Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011"

Transkript

1 Mitschrift Vorlesung Einführung in die Kryptographie vom 18. Januar 2011 Dominic Scheurer 6. Februar 2012 Inhaltsverzeichnis 30 Digitale Signaturen (cont'd) - One-Time-Signaturen (OTS) 1 31 Public-Key-Verschlüsselung DH / El Gamal RSA-oAEP (optimal asymmetric encryption padding) Hybridverschlüsselung Digitale Signaturen (cont'd) - One-Time-Signaturen (OTS) Idee: Verfahren, dass nur einmal sicher signieren kann (siehe Abbildung 1). Ein solches System kann man aus beliebigen OWFs konstruieren. Abbildung 1: One-Time Signatur 1

2 Abbildung 2: Lamport-Konstruktion (Schlüssel) Lamports Konstruktion aus OWF Sei f OWF. Schlüsselgenerierung (geg. 1 n ) - Siehe Abbildung 2: Wähle 2n Urbilder x b i {0, 1}n, i = 1,..., n; b {0, 1}; berechne yi b = f ( ) ( ) x b i. Dann ist pk = y b und i i,b sk = ( ) x b i. Diese i,b Schlüssel sind sehr groÿ (bis zu 1 MB). Signieren Sig (sk, m) für m {0, 1} n : σ = (σ 1,..., σ n ) = (x m1 1,..., xmn n ) Verizieren V f (pk, m, σ) für m {0, 1} n, σ = (σ 1,..., σ n ). Akzeptiere, falls i : y mi i = f (σ i ) Dieses Verfahren ist one-time-sicher, da ein Angreifer m m wählt, und somit m i m i für ein i. An diesem anderen Bit müsste der Angreifer die OWF invertieren, um aus dem öentlichen Schlüssel das Urbild, welches notwendig zum Signieren ist, zu erhalten. Das bricht jedoch die OWF-Eigenschaft und ist deshalb nicht möglich. Vorteil dieser Methode ist, dass es auf einer beliebigen One-Way-Funktion aufbaut; interessant wird es, da man daraus etwas bauen kann, was annähernd so gut wie beliebig oft ausgeführtes Signieren ist: Merkle Hash-Trees Wähle 2 N Schlüsselpaare (sk i, pk i ) für OTS-Verfahren. Bilde danach einen Hash-Tree wie dargestellt in Abbildung 3. Geheimer Schlüssel: (sk 1,..., sk 2 N ). Sowohl der Schlüssel als auch die Signatur sind bei diesem Verfahren sehr groÿ; zudem kann man damit nur 2 N mal signieren. i-te Signatur Verwende OTS mit pk i ; gib σ aus und zusätzlich pk i, H (Nachbar von pk i ) und alle Hashwerte auf dem Weg zur Wurzel incl. Hashwerte der Nachbarn. Verikation Prüfe σ gegen pk i für OTS; prüfe die Hashwerte, d.h. ob das Hashen zum public key pk führt (ob man also die Wurzel des Baumes nden kann). 2

3 Abbildung 3: Merkle Hash-Tree Sicherheit Dieses Verfahren ist sicher, sofern OTS one-time-sicher und H kollisionsresistent ist, denn Wenn ein Angreifer versucht, eine neue Signatur unter pk i zu fälschen, ist dies ein Widerspruch zur Sicherheit des OTS. Wenn ein Angreifer einen neuen Schlüssel pki verwendet, muss er Hashwerte nden, die zur Wurzel des Baumes führen. Dazu müsste er für einen Wert von H eine Kollision nden Widerspruch. 31 Public-Key-Verschlüsselung Viele Resultate der Private-Key-Welt lassen sich übertragen: E = (KGen, Enc, Dec) ((pk, sk), pk, sk). IND-CPA/CCA Zur IND-CPA/CCA-Sicherheit bei Public-Key-Verfahren siehe Blackbox-Schema in Abbildung 4. Es gibt jedoch jenseits oensichtlicher Ähnlichkeiten auch Unterschiede zwischen den Welten: Das One-Time- Pad als deterministische Private-Key-Verschlüsselungsmethode ist IND-CPA S - sicher, bei Public-Key-Verfahren ist kein deterministisches Verfahren IND- CPA S -sicher! Ein groÿer Vorteil von Public Key-Verfahren, ist dass IND- C(P/C)A S IND-C(P/C)A (asymptotisch macht es keinen Unterschied, ob der Angreifer die Verschlüsselungsbox ein- oder mehrmals anruft)! Dies gilt nicht in der Private-Key-Verschlüsselung (siehe z.b. One-Time-Pad) DH / El Gamal Ausgangslage (Die-Hellman-Key-Exchange): 3

4 Alice A = g a (p) a Z q K = B a (p) Abbildung 4: IND-CPA/CCA bei Public Key Verfahren p,g,q,a B Bob B = g b (p) b Z q K = A b = g ab (p) Transformiere nun das 2-Runden-Verfahren in ein Public-Key-Verfahren: Schlüsselgenerierung pk = (p, g, q, A), sk = (p, g, q, a) Entschlüsselung Enc (pk, m) für m g : Wähle b Z q, B = g b (p), K = A b (p) und C = (B, K m (p)). Eine Schwierigkeit hier liegt in der Benutzung einer Untergruppe von Z N, g : Die Elemente hier sind relativ dünn gestreut, die Nachricht muss auf irgendeine Weise hinein codiert werden. Verschlüsselung Dec (sk, C) für C = (B, Z): m = Z B a (p) Dieses Verfahren heiÿt El Gamal-Verschlüsselungsverfahren; die Ähnlichkeiten zu DH sind naheliegend. Decisional Die-Hellman-Annahme (DDH) und RN D sind ununterscheidbar: DDH (1 n ) RN D (1 n ) Wähle p, g, q Wähle p, g, q (p, a, b Z q g, q, g a (p), g b (p), g ab (p) ) ( a, b, c Z q p, g, q, g a (p), g b (p), g c (p) ) Die Zufallsvariablen DDH Anstatt g ab wird g c mit zufälligem c gewählt; diese Wahl soll die Unterscheidbarkeit der Zufallsvariablen somit nicht beeinussen. 4

5 Bislang wurde drei Annahmen im Zusammenhang mit DH und Schlüsseltausch deniert: DDH ( g a, g b, g ab) ( g a, g b, g c) DH Berechne g ab aus g a, g b DL Berechne a aus g a Diese Annahmen sind in der obigen Liste aufsteigend nach ihrer Stärke geordnet; DL ist somit die stärkste Annahme (sprich die Anforderungen an den Angreifer werden stärker - die Sicherheitsannahmen werden damit schwächer). Mit einem Algorithmus, der DL brechen kann, kann man DH brechen; damit wiederum ist DDH auch leicht. Satz (Sicherheit El Gamal) CPA. Unter der DDH-Annahme ist El Gamal IND- Beweis (Idee) Beim Anfragen der Verschlüsselungsbox erhält ein Angreifer als Antwort ( g b, g ab m ) unter pk = g b. Die DDH-Annahme besagt, dass es möglich ist, den Ciphertext zu ersetzen durch ( g b, g c m ) für ein zufälliges c Z q. Dieses zufällige Gruppenelement g c fungiert hier quasi als One-Time-Pad- Verschlüsselung, daher ist El Gamal IND-CPA. CCA-Sicherheit El Gamal ist allerdings nicht IND-CC A: Ein Angreifer modiziert den Ciphertext C = (B, K m b ) = (B, Z) zu C = (g r B, A r Z), r Z q = ( g r+b, g ar g ab ) m b ) = (g r+b, g a(r+b) m b Dieser neue Ciphertext ist eine gültige neue Verschlüsselung unter dem Schlüssel A, so als ob Bob den Wert r + b gewählt hätte. Für die Konstruktion im Box-Schema bedeutet dies, dass der erhaltene Challenge-Ciphertext auf die angegebene Art zu einem neuen Ciphertext modiziert wird, welcher an die Entschlüsselungsbox geschickt wird; die Antwort ist genau die Nachricht m b (obwohl der Ciphertext C noch nie zuvor gesehen wurde). Hier wurde ausgenutzt, dass diese zahlentheoretische Funktion über gewisse Homomorphieeigenschaften verfügt. Praxis In der Praxis wird eine IND-CCA-Variante (Die Hellman Integrated Encryption Standard (DHIES); Abdalla, Bellare, Ragoway 2001) eingesetzt. 5

