Klausur zu Naturwissenschaftliche und technische Grundlagen

Größe: px
Ab Seite anzeigen:

Download "Klausur zu Naturwissenschaftliche und technische Grundlagen"

Transkript

1 Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2014/15 Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer: Bitte die Ergebnisse in die Ergebnisboxen eintragen! Nur Ergebnisse mit Rechenweg werden gewertet; Ausnahme: Ankreuzaufgaben. Rechnungen in die Zwischenräume eintragen! (Eventuell zweispaltig) Wenn der Platz nicht reicht, können die Rückseiten oder Zusatzblätter benutzt werden. Auf evtl. Zusatzblätter Namen und Matrikelnummer schreiben! Endergebnisse auf 3 bis 4 signifikante Stellen runden, Zwischenergebnisse aber möglichst genau berechnen! Nur Endergebnisse mit der richtigen Einheit werden gewertet. Punkteverteilung Aufgabe Punkte erreicht Aufgabe Punkte erreicht Summe 90 Stichwortartige Lösungen in Kursivdruck eingefügt. Aufg.1) a) Ein Ladegerät lädt einen Fotoakku mit 1200 mah Gesamtladung mit einem konstanten Ladestrom von 800 ma auf. Wie lange dauert es, bis der Fotoakku komplett geladen ist? b) Der gleiche Fotoakku wird nun an einem USB konstant mit 5V Spannung und 3W Leistung aufgeladen. Wie groß ist jetzt die Ladezeit und der Ladestrom? Lösung: a) t = Q I = 1.2 Ah 0.8 A = 1.5h b) I = P U = 3 V A 5 V = 0.6 A ; t = Q I 1.2 Ah = 0.6 A a) Ladezeit: 1.5h (5400s) b) Ladezeit: 2h (7200s) b) Ladestrom: 0.6 A (600mA)

2 Klausur NTG WS2014/15 - Prof. Dr. K. Wüst 2 Aufg.2) Bestimmen Sie in dem unten abgebildeten Gleichstromkreis die fehlenden Größen R2, I2 und U. I 2 = I G I 1 = 90 ma 10 ma = 80 ma U = RI = 200Ω 0.01 A = 2 V R 2 = U I 2 = 2 V 0.08 A = 25 Ω R2 I2 U 25 Ω 80 ma 2 V Aufg.3) Ein Mikrochip besteht aus 60 Millionen Feldeffekttransistoren mit je 0.2 ff und Leiterbahnen zu je 0.02 pf im Inneren des Chips. Die Leitungen und die FETs sind parallel geschaltet. Der Kühler kann 25 W Verlustwärme ableiten (Thermal Design Power). Mit welcher Frequenz darf der Chip getaktet werden, wenn die Betriebsspannung 2.8V ist und wie ist die Kapazität der FETs und die der Leitungen? C F = F = F C L = F = F C Ges = C F + C L = F f = P CU = 25 V A As/V 2, 8 2 V = /s = MHz Maximale Arbeitsfrequenz (f max ): MHz ( GHz) Kapazität der FETs : 12.0 nf ( F ) Kapazität der Leitungen : 1.00 nf ( F )

3 Klausur NTG WS2014/15 - Prof. Dr. K. Wüst 3 Aufg.4) Bitte kreuzen Sie in jeder Zeile der folgenden Tabelle an, ob die Aussage wahr oder falsch ist: Aussage wahr falsch V C (Volt mal Coulomb) ist eine Energieeinheit Ein selbstleitender P-Kanal-FET braucht eine positive Gate-Ansteuerung, um leitend zu werden N/C ist gleichbedeutend mit V/m Röntgenstrahlung ist eine elektromagnetische Welle 20 db Verlust bedeutet: Die Leistung sinkt auf ein Hundertstel ab Radiowellen breiten sich mit 2/3 der Lichtgeschwindigkeit aus Aufg.5) Drei gleiche Kondensatoren werden zunächst seriell geschaltet, dann wird die Gesamtkapazität zwischen den Punkten a und b gemessen. (Im Bild links) Dann wird die Schaltung geändert: Einer der drei Kondensatoren wird nun parallel zu den beiden anderen geschaltet (Im Bild rechts); die Messung ergibt, dass die Gesamtkapazität nun 14 nf größer geworden ist. Wie groß ist die Kapazität C eines einzelnen Kondensators. Im Bild links liegt eine Reihenschaltung vor, die Gesamtkapazität ist: C G1 = 1 1/c+1/c+1/c = 1 3/c = 1 3 C Im Bild rechts liegt eine Parallelschaltung vor, wobei einer der Zweige eine Reihenschaltung darstellt. Die Gesamtkapazität ist: C G2 = 1 1/c+1/c + C = 1 2/c + C = 1 2 C + C = 3 2 C Die Kapazität ist bei der Schaltung rechts größer, da Parallelschaltung die Kapazität erhöht. Für die Differenz gilt: C G2 C G1 = 3C 1C = 7 C = 14 nf also C = nf = 12 nf Kapazität C jedes einzelnen Kondensators: 12 nf

