Structurally Evolved Neural Networks for Forecasting

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Structurally Evolved Neural Networks for Forecasting"

Transkript

1 Structurally Evolved Neural Networks for Forecasting - Strukturierte neuronale Netze für Vorhersagen Institut für Informatik - Ausgewählte Kapitel aus dem Bereich Softcomputing

2 Agenda Grundlagen Neuronale Netze Backpropagation Networks Feststellungen Evolutionäre Algorithmen Der genetische Algorithmus Der strukturierte genetische Algorithmus sga vs GA Strukturierte neuronale Netze zur Vorhersage Experimentelle Validierung Diskussion der Ergebnisse Ausblick 1

3 Agenda Grundlagen Neuronale Netze Backpropagation Networks Feststellungen Evolutionäre Algorithmen Strukturierte neuronale Netze zur Vorhersage Zusammenfassung und Ausblick 2

4 Neuronale Netze - Idee Künstliche Intelligenz Beobachtung und Nachahmung menschlichen Verhaltens Verarbeitung von Symbolen Künstliche Neuronale Netze Nachbau der menschlichen Hardware Verarbeitung von Reizen 3

5 Natur Menschliches Gehirn Hirnzellen (Neuronen) Vernetzung Reizübermittlung Parallele Verarbeitung Lernen Künstliche Neuronale Netze versuchen diese Mechanismen zu simulieren. 4

6 Neuronale Netze - Beispiel Inputschicht Hidden Outputschicht Einfaches LayerMultilayer Perzeprton Empfang Nur Empfängt Vorwärtsverknüpfungen der und Signale Siganle Weitergabe vom von System der nur (Feed Systemaußenwelt innerhalb forward des net) Systems Interne Keine Gibt Signale Schicht Weiterveratrbeitung weiter wird übersprungen an die Systemaußenwelt 5

7 Neuronale Netze - Lernen Überwachtes Lernen Training, Eingabe und korrekte Ausgabe bekannt Wird mit tatsächlicher Ausgabe verglichen Daraufhin Änderung des Netzes Bestärkendes Lernen Ausgabe ist korrekt oder inkorrekt Netz erfährt nicht den exakten Unterschiedsbetrag Unüberwachtes Lernen Ziel nicht bekannt Netz erkennt Ähnlichkeitsklassen selbst 6

8 Neuronale Netze - Anwendung Beispiele zur Anwendung: Regelung und Analyse komplexer Prozesse Frühwarnsysteme Optimierung Zeitreihenanalyse Bildverarbeitung und Mustererkennung Roboter und Agenten... 7

9 Backpropagation Networks Tripartiter Graph ( feedforward network ) Eingabeschicht: n Knoten ( Neuronen ) Verborgene Schicht: k Knoten, k 1 Designparameter Ausgabeschicht: m Knoten Vollständige Verbindung einer Schicht mit der nächsten Keine Sprung-, Quer-, Rückverbindungen Verbindung = Kante ( Synapse ) mit bewerteten Gewichten 8

10 Verhalten eines BP-Netzes Modellierung von Eingabe-Ausgabe-Mustern Eingaben x R n quantitativ, Ausgaben y R m quantitativ Ziel: Hohe Prognosegenauigkeit von x y(x w) Überwachtes Lernen der Gewichte w Eingabewerte werden an die Eingabeneuronen gegeben Schichtweise Berechnung der Werte an den Kanten bzw. in den Knoten Feststellung der Zahlenwerte an den Ausgabeneuronen 9

11 Backpropagation Zusammenfassung des Algorithmus Vorwärtsdurchlauf Berechne zu angelegtem Muster Ausgabe y Ermittle Fehler y -ŷ Berechne δ-werte für letzte Schicht und passe Gewichte an Rückwärtsdurchlauf Berechne δ-werte für versteckte Schichten von hinten nach vorne und passe Gewichte an Wiederhole Durchlauf mit neuem Muster 10

12 Backpropagation Parameterwahl Anzahl verborgene Schichten Anzahl Knoten in verborgenen Schichten Lernrate Faustregeln verfügbar, Optimierung durch Ausprobieren Testfrage: Generalisierung erreicht? 11

