Stromdichte entlang E - Feld R alternative Schreibweise für Ohmsches Gesetz: j E mit j qnv folgt E D qnvd und somit v D E qn bzw. E mit Ladungsträgerbeweglicheit v D [] = m 2 /Vs qn 5
6 Eletrische Leistung Strom fließt durch Widerstand R, Ladungsträger müssen rbeit verrichten, rbeit wird von Spannungsquelle geliefert - rbeit W, die geleistet wird, wenn Ladungsmenge Q Potentialdifferenz U (Spannung) durchläuft: 2 2 W Fdr Q Edr QU [W] = Vs = J = Joule Leistung (rbeit pro Zeit): W Q P U UI [P] = V = Js -1 = W = Watt t t mit U = R I (ohmsches Gesetz): P UI I 2 2 U R R Beachte: Die rbeit, die der Strom leistet, wird im Widerstand in Wärmeenergie ( Joulesche Wärme ) umgewandelt: W W th Beispiele: Tauchsieder, eletrischer Wasserocher, Rotlichtlampe 6
7 3.3. Gleichstromreise Kirchhoffsche Gesetze a) Knotenregel j 3 da3 0 geschlossene Integrationsfläche j 1 da1 0 Kontinuitätsgleichung für stationäre Ströme: div j 0 (Gausscher Integralsatz) div j dv j da 0 V 4 j da I 0 Knotenregel: I 0 Die Summe aller Ströme, die in den Knoten münden, ist Null. Experiment: - Demonstration Knotenregel 7
8 b) Maschenregel - Spannungen positiv in Uhrzeigersinn zählen (I > 0) - eingefügte (eingeprägte) gerichtete Spannung (Urspannung an Spannungsquelle) U 4 = U 0 zeigt vom höheren zum niedrigeren Potential ( U 0 > 0 für + -) - Spannungsabfälle U i = R i I an Widerständen zeigen ebenfalls vom höheren zum niedrigeren Potential ( U i > 0 für + -) entlang positiven I > 0 Spannungsabfall z. Bsp. über Widerstand R 1 : U da aber Coulomb-Kraft F dr q E dr 0 c Masche Masche 1 a E dr b b a E dr F c qe onservative Kraft ist, muss gelten: also auch E dr 0 Masche somit folgt E dr U U U U 0 Masche dr U Masche Maschenregel: U 0 1 E 0 2 Die Summe aller Spannungsabfälle in einer Masche ist Null. Experiment: - Demonstration Maschenregel 3 4 8
9 nwendungen - Gleichstromreise a) Spannungsteiler s l s x R Rx U R IR U x IRx U U x R Rx R x l Maschenregel: U R U 0 0 U R U 0 U U x U l x R 0 x l Experiment: - Spannungsteiler b) Widerstandsnetzwere Reihenschaltung Maschenregel: IR IR IR U Vgl. mit Ohm- Gesetz U U R 0 0 R I U0 0 R I R I gesamt gesamt R Experiment: - Widerstände in Reihenschaltung 9
10 Parallelschaltung Maschenregel: -R 1 I 1 + R 2 I 2 = 0 -U 1 + U 2 = 0 U 1 = U 2 = U = U 0 I = U 0 /R Knotenregel: I g I 1 I 2 I 3 = 0 1 I g I U0 R Vgl. mit Ohm- Gesetz (R= U/I) I U / R g 0 gesamt 1 1 R gesamt R Experiment: - Widerstände in Parallelschaltung 10
11 c) Innenwiderstand einer Spannungsquelle Ersatzschaltbild einer Spannungsquelle U o = Leerlaufspannung (Urspannung) R i = Innenwiderstand z. Bsp. bedingt durch Leitungen innerhalb der Spannungsquelle Spannungsquelle mit Lastwiderstand R 0 = U o R i I U U U R I 0 = U o R i I RI daraus folgt o i I Uo R R i und U U or ( mit U = RI) R R i Experiment: Innenwiderstand einer Spannungsquelle, Messe I(R), U(R), zeige U = U 0 R i I Kurzschluss, R = 0: U R i begrenzt Strom 0 I R i Leerlauf, R >> R i : U = U 0 Verbraucherspannung = Urspannung 11
12 Experiment: Leistungsanpassung, maximale Leistung am Verbraucherwiderstand wenn R = R i npassung: Leistung an R: P U RI R RI Leistungsanpassung: dp aus 0 folgt: bei R = R i maximale Leistung dr 2 U 0 Pmax am Lastwiderstand 4 R i 2 R 2 U0 i R R 2 12
13 d) Wheatstone-Brüce Widerstandsmessung von unbeannten Widerstand R d durch Vergleich mit beannten Widerständen R a, R b, R c Gesucht ist R d Bei Stromlosigeit, I G = 0, muss gelten: lins rechts I a = I b (Knoten oben) I c = I d (Knoten unten) I a R a + I c R c = 0 I b R b + I d R d = 0 I a R a = - I c R c (II) I b R b = - I d R d (I) I b R a = - I d R c (II)/(I) Rb Rd R brc Rd Ra Rc Ra Experiment: - Wheatstone-Brüce 13
14 3.4. Leitungsmechanismen 14
15 15
16 16
17 17
18 18
19 19
20 20
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Dielektrika - auf atomarem Niveau lektrischer Strom Stromdichte Driftgeschwindigkeit i i = dq dt = JdA J = nev D Widerstand
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz
ELEKTRISCHE GRUNDSCHALTUNGEN
ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der
1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer
TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,
2 Der elektrische Strom
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke Stromstärke: I dq dt Einheit: 1 Ampere = C/s PTB Auf dem Weg zum Quantennormal für die Stromstärke Als Ladungsträger kommen vor:
Potential und Spannung
Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0
GRUNDLAGEN DER WECHSELSTROMTECHNIK
ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6
E2: Wärmelehre und Elektromagnetismus 15. Vorlesung
E2: Wärmelehre und Elektromagnetismus 15. Vorlesung 11.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande Heute: - Reihen-
Stand: 4. März 2009 Seite 1-1
Thema Bereiche Seite Ladung Berechnung - Spannung allgemeine Definition - Berechnung - Definition über Potential - Stromstäre Berechnung über Ladung - Stromdichte Berechnung - Widerstand Berechnung allgemein
4.2 Gleichstromkreise
4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()
2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche Regeln
2.. ENFACHE SCHALTUNGEN,KCHHOFF 03 2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche egeln Netzwerke aus Widerständen (aber auch anderen Bauelementen) können sehr gut mittels den Kirchhoffschen
IPMG-GET-V1. Interdisziplinäres Praktikum Mathe/GET. GET-Vorbereitungsunterlagen für den Versuch 1 / EME 13
IPMG-GET-V1 Interdisziplinäres Praktikum Mathe/GET GET-Vorbereitungsunterlagen für den Versuch 1 / EME 13 Gleichstromkreis mit Leistungsanpassung WS 2017/18 Revision 01 Prof. Dr.-Ing. Holger Wrede [email protected]
-Q 1 Nach Aufladen C 1
Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken
1 Dielektrika Experiment Kraft auf Grenzfläche DE-Vakuum Stetigkeitsbedingung an Grenzflächen... 4
0 0 Inhaltsverzeichnis 1 Dielektrika 2 1.1 Experiment.......................................... 2 1.2 Kraft auf Grenzfläche DE-Vakuum............................ 4 1.3 Stetigkeitsbedingung an Grenzflächen..........................
Zusammenfassung v08 vom 16. Mai 2013
Zusammenfassung v08 vom 16. Mai 2013 Gleichstrom Elektrischer Strom ist definiert als die Ladungsmenge dq, dieinderzeitdt durch eine Fläche tritt: Daraus folgt das differentielle Ohm sche Gesetz j = σ
1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4
Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................
Dielektrizitätskonstante
Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -
Zusammenfassung v09 vom 28. Mai 2013
Zusammenfassung v09 vom 28. Mai 2013 Ohm sche Widerstände sind durch die Befolgung des Ohm schen Gesetzes charakterisiert. Dies beinhaltet in (idealisierten Fällen) die Linearität zwischen Strom und Spannung,
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
E2: Wärmelehre und Elektromagnetismus 15. Vorlesung
E2: Wärmelehre und Elektromagnetismus 15. Vorlesung 11.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande Heute: - Reihen-
1.2 Stromkreis Stromquelle Batterie
1.2 Stromkreis 1 + + + Stromquelle Batterie + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Pluspol: Positiv geladene Atome warten sehnsüchtig auf Elektronen. Minuspol:
Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand
E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge
Schaltung von Messgeräten
Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #18 am 25.05.2007 Vladimir Dyakonov Schaltung von Messgeräten Wie schließt man ein Strom- bzw.
3 Elektrische Leitung
3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung
Spule, Kondensator und Widerstände
Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische
Elektrizitätslehre. Stromkreise. Stoffe. Elektrischer Strom
Elektrizitätslehre 3 Elektrischer Strom Stromkreise Elektrischer Strom Stoffe Elektrischer Strom = kollektive geordnete Wanderung von Ladungsträgern (z.b. Elektronen, Ionen, ) Dieser elektrische Leitungsvorgang
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.
Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen
Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige
Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke
E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz
Elektrodynamik I Elektrische Schaltkreise
Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen
Stromstärke. STROM und SPANNUNG. Driftgeschwindigkeit. Stromträger. Ladungstransport pro Zeiteinheit. Dimension: 1 A = 1 Ampere = 1 C/s.
Stromstärke STROM und SPNNUNG Ladungstransport pro Zeiteinheit Dimension: = mpere = C/s EX-II SS200 I = dq dt = j d S Stromdichte : /cm 2 Stromträger Elektronen bzw. positiv oder negativ geladene Ionen
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
PHYSIKTEST 4C 16. November 2016 GRUPPE A
PHYSIKTEST 4C 16. November 2016 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1.
11. Elektrischer Strom und Stromkreise
nhalt 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter
Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente
E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom
6.2.6 Ohmsches Gesetz ******
6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn
Übungen zur Physik II PHY 121, FS 2017
Übungen zur Physik II PHY 121, FS 2017 Serie 7 Abgabe: Dienstag, 25. April 12 00 Kennlinie = characteristic (curve, line) Strom = (electric) current Der Widerstand = the resistor Knotenregel = current
Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken
Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken 1.1 Quellen 1.1.1 Der Begriff des Zweipols (Eintores) Ein Zweipol ist vollständig beschrieben durch zwei Größen: Die Klemmenspannung
Elektrotechnik: Übungsblatt 2 - Der Stromkreis
Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie
Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 11: Strom- und Spannungsteilung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Auf der Basis der Kirchhoffschen Gesetze wurden Methoden zur Zusammenfassung
Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A
1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung 07.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande http://www.teylersmuseum.nl
Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6
Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von
Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger
Gleichstromkreise 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski Elisabeth Seibold Nathalie Tassotti Tobias Krieger ALLGEMEIN Ein Gleichstromkreis zeichnet sich dadurch aus,
Lösungen der Übungsaufgaben zur Berechnung von Netzwerken
Lösungen der Übungsaufgaben zur Berechnung von Netzwerken W. Kippels 1. Dezember 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zu Spannungs- und Stromquellen..............
1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise
Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt
1. Statisches elektrisches Feld
. Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz
Gleichstromtechnik. Vorlesung 8: Knoten- und Maschenregel. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 8: Knoten- und Maschenregel Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Maschen- und Knotenregel Begriff des Zweipols In technischen Aufgabenstellungen
2 Gleichstromtechnik. 2.1 Der unverzweigte Stromkreis Der Grundstromkreis
27 2 Gleichstromtechnik 2.1 Der unverzweigte Stromkreis 2.1.1 Der Grundstromkreis Ein unverzweigter Stromkreis ist die geschlossene Hintereinanderschaltung verschiedener Schaltelemente: Spannungsquellen,
1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:
Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-
17. Vorlesung EP. III. Elektrizität und Magnetismus
17. Vorlesung EP III. Elektrizität und Magnetismus 17. Elektrostatik (Fortsetzung) Spannung U Kondensator, Kapazität C Influenz 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen) Stromkreise
Lineare elektrische Netze
Lineare elektrische Netze Energiegewinn &-verlust Energiegewinn, Erzeugung Energieverlust, Verbrauch ds E ds E, U I U I F= m g d s F= m g U I Drei Beispiele aus der Mechanik und aus der Elektrotechnik
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.
Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................
Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm
Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände
I. Bezeichnungen und Begriffe
UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik 1 Dr. W. Bodenberger 1. Einige Bezeichnungen und Begriffe I. Bezeichnungen und Begriffe Spannung: Bezeichnung: u Signalspannung U Versorgungsspannung
Der elektrische Strom
Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei
Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008
Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt Nr. 8 Aufgabe 29 Spannungsteiler a) Da der Widerstand R V, wird hier kein Strom mehr durchfließen, denn I = U R V 0.
Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i
Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB
Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz
Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man
NTB Druckdatum: ELA I
GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche
Zusammenfassung EPII. Elektromagnetismus
Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:
Elektrolytischer Trog
Elektrolytischer Trog Theorie Er dient zur experimentellen Ermittlung von Potentialverteilungen. Durchführung Die Flüssigkeit im Trog soll ein Dielektrikum sein. (kein Elektrolyt) Als Spannungsquelle dient
Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz:
Schnellkurs Ohmsches Gesetz eihen- und Parallelschaltung von Widerständen Jeder kennt aus der Schule das Ohmsche Gesetz: = Aber was bedeutet es? Strom (el. Stromstärke) Spannung Widerstand Vorbemerkung:
Grundwissen des Ingenieurs
Grundwissen des Ingenieurs Bearbeitet von Ekbert Hering, Karl-Heinz Modler 3., vollständig überarbeitete Auflage 00. Buch. 96 S. Hardcover ISBN 978 3 6 3 9 Format (B x L): 8 x,5 cm Gewicht: 98 g Zu Inhaltsverzeichnis
Beziehung zwischen Strom und Spannung
Beziehung zwischen Strom und Spannung Explizit kein Ohm sches Verhalten; keine elektrische Leitfähigkeit im üblichen Sinne Beschleunigte Elektronen im Vakuum (Kathodenstrahlröhre) Elektronentransfer in
2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb
HS EL / Fachb. Technik / Studiengang Medientechnik 13.04.14 Seite 2-1 2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb 2.1 Quellen 2.1.1 Grundlagen, Modelle, Schaltsymbole Eine elektrische Spannungsquelle
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte
Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung
Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,
Experimentalphysik II Strom und Magnetismus
Experimentalphysik II Strom und Magnetismus Ferienkurs Sommersemester 2009 Martina Stadlmeier 08.09.2009 Inhaltsverzeichnis 1 Der elektrische Strom 2 1.1 Stromdichte................................. 2
3. Elektrischer Strom. 3.1 Stromstärke und Ampere
3. Elektrischer Strom 3.1 Stromstärke und Ampere Prof. Dr. H. Podlech 1 Einführung in die Physik 2 In der Elektrostatik wurden ruhende Ladungen betrachtet Jetzt betrachten wir bewegte elektrische Ladungen
Gleichstromtechnik. Vorlesung 13: Superpositionsprinzip. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 13: Superpositionsprinzip Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Einige Schaltungen weisen mehr als eine Quelle auf, Beispiel Ersatzschaltbild
6.4.2 Induktion erzeugt Gegenkraft ******
V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2
Vorlesung Physik für Pharmazeuten PPh - 09
Vorlesung Physik für Pharmazeuten PPh - 09 Elektrizitätslehre 08.01.2007 Entdeckung der Elektrizität Erscheinungen elektrischer Anziehung wurde schon von den Griechen am Bernstein (griech. ηλεκτρον) beobachtet
18. Vorlesung III. Elektrizität und Magnetismus
18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)
6 Gleichstromkreis. 6.1 Gleichstromkreis
6 Gleichstromkreis Alle elektrischen und elektronischen Geräte enthalten Schaltkreise in der einen oder anderen Form. Wir befassen uns zunächst nur mit Gleichstromkreisen und diskutieren Wechselstromkreise
Versuch: Ladung und Strom ( geladene Wassertropfen)
Versuch: Ladung und Strom ( geladene Wassertropfen) 1. Wasserbecher wird gegen Auffangbecher aufgeladen. Wassertropfen transportieren alle in etwa dieselbe Ladung dq, gemessene Gesamtladung nach einiger
Elektrotechnik II: Kolloquium 1
Elektrotechnik II: Kolloquium 1 Repetition Elektrotechnik I Markus Imhof: [email protected] Line Roald: [email protected] Inhalt des Kolloquium Organisatorisches Gleichstromkreise Elektrische und
Inhalt der Vorlesung B2
Physik A/B SS 7 PHYSK B SS3 SS4 nhalt der Vorlesung B 3. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder
Kantonsschule Solothurn, Reto Basler Stotzer,
11 Elektrodynamik Inhaltsverzeichnis 11 Elektrodynamik...1 11.1 Elektrischer Strom...3 11.2 Elektrische Bauteile...3 11.2.1 Der elektrische Widerstand...4 11.2.2 Diode...5 11.2.3 Schaltzeichen elektrischer
Technische Grundlagen: Übungssatz 1
Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:
Gleichstromtechnik. Vorlesung 4: Strom und Stromdichte. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 4: Strom und Stromdichte Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ladungstransport in homogenen elektrischen Leitern Leiterausschnitt mit dem Kontrollquerschnitt
Physikalische Anwendungen Elektrotechnik
Physikalische Anwendungen Elektrotechnik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die
Physikepoche Klasse 11. Elektrizitätslehre
Physikepoche Klasse 11 Elektrizitätslehre Der elektrische Gleichstromkreis Nur in einem geschlossenen Stromkreis können die elektrischen Ladungsträger vom negativen Pol der Spannungsquelle zum positiven
zugelassene Hilfsmittel : Taschenrechner, 40 Seiten eigene Formelsammlung, 10 Seiten sonstige Formelsammlung
Standort Wilhelmshaven Seite : 1 rundlagen der Elektrotechnik I Klausur WS 2003/2004 zugelassene Hilfsmittel : Taschenrechner, 40 Seiten eigene Formelsammlung, 10 Seiten sonstige Formelsammlung Dauer/Punkte
Besprechung am
PN2 Einführung in die Physik für Chemiker 2 Prof. T. Weitz SS 207 Übungsblatt 4 Übungsblatt 4 Besprechung am 29.05.207 Aufgabe Ohmsches Gesetz. a) Ein Lautsprecherkabel aus Kupfer mit einer Länge von 5,0
Formelsammlung: Physik II für Naturwissenschaftler
Formelsammlung: Physi II für Naturwissenschaftler 4 Eletrizität und Magnetismus 4.1 Ladung und Ladungserhaltung Ladung q = n(±e) mit Elementarladung 4.2 Coulomb-Gesetz e = 1,6 10 19 C = 1,6 10 19 As Stand:
Systemtheorie. Vorlesung 17: Berechnung von Ein- und Umschaltvorgängen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Systemtheorie Vorlesung 7: Berechnung von Ein- und Umschaltvorgängen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Ein- und Umschaltvorgänge Einführung Grundlagen der Elektrotechnik
Thema 2: Elektrische Kennlinien verschiedener Leiter
Version vom 26. April 2015 Thema 2: Elektrische Kennlinien verschiedener Leiter Abbildung 2.1: Der Versuchsaufbau in der Übersicht 1 Grundlagen 1.1 Metallische Leiter, Halbleiter und Isolatoren In einem
Musterlösung zur Klausur Naturwissenschaftliche und technische Grundlagen
Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2012/13 Informatik-Studiengänge Musterlösung zur Klausur Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer:
Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.
Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden
Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:
Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand
Ausarbeitung Versuch 13 Messung von Spannung und Strömen. von Fabian Gutjahr. Mitarbeiter: Jan-Hendrik Spille Betreuer: Arne Jacobs Datum:
Ausarbeitung Versuch 13 Messung von Spannungen und Strömen von Mitarbeiter: Jan-Hendrik Spille Betreuer: Arne Jacobs Datum: 09.11.04 Seite 1 von Inhaltsverzeichnis 1. Physikalische Grundlagen... 4 1.1
