Substitutionsverfahren

Größe: px
Ab Seite anzeigen:

Download "Substitutionsverfahren"

Transkript

1 Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft 24 Stunden am Tag ohne Unterbrechung. Der Erlös beim Verkauf von Produkt A bringt uns 10 Euro und der von Produkt B nur 7 Euro ein. Wie viele Einheiten müssen wir von jedem Produkt in einem Monat produzieren um unseren Gewinn zu maximieren? Bei solch einer Aufgabe handelt es sich um ein Optimierungsproblem, da der Gewinn maximiert werden muss. Weiterhin liegt eine Nebenbedingung für dieses Problem vor. Diese und ähnliche Optimierungsprobleme können wir mit dem Substitutionsverfahren lösen. 2 Das Substitutionsverfahren Aufgabe: Wir betrachten folgende Funktion f(x, y) (I) f(x, y) = 5x 2 + 5y deren Maximum unter der Nebenbedingung (II) 10 = y 4x bestimmt werden soll. Zur Lösung dieses Optimierungsproblems können wir das Substitutionsverfahren anwenden. Dabei formen wir die Gleichung der Nebenbedingung geschickt nach einer Variable um, sodass wir diese in die Zielfunktion f einsetzen können und eine Funktion mit nur einer Variable erhalten, deren Extremum wir bestimmen. Konkret schaen wir das mit folgenden Schritten: (II) umformen: 10 = y 4x y = x (II) in (I) einsetzen: f(x, y) = 5x 2 + 5y f(x) = 5x 2 + 5(10 + 4x) f(x) = 5x x 1

2 Schritt 3: Leite f(x) nach x ab und setze die Ableitung gleich Null. f (x) = 10x + 20! = 0 10x + 20 = 0 10x = 20 x = 2 20 : ( 10) D.h. bei x = 2 liegt ein Extremum vor. Schritt 5: Überprüfe, ob bei x = 2 ein Maximum vorliegt. Die Zusicherung auf ein Maximum erhalten wir, falls f (2) < 0 gilt: f (x) = 10 f (2) = 10 < 0 Da die zweite Ableitung kleiner Null ist, liegt bei x = 2 ein Maximum vor. 10 = y 4x einsetzen von x = 2 10 = y 4 2 zusammenfassen 10 = y 8 +8 y = 18 Somit wird die Funktion f(x, y) = 5x 2 + 5y für die Werte x = 2 und y = 18 unter der gegebenen Nebenbedingung maximiert. Das Maximum beträgt f(2, 18) = 70 3 Übungsaufgaben Aufgabe 1) Gegeben sei folgende Funktion f(x, y) (I) f(x, y) = 8x 2 + 3y deren Maximum unter der Nebenbedingung (II) 4 = y 6x bestimmt werden soll! 2

3 Lösung: (II) umformen: 4 = y 6x y = 6x + 4 (II) in (I) einsetzen: f(x, y) = 8x 2 + 3y f(x) = 8x 2 + 3(6x + 4) f(x) = 8x x + 12 Schritt 3: Leite f(x) nach x ab und setze die Ableitung gleich Null. f (x) = 16x + 18! = 0 16x + 18 = 0 16x = 18 x = : ( 16) D.h. bei x = liegt ein Extremum vor. Schritt 5: Überprüfe, ob bei x = ein Maximum vorliegt. Die Zusicherung auf ein Maximum erhalten wir, falls f (1.125) < 0 gilt: f (x) = 16 f (1.125) = 16 < 0 Da die zweite Ableitung kleiner Null ist, liegt bei x = ein Maximum vor. 4 = y 6x einsetzen von x = = y zusammenfassen 4 = y y = Somit wird die Funktion f(x, y) = 8x 2 + 3y für die Werte x = und y = unter der gegebenen Nebenbedingung maximiert. Das Maximum beträgt f(1.125, 10.75) = Aufgabe 2) Gegeben sei folgende Funktion f(x, y) (I) f(x, y) = 6x 2 + 8y 3

4 deren Maximum unter der Nebenbedingung (II) 5 = y 2x bestimmt werden soll! Lösung: (II) umformen: 5 = y 2x y = 2x + 5 (II) in (I) einsetzen: f(x, y) = 6x 2 + 8y f(x) = 6x 2 + 8(2x + 5) f(x) = 6x x + 40 Schritt 3: Leite f(x) nach x ab und setze die Ableitung gleich Null. f (x) = 12x + 16! = 0 12x + 16 = 0 12x = 16 x = : ( 12) D.h. bei x = 1.33 liegt ein Extremum vor. Schritt 5: Überprüfe, ob bei x = 1.33 ein Maximum vorliegt. Die Zusicherung auf ein Maximum erhalten wir, falls f (1.33) < 0 gilt: f (x) = 12 f (1.33) = 12 < 0 Da die zweite Ableitung kleiner Null ist, liegt bei x = 1.33 ein Maximum vor. 5 = y 2x einsetzen von x = = y zusammenfassen 5 = y y =