4 Klausur NTG WS2014/15 - Prof. Dr. K. Wüst 4 Aufg.6) Zwei sehr lange Drähte verlaufen parallel zueinander, ihre Position wird aus dem nachfolgenden Querschnittsbild ersichtlich. a) Es wird zunächst nur Leiter 1 von 2.25 A Strom durchflossen mit Richtung gemäß Bild. Berechnen Sie die Stärke des Magnetfeldes B 1 im Punkt P und zeichnen Sie dieses Feld als Vektorpfeil B 1 im Bild ein. (Leiter 2 stromlos) b) Nun wird zusätzlich in Leiter 2 ein Strom von 3.0 A erzeugt, Richtung gemäß Bild. Berechnen Sie die Stärke des Magnetfeldes B G im Punkt P und zeichnen Sie dieses Feld als Vektorpfeil B G im Bild ein. (Leiter 1 weiterhin 2.25 A) B 1 = µ 0I 1 2πd = 4π 10 7 T m 2.25A 2π 0.15m A B 2 = µ 0I 2 2πd = 4π 10 7 T m 3.00A 2π 0.15m A = T (3µT ) = T (4µT ) Die beiden Komponenten des Magnetfeldes stehen senkrecht zu einander und müssen vektoriell addiert werden, um das Gesamt-Magnetfeld zu erhalten. Die drei vektoren bilden ein rechtwinkliges Dreieck. Für den Betrag (die Hypothenuse des Dreiecks) ergibt sich mit dem Satz des Pythagoras: B G = B1 2 + B2 2 = T = T a) Stärke des Magnetfeldes B 1 : T (3µT ) b) Stärke des Magnetfeldes in B G : T ; (5µT )

5 Klausur NTG WS2014/15 - Prof. Dr. K. Wüst 5 Aufg.7) Am Eingang dieser Schaltung liegt eine Spannung U E = 1.0 V. Bestimmen Sie mit Hilfe der dargestellten Kennlinie die folgenden Größen: Ausgangsspannung: U A Gatespannung an FET2: U GS2 Drain-Source-Widerstand von FET1: R DS1 Drain-Source-Widerstand von FET2: R DS2 1 V 5 V 1 MΩ 10 kω Aus der Kennlinie liest man ab, dass bei einer Spannung U GS = 1V am FET der Drain-Source- Widerstand R DS1 = 1 MΩ ist. Dieser Widerstand bildet einen Spannungsteiler mit R 1, daher gilt: U GS2 U B = R DS1 R 1 +R DS1 ; U GS2 = R DS1 R 1 +R DS1 U B = 1 MΩ 1.2 MΩ 6 V = 5 V FET2 wird also am Gate mit 5V Spannung angesteuert. Aus der Kennlinie entnimmt man, das sein Drain-Source-Widerstand dann R DS2 = 10 kω ist. Dieser Widerstand bildet einen Spannungsteiler mit R 2. Daher ist U A U B = R DS2 R 2 +R DS2 ; U A = R DS2 R 2 +R DS2 U B = 10 kω 6 V = 1 V 60 kω

Klausur zu Naturwissenschaftliche und technische Grundlagen Kompakte Musterlösung

Klausur zu Naturwissenschaftliche und technische Grundlagen Kompakte Musterlösung Prof. Dr. K. Wüst Klausur zu Naturwissenschaftliche und technische Grundlagen Kompakte Musterlösung Nachname: Vorname: Matrikelnummer: 26.3.208 Bitte die Ergebnisse in die Ergebnisboen eintragen! Nur Ergebnisse

Mehr

Klausur zu Naturwissenschaftliche und technische Grundlagen

Klausur zu Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2013/14 Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer: 21.2.2014 Bitte

Mehr

Klausur zu Naturwissenschaftliche und technische Grundlagen

Klausur zu Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst WS 2015/16 Technische Hochschule Mittelhessen, FB MNI Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer: 1.2.2016 Bitte

Mehr

Musterlösung zur Klausur Naturwissenschaftliche und technische Grundlagen

Musterlösung zur Klausur Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2012/13 Informatik-Studiengänge Musterlösung zur Klausur Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer:

Mehr

Klausur zu Naturwissenschaftliche und technische Grundlagen

Klausur zu Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst Technische Hochschule Mittelhessen, FB MNI WS2011/12 Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen Nachname: Vorname: Matrikelnummer: 15.3.2012 Bitte

Mehr

Klausur zu Naturwissenschaftliche und technische Grundlagen

Klausur zu Naturwissenschaftliche und technische Grundlagen Prof. Dr. K. Wüst FH Gießen Friedberg, FB MNI WS2010/11 Studiengang Informatik Klausur zu Naturwissenschaftliche und technische Grundlagen 7.2.2011 Nachname: Vorname: Matrikelnummer: Kennung: Bitte alle

Mehr

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen

Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen Prof. Dr. K. Wüst WS 2008/2009 FH Gießen Friedberg, FB MNI Studiengang Informatik Klausur zu Naturwissenschaftliche Grundlagen und Anwendungen 13.2.2009 Aufgabenstellung mit Musterlösungen Punkteverteilung

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2012 Grundlagen der Elektrotechnik I Datum: 17. September 2012 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Serie 2007 Berufskunde schriftlich Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch und Taschenrechner

Mehr

Wie funktioniert der Wellenschnüffler? 10 Antworten.

Wie funktioniert der Wellenschnüffler? 10 Antworten. Wie funktioniert der Wellenschnüffler? 10 Antworten. 1 2 4 5 7 19 10 8 3 6 1) Dioden funktionieren wie elektrische Ventile: Sie lassen den Strom nur in eine Richtung durch. Die Diode dient hier als Schutzdiode

Mehr

Klausur: TI I Grundlagen der Technischen Informatik

Klausur: TI I Grundlagen der Technischen Informatik Klausur: TI I Grundlagen der Technischen Informatik Wintersemester 2007/2008 1.Bipolarer Transistor Die Verstärkerschaltung soll mit dem im Kennlinienfeld dargestellten Arbeitspunkt konfiguriert werden.

Mehr

für Wirtschaftsingenieure und Materialwissenschaftler

für Wirtschaftsingenieure und Materialwissenschaftler achelorprüfung in Grundlagen der Elektrotechnik für Wirtschaftsingenieure und Materialwissenschaftler Musterlösung Klausur vom 15.9.215 1. Elektrostatisches Feld (vgl. Übungsaufgabe Nr. 22) 1.1) Kugelsymmetrie:

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

= 16 V geschaltet. Bei einer Frequenz f 0

= 16 V geschaltet. Bei einer Frequenz f 0 Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie

Mehr

2. Welche Induktivität muss eine Spule mit R = 35 Ohm haben, wenn der Strom t= 0.5s nach dem Einschalten 75 % seines Höchstwertes erreichen soll?

2. Welche Induktivität muss eine Spule mit R = 35 Ohm haben, wenn der Strom t= 0.5s nach dem Einschalten 75 % seines Höchstwertes erreichen soll? 1. Welchen Wert hat der Strom eine halbe Sekunde nach dem einschalten, wenn die Induktivität einer Drosselspule 2.5 H, der Widerstand 20 Ohm und die Klemmenspannung 24 V betragen? 2. Welche Induktivität

Mehr

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt?