13 Anwendungsmöglichkeiten Verbreitete Anwendungen Prognosen auf Basis von Querschnittsdaten (z. B. Diagnose) Prognosen auf Basis von Zeitreihen (z. B. Stromverbrauchsprognosen) Steuerung (z. B. Robotik), hier auch Neuro-fuzzy techniques Weiter häufig genannt: Klassifikationsaufgaben Mustererkennung Textkategorisierung (Krankheits-)Diagnose Bonitätsprüfung... 12

14 Feststellungen Schwerigkeit eine optimale ANN-Konfiguration für ein gegebenes Problem zu finden Verhalten eines ANN kann sehr komplex sein ANN können nicht auf einfache Weise in ein Projekt eingebunden werden Parameterauswahl muss vom Nutzer getroffen werden Auch bei erfahrenem Nutzer oft durch trial and error BP bleibt oft bei lokalen Optima stecken 13

15 Agenda Grundlagen Evolutionäre Algorithmen Der genetische Algorithmus Der strukturierte genetische Algorithmus sga vs GA Strukturierte neuronale Netze zur Vorhersage Zusammenfassung und Ausblick 14

16 Evolutionäre Algorithmen Idee: Evolution kann als Lernprozess (Anpassung an Umwelt) gesehen werden. Deshalb Imitation der grundlegenden Elemente von Evolution und Vererbung Klassische Anwendung von Evolutionären Algorithmen: Optimierung Einsatz für KI-Anwendungen möglich und sinnvoll 15

17 Evolution Elemente der Evolution Population = mehrere Individuen Bei der Vererbung werden Eigenschaften von (meist) zwei Individuen kombiniert und weitergegeben Das entstehende Individuum hat sich in der Natur gegen andere durchzusetzen Schlechte Individuen haben weniger Möglichkeiten, ihre Eigenschaften weiterzugeben, als gute Survival of the fittest 16

18 Der Genetische Algorithmus Mechanismen Mehrere potenzielle Lösungen gleichzeitig Codierung Fitness Selektion Rekombination/Crossover und Mutation 17

19 Der Genetische Algorithmus Der Grundalgorithmus Initialisierung (Erschaffen der ersten Generation) Evaluierung (Bewerten der ersten Generation) Wiederhole Erschaffen neuer Individuen Evaluierung (Bewerten der aktuellen Generation) Bis eine Abbruchbedingung erfüllt ist Das beste Individuum stellt dann die Lösung dar. 18

20 Codierung Während die Natur bei ihren Genen die Codes mit vier verschiedenen Elementen aufbaut, ist es bei GA üblich, binär zu arbeiten. Eine potenzielle Lösung (= ein Individuum) muss also in irgendeiner Weise binär codiert werden. Beispiel: Normale binäre Codierung von natürlichen Zahlen 0000 = = = = = = = = = = = = = = = = 15 Man beachte, dass bei festgelegter Länge der Individuen nur eine endliche Zahl dargestellt werden kann. 19

21 Fitness Jedem Individuum wird eine Fitness zugeordnet, die etwas mit seiner Nähe zum Optimum zu tun hat Der Bitstring eines Individuums ist also zu decodieren und mit einem Fitnesswert zu bewerten. Beispiel: f(13) 20

22 Selektion Die fittesten Individuen sollen eine größere Chance haben, Ihre Eigenschaften weiterzugeben. Entsprechend muss eine passende Wahrscheinlichkeit für das Überleben (bzw. die Weitergabe von Eigenschaften) vergeben werden. Dann üblich: Fitnessproportionale Auswahl roulette wheel 21

23 Crossover Verfahren: 1-Point-Crossover: 2-Point-Crossover: 22

24 Mutation In der Natur sind oft leichte zufällige Abweichungen im Erbgut festzustellen. Der Sinn der Mutation liegt darin, neue Aspekte, die in den Eltern-Genen nicht vorhanden waren, zu ermöglichen. Bei der Mutation wird praktisch irgendein Bit mit geringer Wahrscheinlichkeit gekippt. 23

25 Parameter Festzulegende Parameter: Populationsgröße Selektions-WS Crossover-Methode Mutations-WS Abbruchkriterium/Laufzeit Die Parameterwahl hat durchaus Einfluss auf die Qualität des Ablaufs. 24

26 Der strukturierte genetische Algorithmus Der sga als Variante des GA Bereits bei irreführenden und nicht-stationären Fitness-Räumen als effektiver i. V. zum GA herausgestellt Nutzt hierarchische Beziehungen zwischen den Genen Gene werden weiterhin in linearer Form im Chromosom gespeichert Somit können die allgemeinen Crossover- und Mutations-Operatoren eingesetzt werden 25

27 Hierarchische Organisation des sga Control-Gene Parametrische Level Gene Ebene Gene, Eine hierarchische die keinerlei der Lage Einfluss Stufe, sind auf den auf der den nur Aktivierungs-Status Control paramtrische Gene Gene vorhanden anderer Gene sind haben zu beeinflussen 26

28 sga vs GA sga interpretiert das Chromosom als hierarchische genomische Struktur Gene können aktiv oder passiv sein Nur aktive beeinflussen die Fitness Passive sind neutral und werden als genetisches Material mitgeführt High Level Genes können andere Gene aktivieren oder deaktivieren Die Wahrscheinlichkeit in einem lokalen Optimum stecken zu bleiben wird noch geringer 27

29 sga zum Trainieren von ANN Effektive Methode zum simultanen Herleiten der ANN- Topologie und der Verbindungsgewichte Zeitliche Verbesserung Verbreitung der evolutionären Algorithmen zur automatischen Entwicklung von ANN sga als mögliche Lösung für die Anwendungsprobleme der ANN SENNGA Structurally evolved Neural Network Generator Algorithm 28

30 Agenda Grundlagen Evolutionäre Algorithmen Strukturierte neuronale Netze zur Vorhersage Experimentelle Validierung Diskussion der Ergebnisse Zusammenfassung und Ausblick 29

31 Motivation Weiterentwickelte ANN (oder genauer evolved Multilayer-Perceprtrons) bei einem Vorhersage-Problem Ziel: Überprüfung der Effektivität des sga bei der Generierung von ANN zur Vorhersage i. V. mit einem GA Untersuchung wie das Codierungs-Schema die sga- Performance beeinflusst 30

32 Verwendete sga zur ANN-Generierung Two-Level-sGA Control-Level: Kodierung der Verbindungen Parametric Level: Kodierung der Gewichte Three-Level-sGA (I) Control-Level 1: Kodierung versteckter Neuronen Control-Level 2: Kodierung der Verbindungen Parametric Level: Kodierung der Gewichte Three-Level-sGA (II) Control-Level 1: Kodierung von hidden layers Control-Level 2: Kodierung von hidden nodes Parametric Level: Kodierung der Gewichte Four-Level-sGA Control-Level 0: Kodierung von hidden layers Three-Level-sGA (I) 31

33 Fitness-Funktion Population s smallest error in the current generation Population s smallest number of ANN Desired connections emphasis to reducing the current ANN generation size e min x ( 1 -Φ) c min x Φ f ind = + Fitness of an individual e ind Training error for a given individual in the population c ind Number of connections in the current generation 32

34 Mackey-Glass-Zeitreihe Y t = Y t ,5 * ( 0,2*Y t Y t-5 10 ) - 0,1* Y t-1 Chaotische Zeitreihen-Funktion Offensichtliche Zufälligkeit Ähnlichkeit zu beobachteten Trends auf Wirtschaftsund Finanzmärkten 33

35 Experimentelles Vorgehen 2000 Datensätze Erste 200 zum Training des ANN Letzte 200 zum Testen der Verallgemeinerung Simulationen starten mit dem GA Hinzufügen eines zusätzlichen Control-Levels Zwei Four-Level-Simulationen Mit zwei hidden layers Mit vier hidden layers 34

36 Experiment Level Error Sum (%) Final Error (%) (0) 73,99 (0) (70) 15,51 (79) (70) 15,67 (79) 4a (71) 16,30 (78) 4b (73) 14,59 (80) Tabelle 1: Training Errors and Real Time Generelle Steigerung der Genauigkeit bei jedem zusätzlichen Control-Level Ausnahme: 4-Level-sGA mit 2 hidden layers Die Anzahl der hidden layers beeinflusst also die Konvergenz des sga 35

37 Experiment Level Time Test Error 1 77,31 230, ,27 82, ,75 75,38 4a 68,68 66,53 4b 68,34 64,05 Tabelle 2: Real Time and Test Errors Level Connections Connections (%) , , a 15, b 13,32 85 Tabelle 3: Connections Jedes hinzugefügte Control-Level verringerte den Test Error (die letzten 200 Mackey-Glass-Datensätze) Jedes hinzugefügte Control-Level verringerte die Anzahl von Verbindungen Die Unterschiede zwischen GA und sga sind signifikant 36

38 Ergebnis Zusätzliche Control-Level verbessern die Vorhersage der Zukunfts-Daten Allgemeine Verbesserung beim Training Error, Testing Error, Simulation Time, ANN Größe Starker Beweis für die Vermutung, dass die optimale Anzahl an Gen-Leveln 4 ist 3 Control-Level 1 parametric Level Alle sga übertrafen den GA sga als Methode besserer Performance und Genauigkeit bei Vorhersage-Probleme 37

39 Agenda Grundlagen Evolutionäre Algorithmen Strukturierte neuronale Netze zur Vorhersage Ausblick 38

40 Ausblick Vielen Dank für die Aufmerksamkeit und ein frohes Weihnachtsfest! 39

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Grundlagen und Basisalgorithmus

Grundlagen und Basisalgorithmus Grundlagen und Basisalgorithmus Proseminar -Genetische Programmierung- Dezember 2001 David König Quelle: Kinnebrock W.: Optimierung mit genetischen und selektiven Algorithmen. München, Wien: Oldenbourg

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Fachhochschule Brandenburg Fachbereich Informatik und Medien Kolloquium zur Diplomarbeit Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens Übersicht Darstellung

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Evolutionäre Robotik

Evolutionäre Robotik Evolutionäre Robotik Evolutionäre Robotik Evolutionäre Robotik Lernen / Adaption erfolgt auf (mindestens 3 Ebenen) Evolutionäre Robotik Lernen / Adaption erfolgt auf (mindestens 3 Ebenen) 1. Adaption Evolutionäre

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Computational Intelligence

Computational Intelligence Vorlesung Computational Intelligence Stefan Berlik Raum H-C 80 Tel: 027/70-267 email: berlik@informatik.uni-siegen.de Inhalt Überblick Rückblick Optimierungsprobleme Optimierungsalgorithmen Vorlesung Computational

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Sport und Technik - Anwendungen moderner Technologien in der Sportwissenschaft. Habilitationsschrift

Sport und Technik - Anwendungen moderner Technologien in der Sportwissenschaft. Habilitationsschrift Sport und Technik - Anwendungen moderner Technologien in der Sportwissenschaft Habilitationsschrift zur Erlangung des akademischen Grades Doctor philosophiae habilitatus (Dr. phil. habil.) genehmigt durch

Mehr

Artificial Life und Multiagentensysteme

Artificial Life und Multiagentensysteme Vortrag im Rahmen des Seminars: Artificial Life und Multiagentensysteme Prof. Dr. Winfried Kurth Sommersemester 2003 Prognose von Zeitreihen mit GA/GP Mathias Radicke, Informatikstudent, 10. Semester Gliederung

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten

Mehr

Jan Parthey, Christin Seifert. 22. Mai 2003

Jan Parthey, Christin Seifert. 22. Mai 2003 Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-Simulators Jan Parthey, Christin Seifert jpar@hrz.tu-chemnitz.de, sech@hrz.tu-chemnitz.de 22.

Mehr

Optimization techniques for large-scale traceroute measurements

Optimization techniques for large-scale traceroute measurements Abschlussvortrag Master s Thesis Optimization techniques for large-scale traceroute measurements Benjamin Hof Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

Seminararbeit zum Thema Genetische Algorithmen

Seminararbeit zum Thema Genetische Algorithmen Seminararbeit zum Thema Genetische Algorithmen Seminar in Intelligent Management Models in Transportation und Logistics am Institut für Informatik-Systeme Lehrstuhl Verkehrsinformatik Univ.-Prof. Dr.-Ing.

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft. Lars Melchior

Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft. Lars Melchior Eine Analyse des Effektes von Lernen auf Populationsfitness und Diversität in einer NK-Fitnesslandschaft Lars Melchior Theoretische Grundlagen Theoretische Grundlagen Genetik Genetische Algorithmen NK

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Zellulare Neuronale Netzwerke

Zellulare Neuronale Netzwerke Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Optimality and evolutionary tuning of the expression level of a protein. Erez Dekel & Uri Alon Nature Vol 436, July 2005

Optimality and evolutionary tuning of the expression level of a protein. Erez Dekel & Uri Alon Nature Vol 436, July 2005 Optimality and evolutionary tuning of the expression level of a protein Erez Dekel & Uri Alon Nature Vol 436, July 2005 Wie Zellen Denken Übersicht Hintergrund Mathematische Formulierung (cost-benefit-theory)

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Johannes Schemmel Forschungsgruppe Electronic Vision(s) Lehrstuhl Prof. K. Meier Ruprecht-Karls-Universität Heidelberg Mitarbeiter:

Mehr

Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle

Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle Fuzzy Logik und Genetische Algorithmen für adaptive Prozesskontrolle Umgang mit unsicherem Wissen VAK 03-711.08 Oliver Ahlbrecht 8. Dezember 2005 Struktur 1. Einleitung 2. Beispiel Cart-Pole 3. Warum Hybride

Mehr

Automatische Gesprächsauswertung im Callcenter

Automatische Gesprächsauswertung im Callcenter Einleitung Forschungsbeitrag Automatische Gesprächsauswertung im Callcenter Projekt CoachOST Dipl.-Wirtsch.-Inf. Mathias Walther Prof. Dr. Taïeb Mellouli Lehrstuhl für Wirtschaftsinformatik und Operations

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Arbeitsgruppe Neuroinformatik

Arbeitsgruppe Neuroinformatik Arbeitsgruppe Neuroinformatik Prof. Dr. Martin Riedmiller Martin.Riedmiller@uos.de Martin Riedmiller, Univ. Osnabrück, Martin.Riedmiller@uos.de Arbeitsgruppe Neuroinformatik 1 Leitmotiv Zukünftige Computerprogramme

Mehr

Protokoll zum Informatik Praktikum. Themenbereich: Neuronale Netze

Protokoll zum Informatik Praktikum. Themenbereich: Neuronale Netze Protokoll zum Informatik Praktikum Themenbereich: Neuronale Netze (1) Gegenstand des Praktikums (2) Beschreibung des Netzwerks (3) Der genetische Lernalgorithmus (4) Codierung der Lerndaten und Kapazität

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,

Mehr

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b.

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b. Institut für Computational Engineering ICE N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t w w w. n t b. c h Rechnen Sie mit uns Foto: ESA Das Institut für Computational Engineering

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Algorithms for Regression and Classification

Algorithms for Regression and Classification Fakultät für Informatik Effiziente Algorithmen und Komplexitätstheorie Algorithms for Regression and Classification Robust Regression and Genetic Association Studies Robin Nunkesser Fakultät für Informatik

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

OSEK/VDX NM (Network Management)

OSEK/VDX NM (Network Management) OSEK/VDX NM (Network Management) Alexander Berger alexander.berger@uni-dortmund.de PG Seminarwochenende 21.-23. Oktober 2007 1 Überblick Motivation Aufgaben des NM Architektur Konzept und Verhalten Indirektes

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Session 8: Projektvorstellung Transferprojekt itsowl-tt-savez 18. August 2015, Gütersloh. www.its-owl.de

Session 8: Projektvorstellung Transferprojekt itsowl-tt-savez 18. August 2015, Gütersloh. www.its-owl.de Session 8: Projektvorstellung Transferprojekt itsowl-tt-savez 18. August 2015, Gütersloh www.its-owl.de Agenda Abschlusspräsentation itsowl-tt-savez Einführung Zielsetzung Ergebnisse Resümee und Ausblick

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Synthese Eingebetteter Systeme. Übung 6

Synthese Eingebetteter Systeme. Übung 6 12 Synthese Eingebetteter Systeme Sommersemester 2011 Übung 6 Michael Engel Informatik 12 TU Dortmund 2011/07/15 Übung 6 Evolutionäre Algorithmen Simulated Annealing - 2 - Erklären Sie folgende Begriffe

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Case-Based Reasoning und anderen Inferenzmechanismen

Case-Based Reasoning und anderen Inferenzmechanismen Case-Based Reasoning und anderen Inferenzmechanismen Daniel Müller 21 April 2006 DM () CBR und Inferenz 21 April 2006 1 / 31 Contents 1 Einleitung 2 Inferenzmechanismen Statistische Verfahren Data Mining

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Grundlagen und Aufbau von neuronalen Netzen

Grundlagen und Aufbau von neuronalen Netzen Grundlagen und Aufbau von neuronalen Netzen Künstliche neuronale Netze (KNN) modellieren auf stark vereinfachte Weise Organisationsprinzipien und Abläufe biologischer neuronaler Netze Jedes KNN besteht

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung

Mehr

Professurvorstellung Professur für Theoretische Physik, insbesondere Computerphysik

Professurvorstellung Professur für Theoretische Physik, insbesondere Computerphysik Professurvorstellung Professur für Theoretische Physik, insbesondere Computerphysik Karl Heinz Hoffmann TU Chemnitz Die Professur Stand: 18.07.11 2 Die Professur Professor: Prof. Dr. Karl Heinz Hoffmann

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Übersicht. 20. Verstärkungslernen

Übersicht. 20. Verstärkungslernen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Lernen in neuronalen & Bayes

Mehr

FACHHOCHSCHULE WEDEL SEMINARARBEIT

FACHHOCHSCHULE WEDEL SEMINARARBEIT FACHHOCHSCHULE WEDEL SEMINARARBEIT in der Fachrichtung Medieninformatik Thema: Spielstrategien Eingereicht von: Nils Böckmann Schinkelring 110 22844 Norderstedt Tel. (040) 526 17 44 Erarbeitet im: 6. Semester

Mehr

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters Brad Johanson, Riccardo Poli Seminarvortrag von Thomas Arnold G ˇ ˇ ˇ ˇ WS 2012/13 TU Darmstadt Seminar

Mehr

Hochschule Regensburg. Übung 12_3 Genetische Algorithmen 1. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer

Hochschule Regensburg. Übung 12_3 Genetische Algorithmen 1. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Hochschule Regensburg Übung 12_ Genetische Algorithmen 1 Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Name: Vorname: 1. Was sind GA? - Ein GA ist ein Algorithmus, der Strategien aus der Evolutionstheorie

Mehr

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40 Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)

Mehr

Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation

Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation - für Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation Zeit- und Ressourcenplanung leicht gemacht - Unterstützung durch Simulation Thomas Hanne *, Patrick Lang, Stefan Nickel,

Mehr

Der genetische Algorithmus

Der genetische Algorithmus Joachim Breitner Seminarkurs am Schickhardt-Gymnasium Herrenberg 2002/2003 Halbjahr 12.2 Modellbildung und Simulation am Beispiel der Evolution und dem Programm EvoLab Thema 2: Der genetische Algorithmus

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse -

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Development of Methods to Detect Products Made from Organic Salmon FKZ: 02OE073/1

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Realisierung von CI- Regelalgorithmen auf verschiedenen Hardwareplattformen

Realisierung von CI- Regelalgorithmen auf verschiedenen Hardwareplattformen Realisierung von CI- Regelalgorithmen auf verschiedenen Hardwareplattformen Prof.Dr.-Ing. K.-D. Morgeneier FH Jena, FB Elektrotechnik und Informationstechnik www.fh-jena.de Gliederung 2. Einführung 3.

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Simulation neuronaler Netzwerke mit TIKAPP

Simulation neuronaler Netzwerke mit TIKAPP Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?

Mehr

Bachelorarbeit. Sven Lund Optimierung von Neuronalen Netzen mit Hilfe Genetischer Algorithmen

Bachelorarbeit. Sven Lund Optimierung von Neuronalen Netzen mit Hilfe Genetischer Algorithmen Bachelorarbeit Sven Lund Optimierung von Neuronalen Netzen mit Hilfe Genetischer Algorithmen Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer Science Department

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Genetische Algorithmen von der Evolution lernen

Genetische Algorithmen von der Evolution lernen Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998 Ansatz Bisher: Problemlösung

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

8.1 Einleitung. Grundlagen der Künstlichen Intelligenz. 8.1 Einleitung. 8.2 Lokale Suchverfahren. 8.3 Zusammenfassung. Suchprobleme: Überblick

8.1 Einleitung. Grundlagen der Künstlichen Intelligenz. 8.1 Einleitung. 8.2 Lokale Suchverfahren. 8.3 Zusammenfassung. Suchprobleme: Überblick Grundlagen der Künstlichen Intelligenz 5. April 0 8. Suchalgorithmen: Lokale Suche Grundlagen der Künstlichen Intelligenz 8. Suchalgorithmen: Lokale Suche 8.1 Einleitung Malte Helmert Universität Basel

Mehr

9 Verteilte Verklemmungserkennung

9 Verteilte Verklemmungserkennung 9 Verteilte Verklemmungserkennung 9.1 Grundlagen Für die Existenz einer Verklemmung notwendige Bedingungen Exklusive Betriebsmittelbelegung Betriebsmittel können nachgefordert werden Betriebsmittel können

Mehr