5 Somit wird die Funktion f(x, y) = 6x 2 + 8y für die Werte x = 1.33 und y = 7.66 unter der gegebenen Nebenbedingung maximiert. Das Maximum beträgt f(1.33, 7.66)

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich). Zusatzübungen (Lösungen am Ende) Aufgabe 1: ( ) ( ) 1 1 2 3 1 3 A =, B =, C = 3 1 2 2 5 2 0 Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Mehr

NAME: 999. Schularbeit: MATHEMATIK KL.: - S.1. 2) 6A1.11-E / 002-e ) 6A1.11-E / 003-e ) 6A1.11-E / 004-e 0 1 2

NAME: 999. Schularbeit: MATHEMATIK KL.: - S.1. 2) 6A1.11-E / 002-e ) 6A1.11-E / 003-e ) 6A1.11-E / 004-e 0 1 2 999. Schularbeit: MATHEMATIK KL.: - S.1 1) Löse folgende Gleichungen mit Hilfe des Waagemodells! a) + 17 = 23 b) y - 3 = 15 2) 6A1.11-E / 002-e 0 1 2 Folgende Gleichungen sollen mit Hilfe des Waagemodells

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

K l a u s u r N r. 1 G K M 12

K l a u s u r N r. 1 G K M 12 K l a u s u r N r. G K M 2 Aufgabe Bestimmen Sie die Ableitungsfunktion zu den folgenden Funktionen! a) f (x) (sin x) 2 (cos x) 2 b) f (x) (6 x 2 5) sin (2 x 3 + 5 x) c) f (x) 2 x 6 4 2 x 3 d) f (x) 4

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10 Universität Basel 9 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Extremwertprobleme mit Nebenbedingung Inhaltsverzeichnis 1 Einstimmung 2 2 Die Reduktionsmethode

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert 14 Optimierung unter Nebenbedingungen 14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert [1] Lösen sie die folgenden Probleme, indem Sie diese auf ein univariates Problem zurückführen. Zeigen

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden.

Ansgar Schiffler. Die Polynomdivision. Seite 1 von 5. Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Seite 1 von 5 Aufgabe 1: Es sollen die Nullstellen des Graphens der folgenden Funktion bestimmt werden. Dies ist der Graph der Funktion: y = f(x) =,5x³,5x² + 1,8x +,88 Die erste Nullstelle können Sie durch

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

B Differenzialrechnung

B Differenzialrechnung A Funktionen Seite 1 Abhängigkeiten entstehen... 4 2 Der Funktionsbegriff... 6 3 Lineare Funktionen... 8 4 Lineare Regression... 1 5 Funktionsscharen... 12 6 Betragsfunktionen... 13 7 Potenzfunktionen...

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben ARBEITSBLATT 9 Extremwertaufgaben Gehen wir die Idee der Extremwertaufgaben gleich an einem Beispiel an: Rechtecke gleichen Umfangs haben den gleichen Flächeninhalt. Stimmt diese Aussage/ stimmt sie nicht?

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Einführung in die Quadratischen Funktionen

Einführung in die Quadratischen Funktionen Einführung in die Quadratischen Funktionen Problemstellung: In einer Fabrikhalle soll ein Pausenraum neu eingerichtet werden. Die dazu bestellten flexiblen Trennwände sind zusammen 15 m lang. Das Aufstellen

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf ) Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Funktionen mit mehreren reellen Variablen 18.11.08 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel

Mehr

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt

Mehr

Analysis Extremwertaufgaben mit geometrischer Nebenbedingung

Analysis Extremwertaufgaben mit geometrischer Nebenbedingung Analysis Extremwertaufgaben mit geometrischer Nebenbedingung Alexander Schwarz November 08 Aufgabe : Aus einem 0cm langen Draht soll das Kantenmodell eines Quaders hergestellt werden, bei dem eine Kante

Mehr

Mathematik Semester 4 / Arbeitsblatt 6

Mathematik Semester 4 / Arbeitsblatt 6 6 Extremwertaufgaben Siehe dazu den Abschnitt 11. in der Formelsammlung. 6.1 Aufgaben mit quadratischen Funktionen Bei den Aufgaben in diesem Abschnitt erhält man nach dem Einsetzen der Nebenbedingung

Mehr

Kurvendiskussion von Funktionsscharen

Kurvendiskussion von Funktionsscharen Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Hilfe Beispiel 1: Lösungsskizze und Ergebnis:

Hilfe Beispiel 1: Lösungsskizze und Ergebnis: Hilfe Beispiel 1: 1. Hauptbedingung erstellen (Volumen der Schachtel) 3. Nebenbedingungen finden, Grundkanten und Höhen ausdrücken, in Hauptbedingung einsetzen -> Funktion 4. 1. Ableitung, 0 setzen ->

Mehr

Theorie: Quadratische Funktionen

Theorie: Quadratische Funktionen 1 Theorie: Quadratische Funktionen Ben Hambrecht Inhaltsverzeichnis 1 Zahlenfolgen und ihre Differenzen 2 2 Parabeln 3 3 Einfache quadratische Funktionen 4 4 Allgemeine quadratische Funktionen 5 5 Quadratische

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 10.6.2010 1 von 40 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 2 von

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Stützvektormethode 1 Hinführungen zur SVM Katharina Morik, Claus Weihs 26.5.2009 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 1 von 40 2 von

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen QM I (Wirtschaftsmathematik) Extremwerte ohne Nebenbedingungen

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft)

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) *** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) In manchen Problemen sind nicht alle möglichen Funktionen als Lösung erlaubt, sondern nur Funktionen, die zusätzliche Bedingungen erfüllen.

Mehr

Lösungen P 15. Aufgabe 1 a) Bei 4,9 ME und einem Preis von 20,1 GE pro ME. erzielt man maximalen Gewinn. p-q-formel ergibt x 2

Lösungen P 15. Aufgabe 1 a) Bei 4,9 ME und einem Preis von 20,1 GE pro ME. erzielt man maximalen Gewinn. p-q-formel ergibt x 2 Lösungen P 15 Aufgabe 1 a) G() Ç Ä Å 7 Å 4 Ä 10 und K() Ç Ä 8 Å 1 Å 10 E() Ç G() Å K() E() Ç Ä p() Å 5 Ç Ä Å 5 mit p() Ç 5 b) G() Ç Ä Å 7 Å 4 Ä10 É ME (SM) É D ök Ç Ñ0;5Ö G () Ç Ä Å 14 Å 4 G() Ç Ä6 Å 14

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Extrema gebrochen rationaler Funktionen

Extrema gebrochen rationaler Funktionen Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung Die Formel von Cardano - mit grahischer Lösung Theorie : Grahische Veranschaulichung der Fallunterscheidung Gegeben ist eine kubische Gleichung in reduzierter Form: x x = 0 mit 0 IR. Definieren Sie einen

Mehr

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit : Lineare Algebra II Leseprobe Autor: Univ.-Prof. Dr. Wilhelm Rödder Dr. Peter Zörnig 74 4 Extrema bei Funktionen mehrerer

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Kapitel 2. Mathematik für Mikroökonomie

Kapitel 2. Mathematik für Mikroökonomie Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

K b) x. Aufgabe 2: [3P] Bestimmen Sie die x-werte, bei denen die Tangente an die Funktion f ( x) 6 x durch R(-2/0) geht.

K b) x. Aufgabe 2: [3P] Bestimmen Sie die x-werte, bei denen die Tangente an die Funktion f ( x) 6 x durch R(-2/0) geht. Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe : [P] Leiten Sie

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Skript Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Skript: Dr. Irmgard Bühler (Überarbeitung: Dominik Tasnady) 8.August

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Formel 1 - Rennen am Tiongring

Formel 1 - Rennen am Tiongring BspNr: F0010 Themenbereich Differential- und Integralrechnung Ziele vorhandene Ausarbeitungen Bogenlänge und Krümmung TI-9 (F0010a) Analoge Aufgabenstellungen Übungsbeispiele F0011, F001 Lehrplanbezug

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

Lösungen zu Aufgabenblatt 6

Lösungen zu Aufgabenblatt 6 Fachbereich Informatik Prof. Dr. Peter Becker Vorlesung Graphentheorie Operations Research Wintersemester 2004/05 3. Januar 2005 Lösungen zu Aufgabenblatt 6 Aufgabe 1 (Modellierung von LPs) Formulieren

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie) (Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek

Mehr

, = 2x, dz = 2x dx dx c und d) Partielle Integration u v = u v u v

, = 2x, dz = 2x dx dx c und d) Partielle Integration u v = u v u v Tipps und Lösungen zum Selbsttest Physik/Physik Lehramt Hinweis: Wenn Sie bei einer Aufgabe nicht weitergekommen sind, lesen Sie bitte zuerst die Tipps und versuchen Sie es danach erneut. Die Lösungen

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( ) Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich

Mehr

10 Extremwertaufgaben, dreidimensional

10 Extremwertaufgaben, dreidimensional Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq 10 Extremwertaufgaben, dreidimensional 3D: Notwendige Bedingung für das Auftreten eines

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr.

Mehr