Deduktion in der Aussagenlogik

Ähnliche Dokumente
Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Hilbert-Kalkül (Einführung)

Logik für Informatiker

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Kapitel 1. Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik

Logik für Informatiker

Rhetorik und Argumentationstheorie.

Grundlagen der Künstlichen Intelligenz

Aussagenlogische Kalküle

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

1 Aussagenlogischer Kalkül

Resolutionsalgorithmus

Logik für Informatiker

Teil 7. Grundlagen Logik

Beweisen mit Semantischen Tableaux

Grundlagen der Theoretischen Informatik

Vorsemesterkurs Informatik

Logic in a Nutshell. Christian Liguda

Tableaukalkül für Aussagenlogik

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Beispiel Aussagenlogik nach Schöning: Logik...

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Normalformen boolescher Funktionen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Normalformen der Prädikatenlogik

Schlussregeln aus anderen Kalkülen

Einführung in die Logik

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Aussagenlogik. Aussagen und Aussagenverknüpfungen

TU5 Aussagenlogik II

Übung 4: Aussagenlogik II

Grundlagen der Theoretischen Informatik

Logik für Informatiker

wenn es regnet ist die Straße nass.

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Logik Vorlesung 3: Äquivalenz und Normalformen

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

3. Logik 3.1 Aussagenlogik

De Morgan sche Regeln

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Grundlagen der Programmierung

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

2.2.4 Logische Äquivalenz

Algorithmischer Aufbau der Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

Logik: aussagenlogische Formeln und Wahrheitstafeln

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

9. Übung Formale Grundlagen der Informatik

Die Folgerungsbeziehung

Logik für Informatiker

Ersetzbarkeitstheorem

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik

Logische und funktionale Programmierung

Vorlesung Logiksysteme

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Logik für Informatiker

Prolog basiert auf Prädikatenlogik

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Semantic Web Technologies I!

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

6. AUSSAGENLOGIK: TABLEAUS

Grundlagen der Kognitiven Informatik

Ableitungen im Kalkül des Natürlichen Schließens

Logik für Informatiker

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Logik für Informatiker

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Logik für Informatiker

1 Einführung Aussagenlogik

Logik Vorlesung 6: Resolution

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge

Klausur zur Vorlesung Mathematische Logik

Grundlagen der Mathematik

Weitere Beweistechniken und aussagenlogische Modellierung

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Theoretische Grundlagen des Software Engineering

Kleiner Ausflug in Logik und Verkehrssteuerung

Brückenkurs Mathematik

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012

Einführung in die mathematische Logik

Deduktion in der Aussagenlogik

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Brückenkurs Mathematik

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Erfüllbarkeit und Allgemeingültigkeit

1 Aussagenlogische Formeln

Transkript:

Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus wahren Aussagen andere notwendigerweise wahre Aussagen ableiten Beispiele Wenn es regnet, dann wird die Strasse nass. Es regnet. ----------------------------- Die Strasse wird nass. Vögel können fliegen. Tweetie ist ein Vogel. ----------------------------- Tweetie kann fliegen. verallgemeinert zur universellen Schlussregel "modus ponens" Wenn A gilt, dann gilt B. A gilt. ---------------------------- B gilt. Wie kann man diese und andere Schlussregeln formalisieren? Weitere Logik: Deduktion in der Aussagenlogik 1

Semantische Folgerungsbeziehung Wenn in einer bestimmten Situation die Aussagen M wahr sind, ist dann notwendigerweise auch die Aussage P wahr? Folgerung sollte unabhängig von der Situation sein, d.h. unabhängig von der Zuordnung von Wahrheitwerten, die M und P erfüllen Definition: eine Aussage P ist die logische Konsequenz einer Menge von Aussagen M, wenn jede Zuordnung von Wahrheitswerten, die M wahr macht, auch P wahr macht M = P Beispiel: Aussage P = p (q r) ist logische Konsequenz von M = {p q, q r, r (p s)} d.h. {p q, q r, r (p s)} = ( p (q r)) Beweis durch Wahrheitstabellen oder wie früher gezeigt durch Widerspruch Weitere Logik: Deduktion in der Aussagenlogik 2

Syntaktische Folgerungsbeziehung nach festen syntaktischen Regeln Deduktionsregeln oder Inferenzregeln werden aus Aussagen andere Aussagen hergeleitet Aussage P ist aus einer Menge von Aussagen M herleitbar, wenn man P nach endlichen vielen Anwendungen der Regeln auf M erhält M P Ausgangsaussagen M werden Axiome genannt, hergeleitete Aussagen P Theoreme Ableitung wird auch Beweis genannt Beweis ist endliche Folge von Aussagen P 1, P 2,..., P n wobei jedes P i ein Axiom oder eine nach den Regeln hergeleitete Aussage ist Beweis gelingt, wenn die letzte Aussage P n das zu beweisende Theorem ist Axiome werden in logische Axiome und nichtlogische oder eigentliche Axiome eingeteilt logische Axiome sind Tautologien eigentliche Axiome heissen auch Hypothesen Weitere Logik: Deduktion in der Aussagenlogik 3

Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktionssystem besteht aus Axiomen, Deduktionsregeln und was oft vergessen wird einer Beweisstrategie Deduktionssystem muss korrekt sein, d.h. jedes hergeleitete Theorem muss logische Konsequenz der Axiome sein M P M = P Deduktionssystem sollte vollständig sein, d.h. jede logische Konsequenz der Axiome sollte auch hergeleitet werden können M = P M P wenn ein Deduktionssystem korrekt und vollständig ist, dann kann man die (aufwendige) logische Konsequenz durch einen endlichen Beweis ersetzen Weitere Logik: Deduktion in der Aussagenlogik 4

Natürliche Deduktion natürliche Deduktion ist ein Deduktionssystem mit ungefähr einem Dutzend von Deduktionsregeln; es gibt nur Hypothesen, keine logischen Axiome natürliche Deduktion soll das menschliche Argumentieren formalisieren natürliche Deduktion erklärt die Bedeutung der Konnektoren unabhängig von Wahrheitstabellen Wann kann man eine Aussage mit einem bestimmten Konnektor als Hauptkonnektor herleiten? Die Antwort führt zu I-Deduktionsregeln, die Konnektoren einführen. Welche Aussagen kann man aus einer Aussage mit einem bestimmten Hauptkonnektor herleiten? Die Antwort führt zu E-Deduktionsregeln, die Konnektoren eliminieren. Regeln und Beweise werden als Bäume geschrieben, deren Blätter die Hypothesen und deren Wurzeln die Schlüsse sind Weitere Logik: Deduktion in der Aussagenlogik 5

Natürliche Deduktion: Konjunktion Einführung der Konjunktion P Q -------- I P Q Bedeutung: wenn P und Q entweder als Hypothesen gegeben sind oder hergeleitet wurden, dann kann man die Konjunktion P Q herleiten. man kann auch {P, Q} (P Q) schreiben Beispiel: p q ------- I p q r ------------- I (p q) r d.h. {p, q, r} (p q) r Weitere Logik: Deduktion in der Aussagenlogik 6

Natürliche Deduktion: Konjunktion Eliminierung der Konjunktion P Q -------- E P P Q -------- E Q Bedeutung: aus der Konjunktion P Q kann man sowohl P wie Q herleiten. Beispiel: d.h. p q p q -------- E -------- E p q ---------------------------------------- I q p p q q p (Kommutativität von ) Weitere Logik: Deduktion in der Aussagenlogik 7

Natürliche Deduktion: Implikation Eliminierung der Implikation (modus ponens) P Q P ---------------- E Q Beispiel: p r -------- E p r r r q -------- E --------------------------------- E p q ---------------------------------------------------------- I p q d.h. {p r, r q} p q Weitere Logik: Deduktion in der Aussagenlogik 8

Natürliche Deduktion: Implikation Einführung der Implikation Um P Q herzuleiten, nehmen wir P als Hypothese und leiten Q her. Dann können wir den Schluss P Q ziehen. Die Hypothese P wird anschliessend nicht länger benötigt und "gestrichen", d.h. sie ist nicht mehr verfügbar. [P].. Q --------- I P Q Man kann sich die Einführung der Implikation über die Wahrheitstabelle von klarmachen. Hinter der Einführung der Implikation steht eine Richtung des Deduktionstheorems der Aussagenlogik M {P} Q genau dann, wenn M (P Q) Weitere Logik: Deduktion in der Aussagenlogik 9

Natürliche Deduktion: Implikation Beispiel: (p q) r (q p) r Herleitung [q p] 1 [q p] 1 --------- E --------- E q p ---------------------------- I p q (p q) r ---------------------------------------------------- E r ---------------------------------------------------- I 1 (q p) r NB. nach I 1 ist die Hypothese [q p] 1 gestrichen Wie geht man vor, um (q p) r herzuleiten? Heuristische Regel: man nimmt die Vorbedingung der Implikation in diesem Fall (q p) und versucht, die Konsequenz in diesem Fall r herzuleiten. Die Aussage selber kann dann mit Hilfe von I abgeleitet werden. Weitere Logik: Deduktion in der Aussagenlogik 10

Natürliche Deduktion: Disjunktion Einführung der Disjunktion P -------- I P Q Q -------- I P Q Eliminierung der Disjunktion Um aus einer Disjunktion P Q einen Schluss R zu ziehen, muss R aus P und aus Q hergeleitet werden können. [P] [Q].... R R P Q ----------------------- E R Beispiel p q q p Herleitung [p] 1 [q] 2 --------- I 1 --------- I 2 q p q p p q --------------------------------------------------------------- E q p Weitere Logik: Deduktion in der Aussagenlogik 11

Natürliche Deduktion: Negation Einführung der Negation [P].. --------- I P Eliminierung der Negation P P ---------- E P wird effektiv als P interpretiert Beispiel: (p p) Herleitung [p p] 1 [p p] 1 ----------- E ----------- E p p ---------------------------------------- E ---------------------------------------- I 1 ( p p) Weitere Logik: Deduktion in der Aussagenlogik 12

Natürliche Deduktion: ex falso quodlibet aus einer falschen Annahme kann alles hergeleitet werden. ----- E (auch EFSQ genannt) P Beispiel: p (p q) Herleitung [ p] 1 [p] 2 (zweimal Heuristik für ) ----------------- E ----- E q ----------------- I 2 p q ----------------- I 1 p (p q) Weitere Logik: Deduktion in der Aussagenlogik 13

Natürliche Deduktion: reductio ad absurdum RAA (reductio ad absurdum) [ P].. ----- RAA P Wenn wir aus der Annahme [ P] die Aussage ableiten können, dann dürfen wir P schliessen. intuitionistische Logik lehnt diese Regel als nichtkonstruktiv ab alternativ zu RAA können auch die Regeln vom ausgeschlossenen Dritten (tertium non datur) oder die Regel der doppelten Verneinung verwendet werden ausgeschlossenes Drittes (tertium non datur) ---------- TND P P doppelte Verneinung P ----- DV P Weitere Logik: Deduktion in der Aussagenlogik 14

Natürliche Deduktion: Reflexivität & Monotonie natürliche Deduktion ist reflexiv M {P} P natürliche Deduktion ist monoton Wenn M P und M N, dann N P Weitere Logik: Deduktion in der Aussagenlogik 15

Natürliche Deduktion: Heuristiken für die Herleitung von Aussagen gibt es eine Reihe von Heuristiken, die eine Art Beweisstrategie nahelegen Um P Q herzuleiten, nehme man P als Annahme und versuche, Q abzuleiten. Um P Q herzuleiten, versuche man, P und Q abzuleiten. Um P Q herzuleiten, versuche man, P oder Q abzuleiten. Um R aus P Q herzuleiten, versuche man, R aus P und R aus Q abzuleiten. Um P abzuleiten, nehme man P als Annahme und versuche, zwei Aussagen Q und Q abzuleiten. trotzdem erfordert natürliche Deduktion Erfahrung und ein gewisses Mass an Ausprobieren Weitere Logik: Deduktion in der Aussagenlogik 16

Natürliche Deduktion: Beispiel Beispiel von Folie 2 Auf Folie 2 wurde gezeigt, dass {p q, q r, r (p s)} = (p (q r)) Hier wird nun gezeigt, dass {p q, q r, r (p s)} (p (q r)) Herleitung [p] 1 p q ----------------- E q q r ------------------------------------------------- E r ------------------------------------------------- I q r ------------------------------------------------- I 1 p (q r) Weitere Logik: Deduktion in der Aussagenlogik 17

Natürliche Deduktion: Beispiel umfangreicheres Beispiel (Truss, p. 290); die Zahlen numerieren die Annahmen und zeigen ausserdem an, wann die Annahmen gestrichen werden, d.h. anschliessend nicht mehr zur Verfügung stehen ( p q) (( p q) p) zum Erzeugen der (zu streichenden) Hypothesen wird mehrfach die Heuristik für verwendet [ p ] 1 [ p q] 3 [ p ] 1 [ p q] 2 ---------------------- E -------------------------- E q q ------------------------------------------------------------ E ------ RAA 1 p ---------------------------------------- I 2 ( p q) p ---------------------------------------- I 3 ( p q) (( p q) p) Weitere Logik: Deduktion in der Aussagenlogik 18

Natürliche Deduktion: Korrektheit & Vollständigkeit natürliche Deduktion ist korrekt, d.h. wenn M P, dann M = P Beweis durch Wahrheitstafeln Menge M von Aussagen heisst inkonsistent, wenn man aus ihr herleiten kann; sonst ist M konsistent M P genau dann, wenn M { P} inkonsistent ist Spezialfall des Deduktionstheorems M {A} B genau dann, wenn M (A B) setze A = P und B = M { P} genau dann, wenn M ( P ), d.h. wenn M P M = P genau dann, wenn M { P} unerfüllbar ist natürliche Deduktion ist vollständig, d.h. wenn M = P, dann M P Skizze des Beweises: wenn M = P, dann M P ist M { P} unerfüllbar, dann ist M { P} inkonsistent ist M { P} konsistent, dann ist M { P} erfüllbar angenommen, dass M { P} konsistent ist, wird eine Belegung gefunden, die M { P} wahr macht Weitere Logik: Deduktion in der Aussagenlogik 19

Resolution Resolution ist ein Deduktionssystem mit einer einzigen Deduktionsregel; es gibt nur Hypothesen, keine logischen Axiome Resolution entstand beim Versuch, Deduktion zu automatisieren, d.h. Beweise durch den Computer automatisch ausführen zu lassen Resolution ist u.a. die Grundlage der logischen Programmierung Grundidee der Resolution: aus den beiden wahren Aussagen P Q P R kann man die wahre Aussage Q R schliessen, denn entweder ist P wahr, dann muss R wahr sein, oder P ist falsch, dann muss Q wahr sein; in jedem Fall ist dann Q R wahr Resolution setzt voraus, dass Aussagen in der Klauselform, d.h. als konjunktive Normalform, dargestellt werden Weitere Logik: Deduktion in der Aussagenlogik 20

Klauselform der Aussagenlogik konjunktive Normalform einer aussagenlogischen Formel: Konjunktion von Disjunktionen von atomaren und negierten atomaren Aussagen D 1 D 2... D n D i = L i1 L i2... L im (D i heissen Klauseln) (L ij heissen Literale) systematische Umwandlung in Klauselform Beispiel (A (B C)) 1. Schritt: Elimination von (A (B C)) [Regel: P Q P Q] ( A ( B C)) 2. Schritt: Verteilung von auf atomare Ausdrücke ( A ( B C)) [Regel: (P Q) P Q)] ( A ( B C)) [Regel: P P] ( A (B C)) 3. Schritt: Umwandlung in eine Konjunktion von Disjunktionen durch distributive Regel ( A (B C)) [Regel: P (Q R) (P Q) (P R)] (( A B) ( A C)) 4. Schritt: Darstellung als Menge von Klauseln {( A B), ( A C)} Weitere Logik: Deduktion in der Aussagenlogik 21

Klauselform der Aussagenlogik Klausel ist Aussage der Form P 1 P 2... P n N 1 N 2... N m äquivalente Formen P 1 P 2... P n (N 1 N 2... N m ) N 1 N 2... N m P 1 P 2... P n Notation der logischen Programmierung P 1, P 2,..., P n N 1, N 2,..., N m (NB. Kommata auf der linken Seite bedeuten Disjunktion, auf der rechten Seite Konjunktion) Weitere Logik: Deduktion in der Aussagenlogik 22

Schlussregel Resolution Resolutionsregel (Robinson) Klausel K 1 mit dem positiven Literal L Klausel K 2 mit dem negativen Literal L Aus den Klauseln K 1 und K 2 leitet man die Resolvente, d.h. die Klausel {K 1 - {L}} { K 2 - { L}} ab. K 1 K 2 ------------------------------------ {K 1 - {L}} { K 2 - { L}} Beispiel p q r s p ------------------------------------ q r s Weitere Logik: Deduktion in der Aussagenlogik 23

Andere Schlussregeln als Resolution Resolution ist eine mächtige Schlussregel, die andere Schlussregeln als Spezialfälle enthält modus ponens P Q P --------------------- Q als Resolution P Q P --------------------- Q modus tollens P Q Q --------------------- P als Resolution P Q Q --------------------- P Weitere Logik: Deduktion in der Aussagenlogik 24

Leere Klausel leere Klausel {}, d.h. Klausel ohne positive und negative Literale, steht für die widersprüchliche Aussage, d.h. für Inkonsistenz Beispiel Klauselmenge M = { p q, p, q} Resolutionen p q p ----------------- q q ------------------- {} d.h. die Klauselmenge M ist inkonsistent andere Ableitung der leeren Klausel p q q ----------------- p p ------------------- {} Eine Klauselmenge ist inkonsistent, wenn man durch Resolution auf irgendeine Weise die leere Klausel {} ableiten kann. Weitere Logik: Deduktion in der Aussagenlogik 25

Deduktion mit Resolution Deduktion mit Resolution verwendet Beweise durch Widerspruch (Refutation) Vorgehensweise M P genau dann, wenn M { P} inkonsistent ist Um nachzuweisen, dass M { P} inkonsistent ist, transformiert man M { P} in Klauselform. Dabei verwendet man den Satz: Eine Menge M von aussagenlogischen Formeln kann in eine Menge von Klauseln transformiert werden, die genau dann konsistent ist, wenn M konsistent ist. Wenn man aus den aus M { P} entstandenen Klauseln durch Resolution die leere Klausel ableiten kann, dann ist diese Klauselmenge inkonsistent. Damit ist auch M { P} inkonsistent, und somit gilt M P. Falls man die leere Klausel nicht ableiten kann, ist M { P} konsistent und somit kann P nicht aus M abgeleitet werden. Weitere Logik: Deduktion in der Aussagenlogik 26

Deduktion mit Resolution: Beispiele Beispiel Beweis von (p q) r p (q r) Ist {(p q) r, (p (q r))} inkonsistent? Umwandlung in Klauselform { ( p q) r, ( p ( q r))} {(p q) r, p q r} {(p r) ( q r), p q r} { p r, q r, p, q, r} Resolution q r r ------------------ q q ------------------------------- {} Beweis wurde erbracht Weitere Logik: Deduktion in der Aussagenlogik 27

Deduktion mit Resolution: Beispiele Beispiel (Umkehrung der Aussagen) Beweis von p (q r) (p q) r Ist { p (q r), ((p q) r)} inkonsistent? Umwandlung in Klauselform { p ( q r), ( ( p q) r)} { p q r, ( p q) r } { p q r, p q, r} Resolution führt in diesem Fall nicht zur leeren Klausel; man kann sich leicht überzeugen, dass immer eine Resolvente p übrigbleibt D.h. die obige Ableitung gilt nicht. Weitere Logik: Deduktion in der Aussagenlogik 28

Korrektheit und Vollständigkeit Korrektheit der Resolution Wenn eine Klausel K aus einer Menge M von Klauseln durch Resolution abgeleitet werden kann, dann ist K eine logische Konsequenz von M. Korollar Wenn die leere Klausel aus einer Menge M von Klauseln durch Resolution abgeleitet werden kann, dann ist die leere Klausel eine logische Konsequenz von M, d.h. M inkonsistent. Vollständigkeit der Resolution bezüglich Refutation Wenn eine Menge von Klauseln inkonsistent ist, dann kann man aus ihr durch Resolution die leere Klausel ableiten. Weitere Logik: Deduktion in der Aussagenlogik 29