6 Abbildung 5: RSA-oAEP, Verschlüsselung Verschlüsselung m {0, 1}. Berechne B, K wie zuvor. k E k M = H (K), c = SymEnc (k E, m), τ = MAC (k M, c). Dann ist Enc (A, m) = C = (B, c, τ). Dadurch werden zwei Probleme gelöst: Die Nachrichten können jetzt Bitstrings sein (keine Gruppenelemente) und man erhält CCA-Sicherheit RSA-oAEP (optimal asymmetric encryption padding) RSA-basiertes Verfahren von Bellare & Rogaway, im Random-Oracle- Modell (ROM). Der ursprüngliche Sicherheitsbeweis für dieses System wurde am 18. November 2000 als lückenhaft festgestellt, doch schon neun Tage später wurde ein korrekter neuer Beweis konstruiert. Zur Verschlüsselung mit RSAoAEP siehe Abbildung 5. Der öentliche Schlüssel ist pk = (N, e), G und H sind Hash-Funktionen. Der private Schlüssel ist sk = (N, d). Die Entschlüsselungsprozedur wird in Abbildung 6 beschrieben. Die Schreibweise z? = 0 k sagt aus, dass der Wert m nur dann akzeptiert wird, wenn z tatsächlich ein 0-String ist; ansonsten liegt ein Fehler vor. Sicherheit Zur Sicherheit von RSA-oAEP wird hier kein formaler Beweis geführt, die Beweisidee wird skizziert in Abbildung 7. Abbildung 8 verdeutlicht die Gedanken zur IND-CCA-Sicherheit. Für die Hashfunktionen gilt die ROM- Annahme Hybridverschlüsselung Problem: Nach Wahl des RSA-Moduls (bspw Bit) ist eine Obergrenze für die Nachrichtenlänge festgelegt (bspw. etwas weniger als 1024 Bits). Block- 6

7 Abbildung 6: RSA-oAEP, Entschlüsselung Abbildung 7: RSA-oAEP, Sicherheit Abbildung 8: RSA-oAEP, CCA-Sicherheit 7

8 weises Verschlüsseln funktioniert im CCA-Fall nicht, da der Angreifer die Blöcke vertauschen und an die Verschlüsselungsbox schicken kann; anschlieÿend kann der Angreifer die Vertauschung rückgängig machen und eine im Voraus bekannte Nachricht vom Entschlüsselungsorakel berechnen lassen. Glücklicherweise gibt es einen günstigen Weg, auch längere Nachrichten zu verschlüsseln, die Hybridverschlüsselung, eine Kombination aus Public- und Private-Key- Verschlüsselung. Dazu betrachte man die folgende Gegenüberstellung: Public-Key: + Kommunikation mit Fremden - Langsam - Frage nach der Verschlüsselung längerer Nachrichten Private-Key:...genau umgekehrt! (Public-Key-)Hybridverschlüsselung Key-Verfahren. Schlüssel sind sk, pk wie beim Public- Verschlüsselung Wähle k für symmetrisches Verfahren. C pub Enc pub (pk, k) C sym Enc sym (k, m) C = (C pub, C sym ) Entschlüsselung Der Entschlüsselungsprozess verläuft entsprechend: Entschlüssele k in C pub mit sk und anschlieÿend m in C sym mit k. Satz IND-CCA-sicheres Public-Key-Verfahren + IND-CCA-sicheres symmetrisches Verfahren IND-CCA-sicheres hybrides Verfahren. Die Annahme für das Public-Key-Verfahren ist sogar stärker als eigentlich notwendig, da der symmetrische Schlüssel k, der verschlüsselt wird, ein zufälliger Schlüssel ist. 8

Sicherheit von hybrider Verschlüsselung

Sicherheit von hybrider Verschlüsselung Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

RSA Full Domain Hash (RSA-FDH) Signaturen

RSA Full Domain Hash (RSA-FDH) Signaturen RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten

Mehr

ElGamal Verschlüsselungsverfahren (1984)

ElGamal Verschlüsselungsverfahren (1984) ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.05.2014 1 / 32 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Informatik für Ökonomen II HS 09

Informatik für Ökonomen II HS 09 Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und

Mehr

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Digitale Signaturen. Kapitel 8

Digitale Signaturen. Kapitel 8 Digitale Signaturen Kapitel 8 Handschriftliche vs. digitale Unterschrift digitalisieren mp3 Unterschrift digitale Unterschrift von D.H. für mp3? (Scannen und als Bitmap anhängen z.b. zu leicht zu fälschen)

Mehr

Sicherheit von Merkle Signaturen

Sicherheit von Merkle Signaturen Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-01 B. Kaidel Digitale Signaturen:

Mehr

9 Schlüsseleinigung, Schlüsselaustausch

9 Schlüsseleinigung, Schlüsselaustausch 9 Schlüsseleinigung, Schlüsselaustausch Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal initiale Schlüsseleinigung für erste sichere Kommunikation Schlüsselerneuerung für weitere Kommunikation

Mehr

Beliebige Anzahl von Signaturen

Beliebige Anzahl von Signaturen Beliebige Anzahl von Signaturen Algorithmus Signaturketten Sei Π = (Gen, Sign, Vrfy) ein Einwegsignaturverfahren. 1 Gen : (pk 1, sk 1 ) Gen(1 n ) 2 Sign : Signieren der Nachricht m i. Verwende gemerkten

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52 Übung zur Vorlesung Sicherheit 21.05.2014 Übungsblatt 3 Björn Kaidel bjoern.kaidel@kit.edu 1 / 52 Kummerkasten Bitte helleren Laserpointer verwenden. Sind die Skriptlinks vertauscht? Nein! Wegen allgemeiner

Mehr

Cramer-Shoup-Variante des ElGamal-Kryptoschemas

Cramer-Shoup-Variante des ElGamal-Kryptoschemas R. Fischlin/15. Februar 000 Cramer-Shoup-Variante des ElGamal-Kryptoschemas Wir stellen die Variante des ElGamal-Kryptoschemas von Cramer und Shoup [GS98] vor. Im Gegensatz zum urspünglichen System ist

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

ESecuremail Die einfache Email verschlüsselung

ESecuremail Die einfache Email verschlüsselung Wie Sie derzeit den Medien entnehmen können, erfassen und speichern die Geheimdienste aller Länder Emails ab, egal ob Sie verdächtig sind oder nicht. Die Inhalte von EMails werden dabei an Knotenpunkten

Mehr

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 3 Aufgabe 1. Beurteilen Sie für die folgenden Konstruktionen jeweils, ob es sich

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

Erste Vorlesung Kryptographie

Erste Vorlesung Kryptographie Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Sicherheit von ElGamal

Sicherheit von ElGamal Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren

Mehr

Workshop Experimente zur Kryptographie

Workshop Experimente zur Kryptographie Fakultät Informatik, Institut Systemarchitektur, Professur Datenschutz und Datensicherheit Workshop Experimente zur Kryptographie Sebastian Clauß Dresden, 23.03.2011 Alltägliche Anwendungen von Kryptographie

Mehr

Kryptographie II. Introduction to Modern Cryptography. Jonathan Katz & Yehuda Lindell

Kryptographie II. Introduction to Modern Cryptography. Jonathan Katz & Yehuda Lindell Kryptographie II Introduction to Modern Cryptography Jonathan Katz & Yehuda Lindell Universität zu Köln, WS 13/14 Medienkulturwissenschaft / Medieninformatik AM2: Humanities Computer Science Aktuelle Probleme

Mehr

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine)

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine) Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen Vorlesung im Sommersemester 2010 an der Technischen Universität Ilmenau von Privatdozent Dr.-Ing. habil. Jürgen

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Cryptoparty: Einführung

Cryptoparty: Einführung Cryptoparty: Einführung Eine Einführung in E-Mail-Sicherheit mit GPG ifsr TU Dresden 22. Januar 2015 Zum Verlauf der Veranstaltung oder: Willkommen! Dreiteilige Veranstaltung 1. Zuerst: Konzeptuelle Einführung

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg

Mehr

Anleitung Thunderbird Email Verschlu sselung

Anleitung Thunderbird Email Verschlu sselung Anleitung Thunderbird Email Verschlu sselung Christoph Weinandt, Darmstadt Vorbemerkung Diese Anleitung beschreibt die Einrichtung des AddOn s Enigmail für den Mailclient Thunderbird. Diese Anleitung gilt

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

CPA-Sicherheit ist ungenügend

CPA-Sicherheit ist ungenügend CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 12

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Bernd Blümel. Verschlüsselung. Prof. Dr. Blümel

Bernd Blümel. Verschlüsselung. Prof. Dr. Blümel Bernd Blümel 2001 Verschlüsselung Gliederung 1. Symetrische Verschlüsselung 2. Asymetrische Verschlüsselung 3. Hybride Verfahren 4. SSL 5. pgp Verschlüsselung 111101111100001110000111000011 1100110 111101111100001110000111000011

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Netzsicherheit I, WS 2008/2009 Übung 12. Prof. Dr. Jörg Schwenk 20.01.2009

Netzsicherheit I, WS 2008/2009 Übung 12. Prof. Dr. Jörg Schwenk 20.01.2009 Netzsicherheit I, WS 2008/2009 Übung 12 Prof. Dr. Jörg Schwenk 20.01.2009 Aufgabe 1 1 Zertifikate im Allgemeinen a) Was versteht man unter folgenden Begriffen? i. X.509 X.509 ist ein Standard (Zertifikatsstandard)

Mehr

2. Realisierung von Integrität und Authentizität

2. Realisierung von Integrität und Authentizität 2. Realisierung von Integrität und Authentizität Zur Prüfung der Integrität einer Nachricht oder Authentizität einer Person benötigt die prüfende Instanz eine zusätzliche Information, die nur vom Absender

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 10.06.2013 1 / 26 Überblick 1 Schlüsselaustauschprotokolle Transport Layer Security (TLS) Weitere Schlüsselaustauschtypen Zusammenfassung 2 Identifikationsprotokolle

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6 Kryptographie und Sicherheit 1. Kryptographische Hashfunktionen 2. Passwörter und Identifikation 3. Digitale Signaturen 4. Secret Sharing 5. Anwendungen und Ausblick

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren

Mehr

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail.

vom ggt zu gpg Lars Fischer 1 30.05.2012 Die Mathematik von RSA Lars Fischer Intro Mathematik RSA Anhang 1 lars.scher (bei) gmx-topmail. von Beweis von vom ggt zu gpg 1 30.05.2012 1 lars.scher (bei) gmx-topmail.de Inhaltsverzeichnis von Beweis 1 Einführung 2 von Rechnen mit n Beispiele & Regeln Der gröÿte gemeinsame Teiler Der euklidische

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Betriebssysteme und Sicherheit Sicherheit. Signaturen, Zertifikate, Sichere E-Mail

Betriebssysteme und Sicherheit Sicherheit. Signaturen, Zertifikate, Sichere E-Mail Betriebssysteme und Sicherheit Sicherheit Signaturen, Zertifikate, Sichere E-Mail Frage Public-Key Verschlüsselung stellt Vertraulichkeit sicher Kann man auch Integrität und Authentizität mit Public-Key

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Signatursysteme WS 2013/2014 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip digitaler Signatursysteme 2 Vergleich symmetrische / asymmetrische Authentikation

Mehr

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Digital Rights Management 4FriendsOnly.com Internet Technologies AG Vorlesung im Sommersemester an der Technischen Universität Ilmenau

Mehr

Eine Praxis-orientierte Einführung in die Kryptographie

Eine Praxis-orientierte Einführung in die Kryptographie Eine Praxis-orientierte Einführung in die Kryptographie Mag. Lukas Feiler, SSCP lukas.feiler@lukasfeiler.com http://www.lukasfeiler.com/lectures_brg9 Verschlüsselung & Entschlüsselung Kryptographie & Informationssicherheit

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Inhalt. Seminar: Codes und Kryptographie 1 1.6.2004

Inhalt. Seminar: Codes und Kryptographie 1 1.6.2004 Inhalt Grundgedanken und bereits bestehende Verfahren Anforderungen an Elektronischen Geld und grundlegende Protokolle Blinde Signaturen und Probleme die daraus erwachsen On-line Cash Off-line Cash Random

Mehr

Zur Sicherheit von RSA

Zur Sicherheit von RSA Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Kryptographie und Fehlertoleranz für Digitale Magazine

Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Kryptographie und Fehlertoleranz für digitale Magazine 1 Kryptographie und Fehlertoleranz für Digitale Magazine Stefan Lucks Professur für Mediensicherheit 13. März 2013 Stefan Lucks Kryptographie

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Björn Kaidel - Vertretung für Prof. J. Müller-Quade (Folien von A. Koch) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 17.11.2016 Björn Kaidel

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 1 Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes Auswählen von Text/Grafik Hinzufügen/Ändern von Anmerkungen und Formularfeldern

Mehr

Merkle-Damgard Transformation

Merkle-Damgard Transformation Merkle-Damgard Transformation Ziel: Konstruiere H : {0, 1} {0, 1} l aus h : {0, 1} 2l {0, 1} l. Algorithmus Merkle-Damgard Konstruktion Sei (Gen, h) eine kollisionsresistente Hashfunktion mit h : {0, 1}

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten

Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten Versuch: Eigenschaften einer Unterhaltung Instant Messaging Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Digital Signature and Public Key Infrastructure

Digital Signature and Public Key Infrastructure E-Governement-Seminar am Institut für Informatik an der Universität Freiburg (CH) Unter der Leitung von Prof. Dr. Andreas Meier Digital Signature and Public Key Infrastructure Von Düdingen, im Januar 2004

Mehr

Kurzanleitung GPG Verschlüsselung Stand vom 13.11.2006

Kurzanleitung GPG Verschlüsselung Stand vom 13.11.2006 Inhaltsverzeichnis 1. Versenden des eigenen öffentlichen Schlüssels... 2 2. Empfangen eines öffentlichen Schlüssels... 3 3. Versenden einer verschlüsselten Nachricht... 6 4. Empfangen und Entschlüsseln

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

Björn Kaidel Bjoern.Kaidel@kit.edu Alexander Koch Alexander.Koch@kit.edu 23.04.2015

Björn Kaidel Bjoern.Kaidel@kit.edu Alexander Koch Alexander.Koch@kit.edu 23.04.2015 Übung zur Vorlesung Sicherheit Übung 1 Björn Kaidel Bjoern.Kaidel@kit.edu Alexander Koch Alexander.Koch@kit.edu 23.04.2015 1 / 31 Sicherheit Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr