1 Analytische Geometrie und Grundlagen

Ähnliche Dokumente
1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

1 Analytische Geometrie und Grundlagen

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

1 Analytische Geometrie und Grundlagen

4 Funktionenfolgen und normierte Räume

1 Analytische Geometrie und Grundlagen

Lineare Algebra I (WS 13/14)

$Id: vektor.tex,v /01/23 11:03:09 hk Exp $ $Id: cartesisch.tex,v /01/23 11:08:08 hk Exp $

Lineare Algebra I (WS 13/14)

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

9 Lineare Gleichungssysteme

Kapitel V. Affine Geometrie

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K

Lineare Algebra I (WS 12/13)

$Id: vektor.tex,v /01/15 13:36:04 hk Exp $

1 Analytische Geometrie und Grundlagen

Das inhomogene System. A x = b

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 8. Tutoriumsblatt

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

$Id: vektor.tex,v /01/24 14:10:45 hk Exp $ $Id: cartesisch.tex,v /01/24 14:28:24 hk Exp $

Der Kern einer Matrix

Projektive Räume und Unterräume

$Id: det.tex,v /01/13 14:27:14 hk Exp $ $Id: vektor.tex,v /01/16 12:23:17 hk Exp $

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

Technische Universität München Zentrum Mathematik. Übungsblatt 7

1 Analytische Geometrie und Grundlagen

5 Eigenwerte und die Jordansche Normalform

Lineare Algebra I (WS 12/13)

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Demo für LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr.

5.7 Lineare Abhängigkeit, Basis und Dimension

$Id: linabb.tex,v /01/13 19:38:02 hk Exp $ $Id: anageo.tex,v /01/13 21:11:17 hk Exp hk $ x y z. t + s t s. t, s R. = w 2, = 2w 1 w 2,

(Allgemeine) Vektorräume (Teschl/Teschl 9)

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

3 Systeme linearer Gleichungen

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $

6 Lineare Gleichungssysteme

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

1 Analytische Geometrie und Grundlagen

7 Matrizen über R und C

7 Vektorräume und Körperweiterungen

Kapitel II. Vektoren und Matrizen

Brückenkurs Mathematik

9 Matrizen über R und C

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

$Id: vektor.tex,v /02/04 13:59:04 hk Exp $

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

10.2 Linearkombinationen

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

(Allgemeine) Vektorräume (Teschl/Teschl 9)

Affine Geometrie (Einfachere, konstruktive Version)

1 Analytische Geometrie und Grundlagen

$Id: vektor.tex,v /01/16 15:50:24 hk Exp $ $Id: cartesisch.tex,v /01/19 11:05:27 hk Exp $

2 Lineare Gleichungssysteme

6.5 Lineare Abhängigkeit, Basis und Dimension

5 Eigenwerte und die Jordansche Normalform

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

2 Extrema unter Nebenbedingungen

Lineare Algebra I (WS 13/14)

Lineare Gleichungssysteme

Lineare Algebra und analytische Geometrie II

5.1 Affine Räume und affine Abbildungen

Lineare Gleichungssysteme - Grundlagen

4. Vektorräume und Gleichungssysteme

Übungen zu Einführung in die Lineare Algebra und Geometrie

A2.3 Lineare Gleichungssysteme

Lineare Gleichungssysteme

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen

Homogene und inhomogene Koordinaten und das Hyperboloid

2.2 Lineare Gleichungssysteme

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

7 Vektorräume und Körperweiterungen

2 Affine und projektive Ebenen

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

4 Affine Koordinatensysteme

2 Vektorräume und Gleichungssysteme

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

1 Analytische Geometrie und Grundlagen

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

05. Lineare Gleichungssysteme

Lineare Algebra und analytische Geometrie I Lösungsvorschlag zum 9. Tutoriumsblatt

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

Transkript:

Mathematische Probleme, SS 208 Dienstag 0.4 $Id: vektor.tex,v.30 207/07/7 08:09:23 hk Exp hk $ Analytische Geometrie und Grundlagen In dieser Vorlesung wollen wir uns mit Fragen der sogenannten Elementargeometrie in der Ebene und im Raum beschäftigen. Wie der Name der Vorlesung andeutet geht es uns dabei nicht um eine Theorie der Elementargeometrie, wir wollen also nicht mit einem Axiomensystem starten und von diesem ausgehend die geometrischen Grundtatsachen und Sätze herleiten. Wir starten indem wir die Zeichenebene von vornherein als die cartesische Ebene R 2 = R R auffassen und entsprechend den Raum als den R 3 interpretieren. In diesem Rahmen werden dann geometrische Objekte und Fragen über diese untersucht die zwar größtenteils nicht zum Schulstoff gehören sich aber bereits mit in der Schule vermittelten Kenntnissen und Methoden behandeln lassen. Viele der behandelten Probleme sollten auch Schülern und Schülerinnen sinnvoll erscheinen, zumindest sofern überhaupt ein Grundinteresse an geometrischen Fragen besteht. Allerdings wird es in der Vorlesung nicht darum gehen wie man den Stoff in einer Schulstunde vermitteln könnte, dies wird eine ganz normale Mathematikvorlesung mit Definitionen, Sätzen und Beweisen sein und wir werden uns auch nicht auf Schulmethoden beschränken. Weiter wollen wir auch untersuchen wie sich die Schulgeometrie in die Inhalte des Grundstudiums eingliedert. Im Mathematikunterricht der Schule werden begriffliche Fragen nicht ernsthaft behandelt, es werden beispielsweise Winkel, Flächen, Volumina und all diese Dinge berechnet ohne zuvor zu klären was überhaupt ein Winkel oder die Fläche von etwas ist. In der Schule ist es auch durchaus angemessen sich hierfür auf eher vage und intuitive Vorstellungen zu verlassen ohne diese explizit zu thematisieren. Dies geschieht dann in den Grundvorlesungen zur linearen Algebra und zur Analysis, allerdings ist in diesen genug anderes zu tun so, dass der Zusammenhang des dort behandelten Stoffs mit den Begriffen der Schulgeometrie im Hintergrund verbleibt und nicht explizit gemacht wird. Daher wollen wir diese Vorlesung damit beginnen einige geometrische Grundlagenfragen zu klären. Wir beschränken uns dabei auf einige ausgewählte Themen, eine vollständige Behandlung dieser Fragen nimmt andernfalls zu viel Zeit in Anspruch. Wir verwenden einen analytischen Zugang und formulieren alles in Termen der Vektorraumstruktur des R d.. Affine Geometrie im R d In diesem Abschnitt behandeln wir inzidenzgeometrische Aspekte, untersuchen also Begriffe wie Geraden und Ebenen und damit zusammenhängende Fragen. Wie schon -

Mathematische Probleme, SS 208 Dienstag 0.4 erwähnt ist unsere Punktmenge der R d wobei d N die betrachtete Dimension ist. Wir werden hauptsächlich an den beiden kleinen Fällen d = 2 für die Ebene und d = 3 für den Raum interessiert sein, in diesem Abschnitt spielt dies aber noch keine Rolle. Die Elemente des R d nennen wir Punkte, insbesondere wollen wir keinen Unterschied zwischen Punkten und Vektoren machen. Geraden, Ebenen und all diese Dinge sind Mengen von Punkten und man kann sie alle gemeinsam behandeln indem der Begriff eines affinen Teilraums des R d verwendet wird. Dieser wurde zwar wahrscheinlich schon in der linearen Algebra eingeführt, wir wollen die Definition hier aber noch einmal wiederholen. Definition. (Affine Teilräume des R d Sei d N. Eine Teilmenge A R d heißt ein affiner Teilraum des R d wenn entweder A = ist oder es einen Punkt a R d und einen Untervektorraum U R d des R d mit gibt. A = a + U = {a + u u U} Da ein Untervektorraum immer den Nullvektor enthält ist dann a = a+0 a+u = A ein Element von A, man nennt a in diesem Zusammenhang auch einen Aufpunkt von A. Während der Aufpunkt ein völlig willkürlicher Punkt des affinen Teilraums ist, ist der zugehörige Untervektorraum eindeutig festgelegt. Lemma. (Richtung und Aufpunkte affiner Teilräume Sei d N. (a Sind U, U R d zwei Untervektorräume und a, a R d so ist genau dann a + U = a + U wenn U = U und a a U gelten. (b Sind U R d ein Untervektorraum, a R d und b A := a + U so ist auch A = b + U. Beweis: (a = Es gilt a + U = a + U = a + a a + U = a + U. = Wegen a = a + 0 a + U = a + U ist a a U und die bereits bewiesene Implikation ergibt a + U = a + U = a + U. Es folgen U = U und a a U = U. (b Wegen b a + U ist b a U und nach (a haben wir auch b + U = a + U = A. Da der zu einem nicht leeren affinen Teilraum gehörende Untervektorraum nach dem Lemma eindeutig festgelegt ist können wir diesem nun auch einen Namen geben. Definition.2 (Richtungen und Dimension affiner Teilräume Sei d N. Ist = A R d ein affiner Teilraum so wählen wir a R d und einen Untervektorraum U R d mit A = a + U und nennen R(A := U die Richtung von A, nach Lemma.(a ist dies wohldefiniert. Für einen affinen Teilraum A R d definieren wir die Dimension von A als { dim R(A, A, dim A :=, A =. -2

Mathematische Probleme, SS 208 Dienstag 0.4 Sind also A R d ein affiner Teilraum des R d und a A, so können wir Lemma.(b auch in der Form A = a + R(A aussprechen, und so werden wir dieses Lemma zumeist verwenden. Ist U R d ein Untervektorraum so ist U = 0 + U also ist U ein affiner Teilraum des R d mit R(U = U und somit stimmen die Dimension von U als Untervektorraum und als affiner Teilraum überein. Da ein Untervektorraum U des R d eine Dimension 0 dim U d hat, gilt auch für jeden affinen Teilraum A des R d stets dim A d. Dabei ist genau dann dim A = wenn A = ist und genau dann dim A = d wenn R(A = R d also A = R d ist. Ein nulldimensionaler affiner Teilraum des R d hat die Form a + {0} = {a} für ein a R d, die nulldimensionalen affinen Teilräume des R d entsprechen also den Punkten des R d. Analog zur Dimension von Untervektorräumen erfüllt auch der affine Dimensionsbegriff eine gewisse Monotonieeigenschaft. Lemma.2 (Monotonie der affinen Dimension Sei d N und seien A, B R d zwei affine Teilräume des R d mit A B. Dann gilt dim A dim B und genau dann ist dim A = dim B wenn A = B ist. Beweis: Dies ist klar wenn A = ist, wir können also A annehmen. Wählen wir nun ein a A B so sind nach Lemma.(b auch a + R(A = A B = a + R(B also R(A R(B und somit gilt dim A = dim R(A dim R(B = dim B. Dabei ist genau dann dim A = dim B wenn R(A = R(B beziehungsweise A = a + R(A = a + R(B = B gilt. Einige spezielle Typen affiner Teilräume erhalten eigene Namen. Definition.3 (Geraden, Ebenen und Hyperebenen Seien d N und A R d ein affiner Teilraum des R d. (a Der Teilraum A heißt eine Gerade wenn dim A = ist. (b Der Teilraum A heißt eine Ebene wenn dim A = 2 ist. (c Der Teilraum A heißt eine Hyperebene wenn dim A = d ist. Ist d = 2 so sind die Hyperebenen die Geraden und ist d = 3 so sind die Hyperebenen die Ebenen. Ist g R d eine Gerade so hat g die Form g = p + U wobei die Richtung U von g ein eindimensionaler Untervektorraum des R d ist und p g ein Punkt von g ist. Weiter können wir U = u = Ru für ein beliebiges u U\{0} schreiben und erhalten g = p + Ru. Diese Darstellung von g nennt man gelegentlich die Aufpunkt Richtung Form von g, der Punkt p heißt weiterhin ein Aufpunkt und u R d \{0} nennt man einen Richtungsvektor, die Richtung von g ist dann R(g = Ru. Weder Aufpunkt noch Richtungsvektor -3

Mathematische Probleme, SS 208 Dienstag 0.4 sind dabei durch g bestimmt, nach Lemma.(a gilt für alle p, p R d, u, u R d \{0} p + Ru = p + Ru (λ, µ R : u = λu p p = µu. Bei Ebenen ist die Situation etwas komplizierter, eine Ebene e R d hat die Form e = p + U wobei U ein zweidimensionaler Untervektorraum des R d ist. Dieser hat eine Basis u, u und wir können e = p + Ru + Ru schreiben, der Punkt p ist der Aufpunkt und u, u nennt man Richtungsvektoren von e, die Richtung von e ist dann R(e = u, u = Ru + Ru. Es gibt eine zweite Beschreibung affiner Teilräume als die Lösungsmengen linearer Gleichungssysteme. Ist Ax = b ein linearer Gleichungssystem mit Koeffizientenmatrix A R n d und rechter Seite b R n, wobei n, d N sind, und hat A den Rang r, so ist L := {x R d Ax = b} entweder leer oder ein (d r-dimensionaler affiner Teilraum des R d, die Richtung von L ist die Lösungsmenge R(L = {x R d Ax = 0} des zugehörigen homogenen linearen Gleichungssystems. Ist umgekehrt A ein n-dimensionaler affiner Teilraum des R d so gibt es ein lineares Gleichungssystem aus d n Gleichungen in d Unbekannten von vollen Rang n dessen Lösungsmenge genau A ist. Schreibe hierzu A = p + U mit p R d und einem n-dimensionalen Untervektorraum U des R d. Weiter wähle eine Basis v,..., v n von U. Dann berechnen wir eine (d n d Matrix A über R mit U = {x R d Ax = 0}, hierzu startet man mit der Matrix (v... v n mit Spalten v,..., v n und wendet auf diese das Gaußsche Eliminationsverfahren mit unbestimmter rechter Seite an. Die unteren d n Zeilen der rechten Seite des entstehenden Systems in Stufenform geben uns die gesuchte Matrix A. Setzen wir dann schließlich b := Ap so ist A = p + U = {x R d Ax = b} wie gewünscht. Als ein Beispiel behandeln wir einmal die Ebene 2 e := 3 + R 2 + R 3 4 im R 4. Es sind d = 4, n = 2, also läßt sich e durch d n = 2 Gleichungen in vier Unbekannten beschreiben. Wir führen das beschriebene Verfahren durch und erhalten A = 2 x 2 3 y u 4 v ( 5 7 0 5 0 6 2 x 0 7 y 2x 0 u + x 0 6 v x sowie b = ( 5 7 0 5 0 6-4 2 x 0 u + x 0 0 7u + y + 5x 0 0 v + 6u + 5x 3 = ( 25 24.

Mathematische Probleme, SS 208 Dienstag 0.4 Damit ist e die Lösungsmenge des linearen Gleichungssystems 5x + y + 7u = 25 5x + 6u + v = 24 Analog zur Situation bei Untervektorräumen können wir aus jeder gegebenen Teilmenge des R d einen erzeugten affinen Teilraum bilden. Lemma.3 (Durchschnitte und Erzeugnisse affiner Teilräume Sei d N. (a Ist (A i i I eine Familie affiner Teilräume des R d so ist auch der Durchschnitt i I A i ein affiner Teilraum des R d. Ist dabei i I A i so haben wir auch ( R A i = R(A i. i I (b Ist M R d eine Teilmenge, so ist i I M := {A R d A ist ein affiner Teilraum des R d mit M A} der kleinste M umfassende affine Teilraum des R d, genannt das affine Erzeugnis oder der affine Aufspann von M. (c Sind A, B R d zwei affine Teilräume des R d so ist AB := A B der kleinste A und B umfassende affine Teilraum des R d. Sind A, B und a A, b B so haben wir R(AB = R(A + R(B + R (b a und genau dann ist b a R(A + R(B wenn A B gilt. Zum Beweis dieses Lemmas kommen wir in der nächsten Sitzung. -5