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 2. Welchen Wert hat der Strom eine halbe Sekunde nach dem Einschalten, wenn die Induktivität einer Drosselspule

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Klausur "Elektrotechnik" 6141 am 16.03.1998 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Aufg. P max 0 2 1 10 2 10 3 10 4 9 5 20 6 9 Σ 70 N P Zugelassene

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2 NIVERSITÄT LEIPZIG Institut für Informatik Prüfungsaufgaben Klausur Wintersemester 2/21 Abt. Technische Informatik Prof. Dr. do Kebschull Dr. Paul Herrmann Dr. Hans-Joachim Lieske Datum: 6. Februar 21

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

Aufg. P max 1 12 Klausur "Elektrotechnik" am

Aufg. P max 1 12 Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt?

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 1. Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 2. R2 = 7 kw und R3= 7 kw liegen parallel zueinander in Serie dazu liegt R4.=

Mehr

1 Schaltungen von Hochleistungs-LEDs

1 Schaltungen von Hochleistungs-LEDs 1 Schaltungen von Hochleistungs-LEDs 1.1 Zwei identische Reihenschaltungen, die parallel an U Gleich geschaltet sind. U R 2 = U gleich 2 = 12 V 6,6 V = 5,4 V R 2 = U R 2 = 5,4 V = 18 Ω ( = R 1) I 2 300

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik Feldeffekttransistoren Ausgehend vom Ersatzschaltbild werden die wichtigsten statischen SPICE-Parameter bestimmt. Es folgt eine Einführung in die analoge Schaltungstechnik mit JFET's. Auf die Theorie wie

Mehr

Diplomprüfung Elektronik WS 2008/09 Dienstag,

Diplomprüfung Elektronik WS 2008/09 Dienstag, Hochschule München FK Maschinenbau iplomprüfung Elektronik WS 8/9 ienstag,..9 Prof. r. J. Höcht Prof. r. G. Buch Zugelassene Hilfsmittel: Alle eigenen auer der Prüfung: 9 Minuten Name: Vorname: Sem.: Unterschrift:

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik I Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Antwort hier eintragen R 2 = 10 Ω

Antwort hier eintragen R 2 = 10 Ω Klausur 22.02.2011 Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Mit Lösung Aufgabe 1 (8 Punkte) Gegeben ist folgendes Netzwerk Gegeben: 1 = 25

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung Elektronische Bauelemente WS2012/13 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 23.1.2013 (90 Minuten) Prof. Dr.-Ing. Großmann,

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Tetaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger Taschenrechner,

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

PHYSIKTEST 4C 16. November 2016 GRUPPE A

PHYSIKTEST 4C 16. November 2016 GRUPPE A PHYSIKTEST 4C 16. November 2016 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1.

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2015 Grundlagen der Elektrotechnik I&II Datum: 1. August 2015 Prüfer: Prof. Dr.-Ing. H.-P. Beck Institut für Elektrische Energietechnik und Energiesysteme

Mehr

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog Diplomvorprüfung für Maschinenwesen SS 2009 Technische Elektrizitätslehre I Prof. Dr.-Ing. H.-G. Herzog am 07.09.2009 Name:.. Vorname: Matrikelnummer:... 1. Korrektur 2. Korrektur 3. Korrektur Seite 1

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Name: Abschlussprüfung Elektronische Bauelemente WS2010/11 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 26.1.2011 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik I

Klausur im Modul Grundgebiete der Elektrotechnik I Klausur im Modul Grundgebiete der Elektrotechnik I am 09.03.2015, 9:00 10:30 Uhr Matr.Nr.: E-Mail-Adresse: Studiengang: Vorleistung vor WS 14/15 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur Prüfung

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Aufg. P max P 1 12 Klausur "Elektrotechnik/Elektronik" 2 3

Aufg. P max P 1 12 Klausur Elektrotechnik/Elektronik 2 3 Ergebnisse Name, Vorname: Matr.Nr.: Aufg. P max P 1 12 Klausur "Elektrotechnik/Elektronik" 2 3 16 30 4 16 am 22.03.1996 5 13 6 18 7 14 Hinweise zur Klausur: 8 9 15 16 Die zur Verfügung stehende Zeit beträgt

Mehr

4. Klausur Thema: Wechselstromkreise

4. Klausur Thema: Wechselstromkreise 4. Klausur Thema: Wechselstromkreise Physik Grundkurs 0. Juli 2000 Name: 0 = 8, 8542$ 0 2 C Verwende ggf.:,, Vm 0 =, 2566$ 0 6 Vs Am g = 9, 8 m s 2 0. Für saubere und übersichtliche Darstellung, klar ersichtliche

Mehr

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Serie 2006 Berufskunde schriftlich Elektrotechnik Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch

Mehr

K A N D I D A T E N V O R L A G E

K A N D I D A T E N V O R L A G E Jahrgang 2004 Berufskenntnisse schriftlich Elektrotechnik Name... Vorname... Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Prüfungsnummer... Datum... K A N D I D A T E N V O R L A G E

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und am

Klausur Elektrotechnik 1,2 Fachnr. 8149, 8425 und am Name, Vorname: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 3 h. Zugelassene Hilfsmittel sind: Taschenrechner Klausur "Elektrotechnik 1,2" Fachnr. 8149, 8425 und 6132 am 10.07.1996 Matr.Nr.:

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

14 Elektrische Messtechnik

14 Elektrische Messtechnik für Maschinenbau und Mechatronik Carl Hanser Verlag München 14 Elektrische Messtechnik Aufgabe 14.1 Der Strom einer linearen Quelle wird mit einem Amperemeter gemessen, das in jedem Messbereich bei Vollausschlag

Mehr

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2012 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen: Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 05: Der Kondensator und seine Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 26.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

1. Kurzarbeit aus der Physik * Klasse 7a * * Gruppe A

1. Kurzarbeit aus der Physik * Klasse 7a * * Gruppe A 1. Kurzarbeit aus der Physik * Klasse 7a * 06.12.2016 * Gruppe A Name:... 1. Überlege genau, welche Lämpchen jeweils leuchten. Kennzeichne heller leuchtende Lämpchen mit einem Stern. ( 1 bedeutet Schalter

Mehr

Klausur im Modul Grundgebiete der Elektrotechnik I

Klausur im Modul Grundgebiete der Elektrotechnik I Klausur im Modul Grundgebiete der Elektrotechnik I am 25.02.203, 9:00 0:30 Uhr : E-Mail-Adresse: Studiengang: Vorleistung vor WS 202/3 berücksichtigen? Ja Nein Prüfungsdauer: 90 Minuten Zur Prüfung sind

Mehr

Experimentalphysik 2. Lösung Probeklausur

Experimentalphysik 2. Lösung Probeklausur Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik SS 018 Probeklausur Hagen Übele Maximilian Ries Aufgabe 1 (Coulomb Kraft) Zwei gleich große Kugeln der Masse m = 0,01 kg

Mehr

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,

Mehr

Vordiplomsklausur in Physik Montag, 25. Juli 2005, :00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv

Vordiplomsklausur in Physik Montag, 25. Juli 2005, :00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv Institut für Physik und Physikalische Technologien 25.07.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Montag, 25. Juli 2005, 09.00-11:00 Uhr für den Studiengang: Maschinenbau/Mechatronik-Intensiv

Mehr

Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität.

Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität. 1 Tutorium der Grund- und Angleichungsvorlesung Physik. Elektrizität. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Diplomprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

Licht ist eine elektromagnetische Welle zwischen 380 nm (violett) bis 780 nm (dunkelrot) Länge.

Licht ist eine elektromagnetische Welle zwischen 380 nm (violett) bis 780 nm (dunkelrot) Länge. 2016.01.23_Nachlese, DB6UV, Ronald Licht ist eine elektromagnetische Welle zwischen 380 nm (violett) bis 780 nm (dunkelrot) Länge. Lichtgeschwindigkeit (physikalische Konstante) = c = 300.000 km/sec f

Mehr

2 Übungen und Lösungen

2 Übungen und Lösungen ST ING Elektrotechnik 0-2 - 2 Übungen und Lösungen 2. Übungen. ELEKTISCHES FELD a b α 2 Zwischen zwei metallischen Platten mit dem bstand a = 5 mm herrsche eine elektrische Feldstärke von E = 500 kvm -.

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 3. Klausur Grundlagen der Elektrotechnik I-A 5. April 2005 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

Klausur , Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5

Klausur , Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5 Klausur 18.09.2009, Grundlagen der Elektrotechnik II (BSc. MB, EUT) Seite 1 von 5 1 (6 Punkte) Matr.-Nr.: In der Schaltung sind die beiden Lampen identisch und die Batterie sei eine ideale Spannungsquelle.

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Experimentalphysik II SoSem 2009 Klausur 20.07.2009 Name:... Matrikelnummer:... Raum / Platznummer... nur für die Korrektoren: Studienrichtung, -ziel (bitte ankreuzen): Aufgabe Punkte Physik 1-10... Nanostrukturtechnik

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

Bachelorprüfung in. Grundlagen der Elektrotechnik

Bachelorprüfung in. Grundlagen der Elektrotechnik Bachelorprüfung in Grundlagen der Elektrotechnik für Wirtschaftsingenieure und Materialwissenschaftler Montag, 24.03.2015 Nachname: Vorname: Matrikelnr.: Studiengang: Bearbeitungszeit: 90 Minuten Aufg.-Nr.

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 24.09.1998 Aufg. P max 0 2 1 9 2 10 3 12 4 9 5 19 6 6 Σ 67 N P Zugelassene

Mehr

Elektromagnetische (Felder und deren) Verträglichkeit (EFV, EMV) Aufgabe Summe max.p Punkte

Elektromagnetische (Felder und deren) Verträglichkeit (EFV, EMV) Aufgabe Summe max.p Punkte Klausur xx.xx.20xx Name Vorname Elektromagnetische (Felder und deren) Verträglichkeit (EFV, EMV) Matr.-Nr. Note Aufgabe 1 2 3 4 5 6 7 Summe max.p. 9 8 20 20 20 10 13 100 Punkte Allgemeine Hinweise: Erlaubte

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

( ) R U V = Phasendrehung I R. invertierender Verstärker (Weiterführung): Eingangswiderstand:

( ) R U V = Phasendrehung I R. invertierender Verstärker (Weiterführung): Eingangswiderstand: invertierender erstärker (Weiterführung: Phasendrehung 0, 80 Eingangswiderstand: e e re e re e ( Nicht-invertierender erstärker - erzeugt keine Phasendrehung zwischen Ein- und Ausgangssignal Betrachtung

Mehr

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A Widerstände I R 20 = Ω U 5V I = R= 20 = Ω 0,25A U = R I 10 100Ω = 1kΩ ± 5% 402 100Ω = 40, 2kΩ ± 2% 1Ω = 1V 1A Widerstände U = R I 1Ω = 1V 1A 12 100 kω = 1, 2MΩ ± 5% 56 10Ω = 560Ω ± 10% 47 100Ω = 4,7kΩ

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

1. Ein Messsender erzeugt 1 V Ausgangsspannung und soll um 106 db abgeschwächt werden. Wie gross ist das Ausgangssingal?

1. Ein Messsender erzeugt 1 V Ausgangsspannung und soll um 106 db abgeschwächt werden. Wie gross ist das Ausgangssingal? 1. Ein Messsender erzeugt 1 V Ausgangsspannung und soll um 106 db abgeschwächt werden. Wie gross ist das Ausgangssingal? 2. Auf ein 80 m langes Kabel werden 0,6 V gegeben. Dieses Kabel hat eine Dämpfung

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. T. Weitz SS 207 Übungsblatt 4 Übungsblatt 4 Besprechung am 29.05.207 Aufgabe Ohmsches Gesetz. a) Ein Lautsprecherkabel aus Kupfer mit einer Länge von 5,0

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlagen der Elektrotechnik Seite 1 von 18 Klausur Grundlagen der Elektrotechnik 1) Die Klausur besteht aus 7 Textaufgaben. 2) Zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr