Vorlesung Sicherheit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Sicherheit"

Transkript

1 Vorlesung Sicherheit Dennis Hofheinz IKS, KIT / 16

2 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten Ziel Sicherheit Konstruktionen 2 / 16

3 Erinnerung Asymmetrische (Public-Key-)Verschlüsselung: Alice sk C:=Enc(pk,M) Bob pk RSA: Enc(pk, M) = M e mod N Dec(sk, C) = C d mod N Homomorphie von RSA, Notwendigkeit Padding Unsicherheit naives Padding RSA-OAEP 3 / 16

4 ElGamal (1985) Szenario: zyklische Gruppe G = g pk = (G, g, g x ), sk = (G, g, x) (mit x zufällig) Enc(pk, M) = (g y, g xy M) (mit y zufällig) Dec(sk, (Y, Z)) = Z/Y x (= (g xy M)/(g y ) x = M) Beobachtung: Verschlüsselung probabilistisch Aber: ElGamal wie RSA homomorph Enc(pk, M) Enc(pk, M ) = (g y, g xy M) (g y, g xy M ) = (g y+y, g x(y+y ) M M ) = Enc(pk, M M ) 4 / 16

5 Mehr über ElGamal ElGamal unter naheliegender Annahme semantisch sicher Nicht-homomorphe Varianten von ElGamal existieren Kandidaten für geeignete Gruppen G: (Echte) Untergruppen von Z P (mit P prim) Allgemeiner: Untergruppen von F q (mit q Primpotenz) Effizienter: (Untergruppen von) elliptischer Kurve E(F q ) Realistische Gruppengröße: G (für G Z P, F q) G (für G E(F q )) 5 / 16

6 Demonstration Demonstration: Geschwindigkeitsvergleich RSA/elliptische Kurven 6 / 16

7 Zusammenfassung asymmetrische Verschlüsselung Public-Key-Verschlüsselung löst Schlüsselverteilungsproblem RSA wichtig, aber ohne Padding problematisch RSA-OAEP ElGamal in kleineren Gruppen möglich (Effizienz) Beide Verfahren (ungepadded) homomorph (Vorteil/Nachteil) 7 / 16

8 Aktuelle Forschung Mehr/andere Funktionalität Identitätsbasierte Verschlüsselung (löst Zertifizierungsproblem) Vollhomomorphe Verschlüsselung (Berechnungen delegieren 1 ) Broadcast-Verschlüsselung (Beispielanwendung: Pay-TV) Andere Probleme, alternative mathematische Strukturen Public-Key-Verschlüsselung so sicher wie Faktorisierung Gitterbasierte Verschlüsselung 1 momentan noch um Größenordnungen zu ineffizient 8 / 16

9 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten Ziel Sicherheit Konstruktionen 9 / 16

10 Ziel Authentifizierte Übermittlung auf unauthentifiziertem Kanal: Alice (M,σ) Bob Nachricht M soll vor Veränderungen geschützt werden Idee: Sende Unterschrift σ mit Nachricht Anforderungen: Bob muss σ (aus/für Nachricht M) berechnen können Alice muss σ (zusammen mit M) verifizieren können Außenseiter soll kein gültiges σ für neues M erzeugen können 10 / 16

11 Grundidee MACs Annahme: Alice und Bob besitzen gemeinsames Geheimnis K Alice K (M,σ) Bob K Signieren: σ Sig(K, M) Verifizieren: Ver(K, M, σ) {0, 1} Korrektheit: Ver(K, σ) = 1 für alle K, M und σ Sig(K, M) Wird MAC (Message Authentication Code) genannt 11 / 16

12 Sicherheitsmodell Diskussion: Wünschenswerte Sicherheitseigenschaften? 12 / 16

13 Sicherheitsdefinition Schema EUF-CMA-sicher kein PPT-Angreifer A gewinnt folgendes Spiel nicht-vernachlässigbar oft: 1 A erhält Zugriff auf ein Sig(K, )-Orakel 2 A gibt Ausgabe (M, σ ) 3 A gewinnt, wenn Ver(K, M, σ ) = 1 und M frisch Modelliert passive Angriffe (A erhält keinen Ver-Zugriff) Für viele Verfahren (z.b. bei eindeutigem σ) äquivalent zu Definition mit Ver-Orakel für A Intuition: wenn A Ver-Anfrage mit Ver(K, M, σ) = 1 und frischem (also nicht schon von Sig erzeugtem) σ generiert, ist das schon eine gefälschte Signatur 13 / 16

14 Hash-Then-Sign-Paradigma Problem: viele Verfahren signieren nur kurze Bitstrings Lösung: signiere H(M) {0, 1} k anstelle von M {0, 1} Theorem (Sicherheit des Hash-Then-Sign-Paradigmas) Sei (Sig, Ver) EUF-CMA-sicher und H eine kollisionsresistente Hashfunktion. Dann ist der durch Sig (K, M) = Sig(K, H(M)), Ver (K, M, σ) = Ver(K, H(M), σ) erklärte MAC EUF-CMA-sicher. Beweis. Beweisstrategie: ein EUF-CMA-Angreifer A muss entweder eine H-Kollision oder eine Signatur σ für einen frischen Hashwert H(M) finden, um das EUF-CMA-Spiel zu gewinnen. 14 / 16

15 Pseudorandom Functions Nützlicher theoretischer Baustein: Pseudorandom Functions Definition (Pseudorandom Function, PRF) Sei PRF : {0, 1} k {0, 1} k {0, 1} k eine über k N parametrisierte Funktion. PRF heißt Pseudorandom Function (PRF), falls für jeden PPT-Algorithmus A die Funktion ] Adv prf PRF,A [A (k) := Pr PRF(K, ) (1 k ) = 1 Pr [ ] A R( ) (1 k ) = 1 vernachlässigbar ist, wobei R : {0, 1} k {0, 1} k eine echt zufällige Funktion ist. 15 / 16

16 Kandidat für eine Pseudorandom Function PRF-Kandidat, ausgehend von Hashfunktion H: PRF(K, X ) := H(K, X ) Vorsicht: diese Konstruktion hat ihre Tücken Manchmal (Merkle-Damgård) lässt sich Hashwert erweitern : H(K, X ) kann zu H(K, X, X ) erweitert werden Bricht PRF-Eigenschaft für Eingaben unterschiedlicher Länge 16 / 16

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.05.2014 1 / 32 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 10.06.2013 1 / 26 Überblick 1 Schlüsselaustauschprotokolle Transport Layer Security (TLS) Weitere Schlüsselaustauschtypen Zusammenfassung 2 Identifikationsprotokolle

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 03.06.2013 1 / 34 Überblick 1 Schlüsselaustauschprotokolle Motivation Symmetrische Verfahren Asymmetrische Verfahren Transport Layer Security (TLS) 2 / 34

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-01 B. Kaidel Digitale Signaturen:

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 08.05.2017 1 / 32 Überblick 1 Blockchiffren Erinnerung Varianten von DES Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 28.05.2015 1 / 33 Überblick 1 Schlüsselaustauschprotokolle Symmetrische Verfahren Asymmetrische

Mehr

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen 10.6 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011

Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011 Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011 Dominic Scheurer 6. Februar 2012 Inhaltsverzeichnis 30 Digitale Signaturen (cont'd) - One-Time-Signaturen (OTS) 1 31 Public-Key-Verschlüsselung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 02.05.2016 1 / 22 Überblick 1 Hashfunktionen Erinnerung Formalisierung Die Merkle-Damgård-Konstruktion

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 20.04.2014 1 / 28 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung

Mehr

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten Versuch: Eigenschaften einer Unterhaltung Instant Messaging Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

ElGamal Verschlüsselungsverfahren (1984)

ElGamal Verschlüsselungsverfahren (1984) ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 05.06.2014 1 / 35 Überblick 1 Schlüsselaustauschprotokolle Symmetrische Verfahren Asymmetrische Verfahren Transport Layer Security (TLS) 2 / 35 Überblick 1

Mehr

Sicherheit von Merkle Signaturen

Sicherheit von Merkle Signaturen Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle

Mehr

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen GHR-und Chamäleon-Signaturen Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-01-12 B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen KIT

Mehr

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Klausur 26.07.2013 Vorname: Nachname:

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 01.07.2013 1 / 31 Überblick 1 Zugriffskontrolle Das Bell-LaPadula-Modell Das Chinese-Wall-Modell Zusammenfassung 2 Analyse größerer Systeme Motivation Der

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Kryptographie oder Verschlüsselungstechniken

Kryptographie oder Verschlüsselungstechniken Kryptographie oder Verschlüsselungstechniken Dortmund, Dezember 1999 Prof. Dr. Heinz-Michael Winkels, Fachbereich Wirtschaft FH Dortmund Emil-Figge-Str. 44, D44227-Dortmund, TEL.: (0231)755-4966, FAX:

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Überblick Kryptographie

Überblick Kryptographie 1 Überblick Kryptographie Ulrich Kühn Deutsche Telekom Laboratories, TU Berlin Seminar Kryptographie 19. Oktober 2005 2 Übersicht Was ist Kryptographie? Symmetrische Kryptographie Asymmetrische Kryptographie

Mehr

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle Digitale Unterschriften Auch digitale Signaturen genannt. Nachrichten aus Nachrichtenraum: M M. Signaturen aus Signaturenraum: σ S. Schlüssel sind aus Schlüsselräumen: d K 1, e K 2. SignierungsverfahrenS

Mehr

Netzsicherheit Architekturen und Protokolle Instant Messaging

Netzsicherheit Architekturen und Protokolle Instant Messaging Instant Messaging Versuch: Eigenschaften einer Unterhaltung Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

Sicherheit von hybrider Verschlüsselung

Sicherheit von hybrider Verschlüsselung Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg Benjamin.Klink@informatik.stud.uni-erlangen.de Proseminar Konzepte von Betriebssystem-Komponenten

Mehr

Key Agreement. Diffie-Hellman Schlüsselaustausch. Key Agreement. Authentifizierter Diffie-Hellman Schlüsselaustausch

Key Agreement. Diffie-Hellman Schlüsselaustausch. Key Agreement. Authentifizierter Diffie-Hellman Schlüsselaustausch Digitale Signaturen Signaturverfahren mit Einwegfunktion mit Falltür: Full Domain Hash, RSA Signatures, PSS Signaturverfahren mit Einwegfunktion ohne Falltür: Allgemeine Konstruktion von Lamport, One-time

Mehr

9 Schlüsseleinigung, Schlüsselaustausch

9 Schlüsseleinigung, Schlüsselaustausch 9 Schlüsseleinigung, Schlüsselaustausch Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal initiale Schlüsseleinigung für erste sichere Kommunikation Schlüsselerneuerung für weitere Kommunikation

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Signatursysteme WS 2013/2014 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip digitaler Signatursysteme 2 Vergleich symmetrische / asymmetrische Authentikation

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Sicherheit von ElGamal

Sicherheit von ElGamal Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell

Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k

Mehr

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel Übung zur Vorlesung Sicherheit 30.06.2016 Übungsblatt 5 Björn Kaidel bjoern.kaidel@kit.edu https://b.socrative.com/login/student/ Room: SICHERHEIT Bitte gleich einloggen! 1 / 55 Evaluation (siehe Evaluations-PDF)

Mehr

Digitale Signaturen. Kapitel 8

Digitale Signaturen. Kapitel 8 Digitale Signaturen Kapitel 8 Handschriftliche vs. digitale Unterschrift digitalisieren mp3 Unterschrift digitale Unterschrift von D.H. für mp3? (Scannen und als Bitmap anhängen z.b. zu leicht zu fälschen)

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 23.05.2013 1 / 26 Überblick 1 Einschub: Seitenkanalangriffe Demonstration Simple Power Attacks (SPAs) (Weitere) Beispiele für Seitenkanäle Gegenmaßnahmen gegen

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6 Kryptographie und Sicherheit 1. Kryptographische Hashfunktionen 2. Passwörter und Identifikation 3. Digitale Signaturen 4. Secret Sharing 5. Anwendungen und Ausblick

Mehr

Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-04 B. Kaidel Digitale Signaturen: Einmalsignaturen KIT Die Forschungsuniversität

Mehr

MAC Message Authentication Codes

MAC Message Authentication Codes Seminar Kryptographie SoSe 2005 MAC Message Authentication Codes Andrea Schminck, Carolin Lunemann Inhaltsverzeichnis (1) MAC (2) CBC-MAC (3) Nested MAC (4) HMAC (5) Unconditionally secure MAC (6) Strongly

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren

Mehr

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle Orientierung Haben bisher im Public-Key Bereich nur Verschlüsselung betrachtet. Haben dafür geeignete mathematische Strukturen und ihre Eigenschaften diskutiert. RSA, Rabin: Restklassenringe modulo n,

Mehr

Workshop Experimente zur Kryptographie

Workshop Experimente zur Kryptographie Fakultät Informatik, Institut Systemarchitektur, Professur Datenschutz und Datensicherheit Workshop Experimente zur Kryptographie Sebastian Clauß Dresden, 23.03.2011 Alltägliche Anwendungen von Kryptographie

Mehr

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde 6.3 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 17.07.2014 1 / 49 Überblick 1 Kurzüberblick häufige Sicherheitslücken Erinnerung Code Execution Cross-Site Scripting SQL Injection Bonus: kryptographische

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 02.06.2014 1 / 34 Überblick 1 Einschub: Seitenkanalangriffe Demonstration Simple Power Attacks (SPAs) (Weitere) Beispiele für Seitenkanäle Gegenmaßnahmen gegen

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Nachklausur 29.09.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Public Key Infrastrukturen

Public Key Infrastrukturen Public Key Infrastrukturen V1. Public Key Techniken und Dienste Prof. J. Buchmann FG Theoretische Informatik TU Darmstadt Beispiel: Zintl-Umbau 2 Beispiel: Zintl-Umbau Ausschreibung Einsendeschluss: 24.12.2004

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

CPA-Sicherheit ist ungenügend

CPA-Sicherheit ist ungenügend CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht

Mehr

Übungsblatt 4. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 4. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 4 Aufgabe 1. Wir instanziieren das ElGamal-Verschlüsselungsverfahren aus der

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Datensicherheit und Datenschutz. Datenschutz. Datensicherheit. Schutz von Personen. Schutz von Daten. (setzt Datensicherheit voraus)

Datensicherheit und Datenschutz. Datenschutz. Datensicherheit. Schutz von Personen. Schutz von Daten. (setzt Datensicherheit voraus) Seite 1 Datensicherheit und Datenschutz Datensicherheit Datenschutz (setzt Datensicherheit voraus) Schutz von Daten Schutz von Personen (über die die Daten Aussagen zulassen; Privacy) Seite 2 Datensicherheit

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 10.07.2014 1 / 41 Überblick 1 Analyse größerer Systeme Erinnerung Der Security-Zugang Der kryptographische Zugang Zusammenfassung 2 Kurzüberblick häufige Sicherheitslücken

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg.

Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg. Message Authentication Code (MAC) Szenario: Integrität und Authentizität mittels MACs. Alice und Bob besitzen gemeinsamen Schlüssel k. Alice berechnet für m einen MAC-Tag t als Funktion von m und k. Alice

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema. Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur

Mehr

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 3 Aufgabe 1. Beurteilen Sie für die folgenden Konstruktionen jeweils, ob es sich

Mehr

Informatik für Ökonomen II HS 09

Informatik für Ökonomen II HS 09 Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und

Mehr

Digitale Signaturen. seuf-cma & Pairings Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. seuf-cma & Pairings Gunnar Hartung, Björn Kaidel.  FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen seuf-cma & Pairings Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-01-20 B. Kaidel Digitale Signaturen: seuf-cma & Pairings KIT Die

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Blinde Signaturen, geheime Abstimmungen und digitale Münzen

Blinde Signaturen, geheime Abstimmungen und digitale Münzen Blinde Signaturen, geheime Abstimmungen und digitale Münzen Claus Diem Im Wintersemester 2017 / 18 Crypto 1982 Geheime Abstimmungen Eine geheime Abstimmung Problem. Eine Gruppe von Personen will per Brief

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger, Dirk Bongartz Lehrstuhl für Informatik I 27. Januar 2005 Teil I Mathematische Grundlagen Welche klassischen Verfahren gibt es? Warum heissen die klassischen Verfahren

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Material zum Versuch. Kryptografie mit Bouncy Castle

Material zum Versuch. Kryptografie mit Bouncy Castle zusammengestellt von: Mark Manulis (mark.manulis@nds.rub.de) Version 1.0 Grundpraktikum für IT-Sicherheit Material zum Versuch Kryptografie mit Bouncy Castle Lehrstuhl für Netz- und Datensicherheit ruhr-universität

Mehr

Beliebige Anzahl von Signaturen

Beliebige Anzahl von Signaturen Beliebige Anzahl von Signaturen Algorithmus Signaturketten Sei Π = (Gen, Sign, Vrfy) ein Einwegsignaturverfahren. 1 Gen : (pk 1, sk 1 ) Gen(1 n ) 2 Sign : Signieren der Nachricht m i. Verwende gemerkten

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Einführung in die verschlüsselte Kommunikation

Einführung in die verschlüsselte Kommunikation Einführung in die verschlüsselte Kommunikation Loofmann AFRA Berlin 25.10.2013 Loofmann (AFRA Berlin) Creative Common BY-NC-SA 2.0 25.10.2013 1 / 37 Ziele des Vortrages Wie funktioniert Verschlüsselung?

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

5. Signaturen und Zertifikate

5. Signaturen und Zertifikate 5. Signaturen und Zertifikate Folgende Sicherheitsfunktionen sind möglich: Benutzerauthentikation: Datenauthentikation: Datenintegrität: Nachweisbarkeit: Digitale Unterschrift Zahlungsverkehr Nachweis

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Authentifikation und digitale Signatur

Authentifikation und digitale Signatur Kryptographie Authentifikation und digitale Signatur Dana Boosmann Matr.Nr.: 100653 11. Juni 2004 Authentifikation und Digitale Signatur Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 2 2 Authentifikation

Mehr