Baustatik & Festigkeitslehre Vorlesung & Übung

Größe: px
Ab Seite anzeigen:

Download "Baustatik & Festigkeitslehre Vorlesung & Übung"

Transkript

1 Baustatik & Festigkeitslehre Vorlesung & Übung Vortragender: O.Univ.Prof. DI Dr. Dr. Konrad Bergmeister

2 Spannungen A F p p lim A 0 F A F p F A F p* F A* A A* a b

3 Spannungen Normal und Schubspannungen z X τ z τ p Y Rechte-Hand-Regel Z

4 Spannungen Normal und Schubspannungen l z z l τ z τ z τ z τ τ z τ τ τ z dz d d l

5 Spannungen Normal und Schubspannungen z zz z z τ z dz p d τ τ z z τ z τ τ z τ d τ z τ z Gleichgewichtsbedingung: d ( ) dz τ ( ) z ddz τz dd 0 d / d / dz / dz / M z τ z t z t z

6 Spannungen Normal und Schubspannungen S τ τ z τ τ z τ τ z z z n + n + n z ( ) z f n, n, n n + n + n 0 z z τ τ ξ ξη ξζ τ τ ξη η ηζ τ τ ξζ ηζ ζ

7 Spannungen In einer vorgegebenen Schnittebene p ξ ζ η p τ ξ τξζ τξη p z ξ p z ξ p p p + τ + τ z z τ + + τ z z τ + τ + z z z z z

8 Spannungen Hauptnormalspannungen, Spannungshauptachsen p ξ ξ ξ 0 (s -s) n + t n + t z n z 0 t n + (s - s) n + t z n z 0 t z n + t z n + (s z - s) n z 0 3 ( ) τ τ z τ ( ) τ z τ τ ( ) z z z 0 3

9 Spannungen Hauptschubspannungen τ,, τ τ τ τ 3 τ 3 τ

10 Spannungen Der ebene Spannungszustand F 3 z z τ τ F F a b

11 Spannungen Der ebene Spannungszustand ϕ τ ξη p ξ ξ p s + t p t + s p η ϕ ξ p p τ z τ p

12 Spannungen Der ebene Spannungszustand ψ ϕ ϕ τ ξ η ξη Schnittebene mit cosϕ + τ cosϕ τ sin ϕ + τ cosϕ sin ϕ sin ϕ ϕ Schnittebene mit Schnittebene τ ξ ξη + + sin ψ cosψ mitϕ ψ + ϕ

13 Der Mohrsche Spannungskreis Christian Otto Mohr τ τ ξη ξ a R τ + ( ) a R + ξη ξ τ +

14 Der Mohrsche Spannungskreis τ ξη R ϕ 0 τ η ξ ϕ 90 ϕ 0 ϕ ϕ ξ η ξ τ ϕ 90 + s, s + s s -s + t Ł ł

15 Der Mohrsche Spannungskreis τ ξη ϕ 0 + cosψ ϕ 0, ϕ ϕ τ ξη sinψ ϕ ψ ψ ξ τ tan ϕ*

16 Der Mohrsche Spannungskreis τ ξη ϕ 0 ϕ ξ ϕ ϕ ϕ ξ ϕ ϕ τ ξη τ ma

17 Verformungen DI u(i) u(0) l l+ l u ( 0) u( l) 0 l

18 Verformungen Du u(+d) - u() + u( ) ( + ) u u u ( + ) u( ) ( ) du d

19 Verformungen Für einen Zugstab I u I du d ( I ) u( 0) d ( ) d 0 0 I I d I 0 I I I

20 Verformungen Im ebenen Fall nach der Verformung (stark übertrieben) vor der Verformung

21 Verformungen Im ebenen Fall Alle Winkeldrehungen sind sehr klein. Jede auf dem Körper markierte Linie darf sich nur so verformen, dass ihre Längenänderung klein gegenüber der Ausgangslänge ist. Bei den meisten Werkstoffen liegt dieser Wert < %. Diese Einschränkung schließt allerdings nicht aus, dass größere translatorische Verschiebungen (z.b. Stimmgabel) ausgeführt werden.

22 Verformungen Dehnung - Scherung (, + ) (, ) u u + (, ) (, + ) v β 90 γ (, ) ( +, ) u α v(, ) ( ) v +, u [ u ( +, ) u(, + v [ v(, + ) v(,

23 Verformungen Dehnung - Scherung u (, ), (, ) Außer den Längenänderungen interessieren auch die Änderung der ursprünglich rechten Winkel an den Eckpunkten. Das heißt, die Abnahme des Winkels zwischen den Parallelen zu den beiden Achsen. Diese Maß bezeichnet man als Scherung oder Schiebung g. α tanα v ( +, ) v(, ) + u( +, ) v v + ( +, ) v(, ) u ( +, ) u(, )

24 Verformungen Dehnung - Scherung limα v ( ) 0 +, γ limα 0 v u lim β 0 v, γ, + ( ) ( ) u

25 Verformungen Dehnung und Scherung in einem gedrehten Koordinatensstem v(, ) (, ) ( ξη, ) u(, ) ϕ U(, ) V (, ) ξ ξ ξ γ ξη sin ϕ + cos ϕ + cos ϕ γ γ γ sin ϕ sin ϕ cos ϕ

26 Verformungen Verschiebungen und Verformungen im allg. räumlichen Fall (,, ), (,, ), (,, ) z u v w z z z z γ γ γ z z (,, z) γ (,, z) (,, z) γ (,, z) z (,, z) γ (,, z) z v u + w v + z u w + z

27 Verformungen Verschiebungen und Verformungen im allg. räumlichen Fall v( z,, ) wz (,, ) 90 γ ( z,, ) 90 γ z ( z,, ) ( z) 90 γ,, z u( z,, ) ( z,, ) z γ γ z γ γ z γz γ z z

28 E ij u u j u u + + X X X X i k k j i i j Die in der Elastizitätstheorie verwendeten konstitutiven Beziehungen entsprechen Werkstoffmodellen, die sich in drei Hauptgruppen unterteilen lassen CAUCHY`sche elastische Modelle, hperelastische Modelle, hpoelatische Modelle.

29 Einaialer Zustand L A Schnitt A - A A X, (N) N A 0 N A

30 Klassen von Spannungs- Dehnungsdiagrammen: - Zähe Materialien und - Spröde Materialien

31 s wahre Spannung f t Nennspannung f Fließplateau Verfestigungsbereich Einschnürung s s su 0, % - 4 % 5-5 % 0-35 %

32 c < 0 f c,4f c arctan Ect (b) arctan Ecm c < 0 c cu (a) ~ -0, % bis -0,4 %

33 F Konstitutive Beziehungen Das Hooksche Gesetzt ( ) b a E c l l 0 a b ( ) l el el l c

34 Elastizitätsmodul Quer- Zug- bzw., Bruchdehnung [ N / mm² ] dehnungs- Druckfestigkeit bzw. -stauchung zahl [ N / mm² ] [ % ] Baustähle , (840) 5 - Betonstähle , Spannstähle , Aluminium , Beton ,5-0,5 Druck - 75 (0) 0,4-0, Zug - 7 0,0-0,0 Holz längs zur Faser ,0-0,03 Zug ~ 0,4 Druck ~ 0,5 quer zur Faser ~ 0,5 Druck ~ 7-0 >

35 0 40 Elastizitätsmodul E (GPa) hochlegierte Stähle unlegierte und niedriglegierte Stähle Elastizitätsmodul E (GPa) 0 00 Hochfester Stahl 30 St a Temperatur T ( C) b Umformgrad ϕ (%)

36 Die wahre Bedeutung des Hookschen Gesetzes liegt darin, dass bei bekannten Belastungen bzw. Spannungen die resultierende Verformung berechnet werden kann. Umgekehrt kann aus den Verformungen (z.b. durch Dehnungsmessung) auf die Spannungen, bzw. auf die angreifenden Lasten geschlossen werden.

37 f 0, Belastung Entlastung und Wiederbelastung [%] 0, e

38 A B C c f t B A C l

39 Charakteristische Werkstoffkenngrößen R ( ), ( ) f r f s S S S m z fs ( s) R R fr ( r) 0 ( ) fz ( z) pf fz z dz β Z Z Z fz ( z) 0 mz z ms m sr, R Versagen kein Versagen

40 Querdehnung Zug e q -n e F Druck F

41 Verallgemeinertes HOOK` sches Gesetz s ij C ijkl e kl ; C D - D D D3 D4 D5 D6 D7 D8 D9 D D D3 D4 D5 D6 D7 D8 D 9 3 D3 D3 D33 D34 D35 D36 D37 D38 D 39 3 D D D3 D4 D5 D6 D7 D8 D9 D D D3 D4 D5 D6 D7 D8 D 9 3 D3 D3 D33 D34 D35 D36 D37 D38 D D3 D3 D33 D34 D35 D36 D37 D38 D D3 D3 D33 D34 D35 D36 D37 D38 D D33 D33 D333 D334 D335 D336 D337 D338 D339 33

42 Verallgemeinertes HOOK` sches Gesetz D D D D D D D D D D D D D D D 4D 4D 4D 3 4D33 4D 33 3 smm. 4D Anisotrop bedeutet, dass die mechanischen Eigenschaften des Materials NICHT richtungsunabhängig sind.

43 D D D D D D D 0 0 4D smm. 4D33 3 Der Etremfall, dass ein Werkstoff in alle Richtungen die gleichen mechanischen Eigenschaften besitzt nennt man isotrop.

44 Verallgemeinertes HOOK` sches Gesetz für isotrope Werkstoffe ν D, D D. E E ( )

45 Verallgemeinertes HOOK` sches Gesetz für isotrope Werkstoffe Hauptnormalverzerrungen : +ν +ν,, 3 0. E E E G ( +ν) 0 ν

46 Verallgemeinertes HOOK` sches Gesetz für isotrope Werkstoffe ν ν E E E ν E E E G smm. 0 G G +ν ν δ E E ij ij ij kk

47 Verallgemeinertes HOOK` sches Gesetz für isotrope Werkstoffe ν ν ν ν ν ν E ( ν) ν ( )( ) +ν ν ( ) ν 3 3 ν 0 3 ( ν) 3 ν smm. ( ν) E ν + δ +ν ν ij ij kk ij.

48 Verallgemeinertes HOOK` sches Gesetz für isotrope Werkstoffe Bei einem isotropen Material wird ein - hdrostatischer Spannungszustand einen volumetrischen Verzerrungszustand und - ein deviatorischer Spannungszustand einen deviatorischen Verzerrungszustand bewirken.

49 λ, Κ, G G, ν Ε, ν Ε, G Gν ν G Ε G λ λ Κ 3 G ν + ν ν 3G E G G G G Κ Ε ν λ + G Κ 3 ( 3λ + G) G 9KG λ + G 3K + G λ 3K G ( λ + G) 6K + G G( + ν ) ( ν ) 3 Ε ( ) ( )( ) Ε +ν Ε ( ) ( ν ) 3 G ΕG 3 3 ( G E) G ( +ν ) Ε Ε ν ν Ε G

50 Verallgemeinertes HOOK` sches Gesetz für orthotrope Werkstoffe ν ν E E E 3 ν ν E E E3 3 3 ν ν E E E G G G 3.

51 Verallgemeinertes HOOK` sches Gesetz für orthotrope Werkstoffe ν ν ν ν ν ν,, E E E E E E Weist ein Werkstoff zwar in allen Richtungen einer Ebene die gleichen Eigenschaften, in der zu dieser Ebenen normalen Richtung jedoch andere Eigenschaften auf, dann spricht man von einem transversal isotropen Material.

52 Verallgemeinertes HOOK` sches Gesetz bei Berücksichtigung von Temperatureinflüssen [ K] 5 α T /,0 0 Beton Stahl Aluminium, 0 5,4 0 5 Spannungen entstehen bei - ungleichförmiger Temperaturänderung und - wenn die vom Körper bei einer Temperaturänderung angestrebte Volumenänderung durch seine Lagerung behindert wird.

53 Verallgemeinertes HOOK` sches Gesetz bei Berücksichtigung von Temperatureinflüssen ν ν E E E ν E E αt αt E 33 α T ( T T 0 ) G smm. 0 G G ( ) D +α T T ij ijkl kl ij 0

54 Verallgemeinertes HOOK` sches Gesetz bei Berücksichtigung von Temperatureinflüssen ν ν ν ν ν T( T T0 α ) ν αt( T T0) 33 E ( ν) ν 33 αt( T T0) 0 0 ( )( ). +ν ν ( ) ν 3 3 ν 0 3 ( ν) 3 ν smm. ( ν) E ν E ij ij + kkδij αt( T T 0) δij. +ν ν ν

55 ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) T T E T T E T T E z z z z α µ α µ α µ ( ) ( ) ( ) ( ) ( ) ( ) T T E E T T E E T T E E z z z z z α µ µ µ α µ µ µ α µ µ µ

56 Verallgemeinertes HOOK` sches Gesetz für den ebenen Spannungszustand s 33 s 3 s 3 0 ν 0 E E 0 + α T T E 0 smm. G ( ) T 0 ν + +α E ( ) ( T T ) 33 T 0

57 Verallgemeinertes HOOK` sches Gesetz für den ebenen Spannungszustand ν 0 αt( T T0) E 0 αt( T T 0). ν ν smm.

58 Verallgemeinertes HOOK` sches Gesetz für den ebenen Verzerrungszustand e 33 e 3 e 3 0 ν 0 ν ν 0 + +ν α T T E 0 smm. ν ( ) ( ) T 0 ν 0 ν ( +ν ) α T( T T0) E ( ν) 0 ( +ν) αt( T T 0). ( +ν)( ν) ν smm. ( ) ν

59 Zusammenfassung der grundlegenden Gleichungen Zur Ermittlung der - 3 Verschiebungskomponenten, - 6 Verzerrungskomponenten und - 6 Spannungskomponenten Verwendet man : - die linearen kinematischen Beziehungen - die kinetischen Beziehungen - die linearen konstitutiven Beziehungen (etwa das verallgemeinerte HOOK`sche Gesetz)

60 Zusammenfassung der grundlegenden Gleichungen lineare kinematische Beziehungen : ( ) ij u i,j + u j,i, nichtlineare kinematische Beziehungen bei großen Verschiebungen und Verschiebungsableitungen bei LAGRANGE`scher schreibweise : E ij u u u u + + X X X X i j k k j i i j

61 Zusammenfassung der grundlegenden Gleichungen kinetischen Beziehungen : + f ρb ji,j i i kinetische Beziehungen bei großen Verschiebungen und Verschiebungsableitungen bei LAGRANGE`scher schreibweise : X j u i * δ ij + S jk+ρ 0 f 0 i 0. Xk

62 Zusammenfassung der grundlegenden Gleichungen lineare konstitutive Beziehungen C α T T ( ) ij ijkl kl kl 0 S ( ) ij Cijkl Ekl αkl T T 0.

63 Zusammenfassung der grundlegenden Gleichungen - RB (a) (b) X j u i δ ik + S jk+ f 0 i 0 Xk

64 Randwertprobleme aus der Elastizitätstheorie können in folgende drei Kategorien unterteilt werden :. Ist in jedem Punkt des Randes die Verschiebung vorgegeben, spricht man von der ersten Randwertaufgabe der Elastizitätstheorie.. Ist in jedem Punkt des Randes die Oberflächenkraft vorgegeben, spricht man von der zweiten Randwertaufgabe der Elastizitätstheorie. 3. Als gemischte Randwertaufgabe der Elastizitätstheorie bezeichnet man alle anderen Fälle.

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

Elastizitätslehre. Verformung von Körpern

Elastizitätslehre. Verformung von Körpern Baustatik II Seite 1/7 Verformung von Körpern 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Elastische Verformungen 3 4.1 Allgemeines 3 4.2 Achsiale Verformungen und E-Modul 3

Mehr

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA Der Spannungszustand σ na Spannungsvektor (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] σ x σ x x + dx, y, z σ x x, y, z + σ x dx x x dx, y, z σ x x, y, z + σ x dx x etc df (R) = kdxdydz + σ x

Mehr

5. Elastizitätsgesetz

5. Elastizitätsgesetz 5. Elastizitätsgesetz Das Materialgesetz ist eine Beziehung zwischen den Spannungen, den Verzerrungen und den Temperaturänderungen. Das Materialgesetz für einen elastischen Körper wird als Elastizitätsgesetz

Mehr

Stoffgesetze. wahre Spannung. technische Spannung. ε Gesamtdehnung ε el elastische Dehnung ε pl plastische Dehnung. Hookesche Gerade.

Stoffgesetze. wahre Spannung. technische Spannung. ε Gesamtdehnung ε el elastische Dehnung ε pl plastische Dehnung. Hookesche Gerade. Stoffgesetze Wir suchen nach einem Zusammenhang zwischen dem Spannungs- und dem Verzerrungstensor. inige wichtige Kenngrößen können bereits aus einem Zugversuch gewonnen werden. z.b.: Werkstoffe mit ausgeprägter

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Zugstab

Zugstab Bisher wurde beim Zugstab die Beanspruchung in einer Schnittebene senkrecht zur Stabachse untersucht. Schnittebenen sind gedankliche Konstrukte, die auch schräg zur Stabachse liegen können. Zur Beurteilung

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

σ 2 B(σ 22, σ 12 ) (b) Korrigierte Version der Abbildung 3.20

σ 2 B(σ 22, σ 12 ) (b) Korrigierte Version der Abbildung 3.20 Zusammenstellung der Druckfehler 1 DRUCKFEHLER IM LEHRBUCH FESTIGKEITSLEHRE 3.2.11. Ebener Spannungszustand Seite 59: Abbildung 3.20: Die Längenangabe (σ 11 σ 22 )/2 bezeichnet fälscherlicherweise den

Mehr

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2

Hausübung 2. y z. Aufgabe 2.1a: Berechnung von Querschnittswerten. Baumechanik II - Sommersemester Nachzügler PVL Hausübung 2 Hausübung 2 Name, Vorname: Matr.Nr.: 1112975 Ausgabe: 15.01.2015 Rückgabe: 11.02.2015 Anerkannt: ja / nein Aufgabe 2.1a: : Berechnung von Querschnittswerten Für den dargestellten Querschnitt eines Fertigteilträgers

Mehr

2. Materialgesetze und Festigkeitshypothesen

2. Materialgesetze und Festigkeitshypothesen Baustatik III SS 2016 2. Materialgesetze und Festigkeitshypothesen 2.3 Festigkeitshypothesen Vergleichsspannung Die Vergleichsspannung ist eine fiktive einachsige Spannung, die dieselbe Materialbeanspruchung

Mehr

Herbert Mang Günter Hofstetter. Festigkeitslehre. Mit einem Beitrag von Josef Eberhardsteiner. Dritte, aktualisierte Auflage

Herbert Mang Günter Hofstetter. Festigkeitslehre. Mit einem Beitrag von Josef Eberhardsteiner. Dritte, aktualisierte Auflage Herbert Mang Günter Hofstetter Festigkeitslehre Mit einem Beitrag von Josef Eberhardsteiner Dritte, aktualisierte Auflage SpringerWienNewYork Inhaltsverzeichnis 1 Einleitung 1 2 Mathematische Grundlagen

Mehr

Aus Kapitel 4 Technische Mechanik Aufgaben

Aus Kapitel 4 Technische Mechanik Aufgaben 6 Aufgaben Kap. 4 Aus Kapitel 4 Aufgaben 4. Zugproben duktiler Werkstoffe reißen im Zugversuch regelmäßig mit einer größtenteils um 45 zur Kraftrichtung geneigten Bruchfläche. F F 3. Mohr scher Spannungskreis:

Mehr

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Spannungszustand 2 Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Springer-Verlag GmbH Deutschland 2017 D. Gross et al., Technische Mechanik 2, DOI 10.1007/978-3-662-53679-7_2 35 36 2

Mehr

Elastizität und Bruchmechanik

Elastizität und Bruchmechanik Technische Universität Berlin 1 Institut für Mechanik 6. Juni 2008 Kräftegleichgewicht Spannungstensor Satz von Gauss Vertauschung Massenmittelpunktsbeschleunigung Zusammenfassung erstes Bewegungsgesetz

Mehr

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik Hookesches Gesetz.Übung Werkstoffmechanik Aus der lastostatik ist das Hookesche Gesetz im -dimensionalen Raum bekannt. σ = ε Wobei σ die Spannung, das lastizitätsmodul und ε die Dehnung oder allgemeiner

Mehr

3. Ebener Spannungszustand

3. Ebener Spannungszustand 3. Ebener Spannungszustand Die am Zugstab und am Druckbehälter gewonnenen Erkenntnisse werden nun auf allgemeine ebene Probleme erweitert. Dabei wird untersucht, welche Bedingungen die Spannungen erfüllen

Mehr

Grundbau und Bodenmechanik Übung Mohr scher Spannungskreis und Scherfestigkeit 1. G Mohr scher Spannungskreis und Scherfestigkeit. Inhaltsverzeichnis

Grundbau und Bodenmechanik Übung Mohr scher Spannungskreis und Scherfestigkeit 1. G Mohr scher Spannungskreis und Scherfestigkeit. Inhaltsverzeichnis Übung Mohr scher Spannungskreis und Scherfestigkeit Lehrstuhl für Grundbau, Bodenmechanik, Felsmechanik und Tunnelbau G Mohr scher Spannungskreis und Scherfestigkeit Inhaltsverzeichnis G. Allgemeiner Spannungszustand

Mehr

3. Elastizitätsgesetz

3. Elastizitätsgesetz 3. Elastizitätsgesetz 3.1 Grundlagen 3.2 Isotropes Material 3.3 Orthotropes Material 3.4 Temperaturdehnungen 1.3-1 3.1 Grundlagen Elastisches Material: Bei einem elastischen Material besteht ein eindeutig

Mehr

8 Spannungszustand. 8.1 Spannungsvektor und Spannungstensor

8 Spannungszustand. 8.1 Spannungsvektor und Spannungstensor 8 Spannungszustand In Kapitel 6 wurde bereits die innere Beanspruchung stabartiger Bauteile in Form von Schnittgrößen ermittelt. Um jedoch Aussagen über die Beanspruchung des Materials treffen zu können,

Mehr

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie

= -15 MPa. Zeichnen Sie den Mohrschen Spannungskreis und bestimmen Sie Webinar: Elastostatik Thema: Mohrscher Spannungskreis Aufgabe: Mohrscher Spannungskreis Gegeben seien die folgenden Spannungen: σ x = -40 MPa, σ y = 60 MPa und τ xy = -15 MPa. Zeichnen Sie den Mohrschen

Mehr

2.1.8 Mohrscher Spannungskreis

2.1.8 Mohrscher Spannungskreis ..8 Mohrscher pannungskreis (Mohr 88) Drehung des Koordinatensystems (D): íj τ τ cosθ sinθ sinθ cosθ τ τ cosθ sinθ sinθ cosθ Ergebnis (allgemein): τ τ ( x - x ) Gleichung der Form y r alle äquivalenten

Mehr

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung

Tragwerksentwurf II. Kursübersicht. 6. Material und Dimensionierung. 2. Gleichgewicht & grafische Statik. 18. Biegung 29.10.2015 Tragwerksentwurf I+II 2 Tragwerksentwurf I Tragwerksentwurf II 2. Gleichgewicht & grafische Statik 6. Material und Dimensionierung 18. Biegung 1. Einführung 3.+4. Seile 7. Bögen 10. Bogen-Seil-

Mehr

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr.

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr. 5. Ebene Probleme 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand 1.5-1 Definition: Bei einem ebenen Spannungszustand ist eine Hauptspannung null. Das Koordinatensystem kann so gewählt werden,

Mehr

Tragwerksentwurf I Philippe Block Joseph Schwartz

Tragwerksentwurf I Philippe Block Joseph Schwartz http://www.block.arch.ethz.ch/eq/ 1 Tragwerksentwurf I Philippe Block Joseph Schwartz Material und Bemessung 2 Wiederholung 3 G A Wiederholung 4 A G Bemessung für Grenzzustände 5 Ziel der Bemessung ist

Mehr

2. Grundgleichungen der linearen FEM

2. Grundgleichungen der linearen FEM . Grundgleichungen der lineren FEM Fchbereich Prof. Dr.-Ing. Mschinenbu Abteilung Mschinenbu. Ekurs Mtrizenrechnung Zum weiteren Verständnis der FEM sind einige Grundkenntnisse in der Mtrizenlgebr erforderlich!

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

4. Werkstoffeigenschaften. 4.1 Mechanische Eigenschaften

4. Werkstoffeigenschaften. 4.1 Mechanische Eigenschaften 4. Werkstoffeigenschaften 4.1 Mechanische Eigenschaften Die mechanischen Eigenschaften kennzeichnen das Verhalten von Werkstoffen gegenüber äußeren Beanspruchungen. Es können im allg. 3 Stadien der Verformung

Mehr

Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags Uhr, erstmalig am Klausur: ,

Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags Uhr, erstmalig am Klausur: , Festkörpermechanik/Organisation Gemeinsame Übungen zu den Vorlesungen inführung in die Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags 4.45 6.5 Uhr, erstmalig am 8.0.008 Ort: Seminarraum P4 Klausur:

Mehr

ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb die Bedingung

ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb die Bedingung 15.5 Der Mohrsche Spannungskreis 33 cos α sin α [ Q: ] = sin α cos α (15.36) ist orthogonal, denn sie besteht aus zwei Spaltenmatrizen mit dem Betrag 1, deren Skalarprodukt verschwindet. Sie erfüllt deshalb

Mehr

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017

Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017 Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,

Mehr

Baustatik III SS Platten

Baustatik III SS Platten Baustatik III SS 016 3. Platten 3.1 Scheiben und Platten 3. Annahmen der Kirchhoffschen Platentheorie 3.3 Schnittgrößen in Platten 3.4 Praktische Methoden zur Bestimmung der Schnittgrößen in Platten 3.4.1

Mehr

Inhaltsverzeichnis. Teil I. Lehrbuch

Inhaltsverzeichnis. Teil I. Lehrbuch Teil I. Lehrbuch 1. Spannungen... 3 1.1 Der Spannungsvektor. Normal- und Schubspannungen... 3 1.1.1 Gleichheit zugeordneter Schubspannungen... 5 1.2 Der allgemeine räumliche Spannungszustand... 7 1.2.1

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Technische Mechanik 2 Festigkeitslehre

Technische Mechanik 2 Festigkeitslehre Technische Mechanik 2 Festigkeitslehre Bearbeitet von Russell C. Hibbeler 8., aktualisierte Auflage 2013. Buch. 928 S. Hardcover ISBN 978 3 86894 126 5 Format (B x L): 19,5 x 24,6 cm Gewicht: 1835 g Weitere

Mehr

Formänderungs- und konjugierte Formänderungsenergie

Formänderungs- und konjugierte Formänderungsenergie Formänderungs- und konjugierte Formänderungsenergie Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 8. November 01 Letzte Revision: 7. April 015 Inhaltsverzeichnis 1 Einleitung zum

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 Inhaltsverzeichnis 1 Einleitung 1 2 Mathematische Grundlagen 5 2.1 Koordinatensystem... 5 2.2 Koordinatentransformation... 7 2.3 Indexschreibweise... 9 2.4 Tensoren... 11 2.5 Tensoroperationen... 14 2.6

Mehr

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i.

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i. P m d2 x dt 2 = K( x), m δ ij d 2 x j dt 2 = K i. C W C = C K i dx i δ ij δ ij λδ ij, m m λ d v dt K BA = K AB R 4 E 3 R Σ Σ x = R x a, R T R = I, R... E 3 T 1, 3 + 3 + 1 = 7 E 3 = O 3 T 3,... E 3 O 3

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof Dr-Ing D Weichert 1Übung Mechanik II SS 28 21428 1 Aufgabe An einem ebenen Element wirken die Spannungen σ 1, σ 2 und τ (Die Voreichen der Spannungen sind den Skien u entnehmen Geg: Ges: 1 σ 1 = 5

Mehr

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004

Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Korrekturen Stand: 16. Juni 2005 Martin Horn, Nicolaos Dourdoumas: Regelungstechnik, Pearson-Studium, 2004 Abschnitt 2.2.1 Seite 34: Gleichung (2.4) muss lauten dφ(t) dt Abschnitt 2.2.5 = 0 + A +2A (At)1

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

2. Allgemeine ebene Bewegung

2. Allgemeine ebene Bewegung 2. Allgemeine ebene Bewegung 2.2 Arbeit und Energie Prof. Dr. Wandinger 4. Kinetik des starren Körpers TM 3 4.2-1 chwerpunktsatz: Aus dem chwerpunktsatz für Massenpunktsysteme folgt unmittelbar der chwerpunktsatz

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Stoffgesetze Spannungszustand

Stoffgesetze Spannungszustand 16. 9.4 Stoffgesete Spannungsustand Belastungen ereugen in elastischen Bauteilen einen Spannungsustand, der sowohl vom Ort als auch von der Orientierung (Winkel) des betrachteten Schnittes beüglich der

Mehr

4.3 Membrantheorie der Rotationsschalen

4.3 Membrantheorie der Rotationsschalen Flächentragwerke - WS 2014/2015 4.3 Membrantheorie der Rotationsschalen 4.3.1 Voraussetzungen und Annahmen 4.3.2 Spannungen und Schnittgrößen 4.3.3 Gleichgewichtsbedingungen 4.3.4 Kinematik 4.3.5 Werkstoffgesetz

Mehr

5.5.3 Welle im Messingstab ****** 1 Motivation. 2 Experiment. Welle im Messingstab

5.5.3 Welle im Messingstab ****** 1 Motivation. 2 Experiment. Welle im Messingstab 5.5.3 ****** Motivation Ein Messingstab wird horizontal bzw. vertikal angeschlagen. Die Geschwindigkeit der dabei jeweils ausgelösten longitudinalen bzw. vertikalen Schallwelle wird gemessen. 2 Experiment

Mehr

2. Verzerrungszustand

2. Verzerrungszustand 2. Verzerrungszustand Ein Körper, der belastet wird, verformt sich. Dabei ändern die Punkte des Körpers ihre Lage. Die Lageänderung der Punkte des Körpers wird als Verschiebung bezeichnet. Ist die Verschiebung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Elastizitätslehre Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 13. Jan. 2016 Elastizitätsgrenze und Plastizität Zugfestigkeit Versuch

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Technische Mechanik. Festigkeitslehre

Technische Mechanik. Festigkeitslehre Hans Albert Richard Manuela Sander Technische Mechanik. Festigkeitslehre Lehrbuch mit Praxisbeispielen, \ Klausuraufgaben und Lösungen Mit 180 Abbildungen Viewegs Fachbücher der Technik Vieweg VII Inhaltsverzeichnis

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 5

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 5 Aufgabe S1: Auf einem Balken der Länge l 0 und der Querschnittsfläche A 0 wirkt eine Axiallast P. Bestimmen Sie das Elastizitätsmodul des Material, wenn dieser sich um Material hat linear-elastisches Verhalten.

Mehr

Spannungen mit griechischen Kleinbuchstaben

Spannungen mit griechischen Kleinbuchstaben B. Wietek, Faserbeton, DOI 10.1007/978-3-658-07764-8_2, Springer Fachmedien Wiesbaden 2015 2.2 Zeichen 15 Spannungen mit griechischen Kleinbuchstaben E c... Elastizitätsmodul von Beton [N/mm 2 ] E s...

Mehr

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

Sessionsprüfung Baustatik I+II. Sommer Freitag, 19. August 2011, Uhr, HIL G61

Sessionsprüfung Baustatik I+II. Sommer Freitag, 19. August 2011, Uhr, HIL G61 Sessionsprüfung Baustatik I+II Sommer 011 Freitag, 19. August 011, 09.00 1.00 Uhr, HIL G61 Name, Vorname : Studenten-Nr. : Bemerkungen 1. Die Aufgaben dürfen in beliebiger Reihenfolge bearbeitet werden..

Mehr

Aufgabensammlung Technische Mechanik

Aufgabensammlung Technische Mechanik Aufgabensammlung Technische Mechanik Bearbeitet von Alfred Böge, Gert Böge, Wolfgang Böge 23., überarbeitete und erweiterte Auflage 2016. Buch. XIV, 243 S. Softcover ISBN 978 3 658 13717 5 Format (B x

Mehr

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung Messen mit Dehnungsmessstreifen Formelsammlung für die elementaren Lastfälle Stand: 21.01.2018, Kab. Biegung Berechnung des Biegemomentes aus der gemessenen Dehnung bzw aus der gemessenen Brückenverstimmung

Mehr

Verzerrungsenergie. Transformation auf beliebige Achsen x,y,z liefert nach Einsetzen von. Mechanik IA

Verzerrungsenergie. Transformation auf beliebige Achsen x,y,z liefert nach Einsetzen von. Mechanik IA Verzerrungsenergie Zieht man ein Volumselement mit der Kantenlänge a in Richtung der Spannungshauptachse in die Länge, so wird folgende Arbeit W verrichtet: W = Fds mit F = λσ a und ds = dλε a. λ entspricht

Mehr

Institut für Grundlagen der Bauingenieurwissenschaften Fakultät für Bauingenieurwissenschaften Leopold Franzens Universität Innsbruck

Institut für Grundlagen der Bauingenieurwissenschaften Fakultät für Bauingenieurwissenschaften Leopold Franzens Universität Innsbruck F O R M E L S M M L U N G F E S T I G K E I T S L E H R E Institut für Grundagen der Bauingenieurwissenschaften Fakutät für Bauingenieurwissenschaften Leopod Franzens Universität Innsbruck c 009 Kapite

Mehr

1. Aufgabe: (ca. 12 % der Gesamtpunkte)

1. Aufgabe: (ca. 12 % der Gesamtpunkte) . August 07. Aufgabe: (ca. % der Gesamtunkte) a) Skizzieren Sie an den dargestellten Stäben die Knickformen der vier Euler-Knickfälle inklusive Lagerung und geben Sie zum Eulerfall mit der höchsten Knicklast

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Scherfestigkeit von Böden

Scherfestigkeit von Böden Scherfestigkeit von Böden W. Wu 1 1 Scherfestigkeit von Böden Physikalische Ursachen: - Innere Reibung makroskopisches Auf- bzw. Abgleiten Umlagerungen der Bodenkörner bzw. Strukturänderungen Abrieb und

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM4 II, SS11 K2 Jan 12 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18

Mehr

Spannungszustand

Spannungszustand 1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor

Mehr

Technische Mechanik II

Technische Mechanik II LISTE DER WARENZEICHEN Technische Mechanik II - Festigkeitslehre/Elastostatik - von Annette Kunow - - LISTE DER WARENZEICHEN Text Copyright 06 Annette Kunow All Rights Reserved - - LISTE DER WARENZEICHEN

Mehr

2. Materialgesetze und Festigkeitshypothesen

2. Materialgesetze und Festigkeitshypothesen Baustatik III SS 218 2. Materialgesetze und Festigkeitshypothesen 2.1 Klassifizierung von Materialgesetzen 2.2 Plastizität 2.3 Festigkeitshypothesen 2.4 Viskoelastizität 1 Baustatik III SS 218 2. Materialgesetze

Mehr

Mechanik I. Statik und Festigkeitslehre

Mechanik I. Statik und Festigkeitslehre Mechanik I Statik und Festigkeitslehre Vorlesungsbegleitende Unterlagen Bernd Binninger Aachen im Herbst 2018 Institut fu r Technische Verbrennung RWTH Aachen Inhaltsverzeichnis 1 Statik 1 1.1 Kraft...........................................

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität Lineare Elastizität Dominik Woznica Universität des Saarlandes 05.02.2016 Gliederung 1 Modellierung elastischer Materialien 2 Variationsformulierung 3 Galerkin-Approximation 4 FreeFem++ 5 Ausblick: Lineare

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M3 Elastizität Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 9.01.001 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das Hooksche Gesetz. Die elastische Biegung.3 Die elastische

Mehr

1. Formänderungsenergie

1. Formänderungsenergie 1. Formänderungsenergie 1.1 Grundlagen 1. Grundlastfälle 1.3 Beispiele.1-1 1.1 Grundlagen Zugstab: F L F x E, A F W u u An einem am linken Ende eingespannten linear elastischen Stab greift am rechten Ende

Mehr

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009

Zugversuch. 1. Einleitung, Aufgabenstellung. 2. Grundlagen. Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 2009 Werkstoffwissenschaftliches Grundpraktikum Versuch vom 11. Mai 29 Zugversuch Gruppe 3 Protokoll: Simon Kumm Mitarbeiter: Philipp Kaller, Paul Rossi 1. Einleitung, Aufgabenstellung Im Zugversuch sollen

Mehr

Fachwerke

Fachwerke 1. Fachwerke Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Am Beispiel des Fachwerks lassen sich die einzelnen Berechnungsschritte einer Finite-Elemente-Rechnung

Mehr

Umwelt-Campus Birkenfeld Technische Mechanik II

Umwelt-Campus Birkenfeld Technische Mechanik II 7. 9.4 Stoffgesete Verformungsustnd Der Zusmmenhng wischen Spnnung und elstischer Verformung wird durch ds Hook sche Geset beschrieben und wurde für den einchsigen Fll bereits behndelt. Im folgenden wird

Mehr

Technische Mechanik. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre. Bearbeitet von Martin Mayr

Technische Mechanik. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre. Bearbeitet von Martin Mayr Technische Mechanik Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre Bearbeitet von Martin Mar. Auflage 0. Buch. XIV, 440 S. Hardcover ISBN 978 3 446 43400 4 Format (B L): 0,7,7 cm Gewicht:

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

2 Grundlagen der Elastizitätstheorie

2 Grundlagen der Elastizitätstheorie 2 Grundlagen der Elastizitätstheorie 2.1 Spannungszustand... 71 2.1.1 Spannungsvektor, Spannungstensor, Indexschreibweise. 71 2.1.2 Koordinatentransformation... 76 2.1.3 Hauptspannungen, Invarianten, Mohrsche

Mehr

5 Mechanische Eigenschaften

5 Mechanische Eigenschaften 5 Mechanische Eigenschaften 5.1 Mechanische Beanspruchung und Elastizität 5.1 Antwort 5.1.1 a) Stahlseil eines Förderkorbes: statische einachsige Zugbeanspruchung und überlagerte kleine Schwingungsamplituden

Mehr

Spannungs- und Verzerrungstensoren

Spannungs- und Verzerrungstensoren 10 Spannungs- und Verzerrungstensoren Spannungs- und Verzerrungstensoren 4 2 Motivation / Einführung Spannungsvektor im Stab ist abhängig von Orientierung des fiktiven Schnitts. Spannungsverteilung ist

Mehr

= (1 τ ) + ()( ) τ = (1 τ) + 1 τ := 1 = (1 τ ) ()/ + ()( )/ := (1 τ) = () ()( ) { (1 τ ) + ( ) = α()( ) (1 τ ) + ( ) α()( ) < lifetime wealth 24 26 28 30 32 34 V (1 t)w ERA NRA SRA 55 56 57 58 59 60 61

Mehr

1. Einleitung ETH Zürich Prof. Dr. W. Kaufmann Vorlesung Stahlbeton III 1

1. Einleitung ETH Zürich Prof. Dr. W. Kaufmann Vorlesung Stahlbeton III 1 1. Einleitung 19.09.2016 ETH Zürich Prof. Dr. W. Kaufmann Vorlesung Stahlbeton III 1 Methoden für Tragwerksanalyse und Bemessung Einwirkungen Baustoffe Statisches System Statische Randbedingungen Gleichgewichtsbedingungen

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr