Projektionen. wie schon immer... Page 1. Computergraphik

Größe: px
Ab Seite anzeigen:

Download "Projektionen. wie schon immer... Page 1. Computergraphik"

Transkript

1 Projektionen wie schon immer... Comutergrahik Page

2 Bilereugung? Welt & Bilmoell Comutergrahik Grahics Piline Moeling Transformations Illumination (Shaing) Viewing Transformation (Persctive / Orthograhic) Cliing Projection (to Screen Sace) Scan Conversion (Rasteriation) Visibilit / Disla Inut: Geometrische Moelle: Beschreibung aller Objekte, Oberflächen, Position er Lichtquellen. Beleuchtungsmoell: Rechenvorschriften ur Simulation er Interaktion von Materie un Licht Blickwinkel: Kamera oer Augenosition, "viewing frustum" Raster Bereich "Viewort", Pielgri in welches ie Bileben abgebilet wir Outut: Farben / Intensitäten: Angeasst an en Framebuffer un en Bilschirm (.B. 24-bit RGB Werte). Page 2

3 Moeling Transformations Moeling Transformations Illumination (Shaing) Viewing Transformation (Persctive / Orthograhic) Cliing 3D Moelle haben eigenes Koorinatensstem (object sace) "Moeling transforms" orientieren ie Moelle in einem gemeinsamen Koorinatensstem (worl sace) Projection (to Screen Sace) Scan Conversion (Rasteriation) Visibilit / Disla Object sace Worl sace Persktivische Projektion 3D => 2D Page 3

4 Viewing Transformation Moeling Transformations Illumination (Shaing) Viewing Transformation (Persctive / Orthograhic) Cliing Abbilung er Weltkoorinaten in Kamerakoorinaten. Blickrichtung wir i.a. in en Ursrung un entlang einer Koorinatenachse gewählt. Ee sace Projection (to Screen Sace) Scan Conversion (Rasteriation) Visibilit / Disla Worl sace Betrachten reiimensionaler Senen Ebene geometrische Projektionen: Der Wechsel von 3D- Koorinaten u 2D Bilschirmkoorinaten! rsktivisch arallel Der Unterschie wischen arallel un rsktivischer Projektionen liegt im Abstan es Projektionsentrums (Augunkt) ur Projektionsebene un um Objekt. Page 4

5 Parameter einer 3D-Ansicht. Bil-, Projektions-ebene (viewing lane VP ) Blickunkt (view reference oint VRP) Normale er Bilebene (viewing lane normal VPN) Abstan er Bilebene um Augunkt (viewing lane istance VPD) Oben Richtung (viewing u VUP) Bilschirmmitte (center of winow CW) Projektionsrichtung (irection of rojection DOP) Augunkt (rojection referenec oint PRP) Vorere un hinter Cliingebene (front an back lane FP BP) Betrachten reiimensionaler Senen (3) Die Parallel- als auch ie rsktivische Projektion weren in viele Projektionstn aufgesalten. Parallelrojektionen Rechtwinklig: Hautriss Aionometrische: iso-,itri-metrische Persktivische Projektionen Punkt, 2Punkt, 3Punkt Schiefwinklig: Kavalier, Kabinett Page 5

6 Page 6 Homogene Koorinaten 2D beschreiben. en selben Punkt un w obei, P h k h h 2D Kartesische Koorinaten ---> Homogene Koorinaten Persktivische Projektion Projektion von 3D-Koorinaten u 2D Bilschirmkoorinaten! (,, ) Strahlensat: P= (,,) Annahmen: Augunkt auf er -Achse (,, ) Projektions Ebene Projektionsebene -Achse Z Z = -

7 Persktivische Projektion Homogenen Koorinaten h h h M rsktiv h h Persktivische Projektion Homogenen Koorinaten h h h M rsktiv h h h h mit h h h Page 7

8 Persktivische Projektion (Sonerfall ) Bisherige Annahmen: Augunkt auf er -Achse (,, ), Projektionsebene -Achse M r A) mit = un = - ' un h ' M' r ' Persktivische Projektion Projiiere alle Punkte entlang er -Achse auf ie = Ebene, Augunkt im Ursrung homogenie / / = / = / Page 8

9 Page 9 Persktivische Projektion (Sonerfall 2 ) M r Bisherige Annahmen: Augunkt auf er -Achse (,, ), B) mit = - un = r M' ' ' ' un ' h Projektionsebene -Achse Grenübergang, /...ist eine orthograhische Projektion iese rsktivische Projektionsmatri...

10 Persktivische Projektion (allgemein) Annahmen: Projektionsebene -Achse Augunkt auf er -Achse (,, ) P liegt auf er Strecke S wischen PZ un P PZ t( P PZ ), t PZ Q PZ (,, ) Projektions- Ebene P =(,, ) (,, ) P= (,,) mit PZ (,, ) Q(,, ) folgt für einen Punkt P ' ( ', ', ') auf S. ' Q Q ' Q t Q ' Q Q löse ie Gleichungen für ' nach t, ' un ' Persktivische Projektion (allgemein) ' Q Q () ' Q t Q (2) ' Q (3) Q für ' Q (3) t Q PZ Q (,, ) Projektions- Ebene P =(,, ) (,, ) P= (,,) (3) in () Q, (3) in (2) Q Page

11 Page Persktivische Projektion (allgemein) Q, Q Q Q Q Q? r M h Q 2 r M Q Q Q Q 2 Q Q Q Q Persktivische Projektion (allgemein) 2 allgemein Q Q Q Q M Z Q [ ] - M ort - M r - M ' r

12 Page 2 Parallel Projektion 2 allgemein Q Q Q Q M Z Q [ ] - sin c os Cav alier - 2 sin 2 cos Cabinet Was ist falls Auge ist? (ee, ee, ee ) image lane ais

13 Was ist falls Auge ist? (ee, ee, ee ) ais image lane Was ist falls Auge ist? (ee, ee, ee ) ais image lane Page 3

14 Was ist falls Auge ist? (ee, ee, ee ) ais??? image lane Was ist falls Auge ist? Ausweg: beschränken er Geometrie auf as " view frustum" (ee, ee, ee ) ais image lane Page 4

15 Projektionen er "iline"? Moeling Transformations Illumination (Shaing) Viewing Transformation (Persctive / Orthograhic) Cliing Projection (to Screen Sace) Scan Conversion (Rasteriation) Camera /ee Sace Normalie Device Cooriantes Screen Sace Visibilit / Disla Normaliing the Viewing Volume Orthograhic viewing volume: = l := left lane = r := right lane = b := bottom lane = t := to lane = n := near lane = f := far lane 2 l r r l 2 normalie 2 b t normalie t b 2 normalie 2 n f n f 2 Page 5

16 Orthograhic Projection iel normalie iel normalie Msreeen Mo normalie normalie 2 l r r l 2 iel 2 b t iel M screen r b 2 normalie 2 n f r f 2 2 l r n n r l 2 iel b t n n iel r b normalie 2 n f r f 2 Viewing Transformation Welt Koorinaten Kamera koorinaten Positionieren er Kamera - w Translation + Änerung er orthonormal Basis Gegeben: Fine: Koorinaten & uvn, un er Punkt = (,,) = (u,v,w) v u v u Page 6

17 Viewing Transformation Positionieren er Kamera Gegeben: Fine: Koorinaten & uvw, e un er Punkt = (,,) = (u,v,w) M v u u u e v v v e w w w e Full orthorahic rojection iline comute: M v comute: M o M = M o M v For each line segment ( a i, b i ) o = M a i q = M b i raw line (,, q, q ) Page 7

18 Persctive Projection h ' h ' M P h ' h n f M P f n n Full rsctive rojection iline comute: M v comute: M o comute: M P M = M o M P M v For each line segment ( a i, b i ) o = M a i q = M b i raw-line ( /h, /h, q /h q, q /h q ) M o M P is often calle the rojection matri Page 8

19 The ongl rojection Mati M o M P is often calle the rojection matri M ongl 2n r l r l r l 2n t b t b t b f n 2 fn f n f n Grahics Piline Moeling Transformations Illumination (Shaing) Viewing Transformation (Persctive / Orthograhic) Cliing Projection (to Screen Sace) Effiientes Cliing wir NICHT in einem einelne Proessschritt urchgeführt! Scan Conversion (Rasteriation) Visibilit / Disla Page 9

20 Full Cliing "cli" geometr to view frustum (ee, ee, ee ) ais image lane Front- & Backlane cliing "cli" geometr to near lane (ee, ee, ee ) ais image lane Page 2

8. Projektionsarten und Perspektive

8. Projektionsarten und Perspektive 8. Projektionsarten un Perspektive Projektionen: transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matri singulär,.h. Determinante ) Projektion ist Grunaufgabe

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

3.5 Transformationen im Raum

3.5 Transformationen im Raum 3.5 Transformationen im Raum Translation Die Verschiebung eines Punktes (,,) T um den Translationsvektor (t,t,t ) T ergibt den Punkt (,, ) T mit 1 t 1 t 1 t 1 + t + t = = + t 1 1 1 T(t,t,t ) Computergrafik

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Computergrafik 2010 Oliver Vornberger

Computergrafik 2010 Oliver Vornberger Computergrafik 21 Oliver Vornberger Kapitel 15: Viewing Pipeline Vorlesung vom 31.5.1 1 Sequen von Transformationen grün rot Kamera blau Modeling View Orientation View Mapping Device Mapping 2 Die synthetische

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Projektionen von geometrischen Objekten

Projektionen von geometrischen Objekten Inhalt: Projektionen von geometrischen Objekten Überblick Hauptrisse Aonometrische Projektionen isometrisch dimetrisch trimetrisch Schiefwinklige Projektionen Kavalierprojektion Kabinettprojektion Perspektivische

Mehr

(12) OpenGL-Pipeline. Vorlesung Computergraphik I S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(12) OpenGL-Pipeline. Vorlesung Computergraphik I S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (12) OenGL-Pieline Vorlesung Comutergrahik I S. Müller KOBLENZ LANDAU Wiederholung I Was assiert, wenn Kein glulookat verwendet wird? Kamera ist im Ursrung, Blick entlang der neg. -Achse, Rechtssstem,

Mehr

3D-Sicht, Projektionen

3D-Sicht, Projektionen Transformationen, deren Matrix als letzte Zeile nicht die Form: [... ] hat, gehören zur allgemeineren Klasse der perspektivischen Transformationen. Perspektivische Projektion von Punkten (,,z i ) auf (

Mehr

(Ausschnitt aus Karl Friedrich Schinkel, Die Erfindung des Zeichnens, 1830)

(Ausschnitt aus Karl Friedrich Schinkel, Die Erfindung des Zeichnens, 1830) Projektionen transformieren 3D-Objekte in 2D-Biler (mathematisch: lineare Abb., aber nicht bijektiv ugehörige Matrix singulär,.h. Determinante ) Projektion ist Grunaufgabe in er Grafik Zeichnen als Projektion:

Mehr

Viewing Pipeline. Kapitel Die synthetische Kamera

Viewing Pipeline. Kapitel Die synthetische Kamera Kapitel 15 Viewing Pipeline Die Abbildung dreidimensionaler Objekte auf dem Bildschirm wird in eine Reihe von Elementartransformationen erlegt: Konstruktion von komplexen Senen aus elementaren Objekten

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

ds = δ n(r)ds = 0 (2.1.1) Brechungsgesetz an der Grenzfläche zweier homogener Medien:

ds = δ n(r)ds = 0 (2.1.1) Brechungsgesetz an der Grenzfläche zweier homogener Medien: 2. Fermatsches Prinzip Fermatsches Prinzip: Der Weg, en as Licht nimmt, um von einem Punkt zu einem aneren zu gelangen, ist stets so, ass ie benötigte Zeit extremal ist. Licht breitet sich in einem homogenen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Ihre Punkt + Sonderp. = Summe Ihre Note:

Ihre Punkt + Sonderp. = Summe Ihre Note: Hochschule Darmstadt Nachname: Fachbereich Informatik Vorname: Björn Frömmer, Prof. Dr. E. Hergenröther Matr. Nr.: Ihre Punkt + Sonderp. = Summe Ihre Note: Aufgabe : RGB-Farbmodell Punkte: / 6 % Unten

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Advanced Computer Graphics Erweiterung zur 6. Übung

Advanced Computer Graphics Erweiterung zur 6. Übung Advanced Computer Graphics Erweiterung zur 6. Übung M.Sc. Tristan Nauber Advanced Computer Graphics: Übung 6 Model-View-Projection Transformationen Model-View-Projection Gegeben Gesucht y Modell Kamera

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert.

Mehr

Shader. Computer Graphics: Shader

Shader. Computer Graphics: Shader Computer Graphics Computer Graphics Shader Computer Graphics: Shader Inhalt Pipeline Memory Resources Input-Assembler Vertex-Shader Geometry-Shader & Stream-Output Rasterizer Pixel-Shader Output-Merger

Mehr

Lösungsvorschlag zum zweiten Übungsblatt

Lösungsvorschlag zum zweiten Übungsblatt Lösungsvorschlag zum zweiten Übungsblatt Aufgabe Wir zeigen, daß die Drehung um den Ursprung um 9 und die Spiegelung an der x-achse nicht kommutieren. Die Matrix für die Drehmatrix lautet in diesem Fall

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

Computer-Graphik I. Projektionen, Perspektive & Viewing Transformation. G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.

Computer-Graphik I. Projektionen, Perspektive & Viewing Transformation. G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen. Computer-Graphik I, Perspektive & Viewing Transformation G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Prinzipielles Vorgehen Ziel: die virtuelle 3D Welt auf einem 2D Display darstellen

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

156 KAPITEL 13. 3D-TRANSFORMATIONEN 1. Translation um (,Z ;,Z ;,Z ), 2. Skalierung um (s ;s ;s ), 3. Translation um (Z ;Z ;Z ). Die Transformationsmat

156 KAPITEL 13. 3D-TRANSFORMATIONEN 1. Translation um (,Z ;,Z ;,Z ), 2. Skalierung um (s ;s ;s ), 3. Translation um (Z ;Z ;Z ). Die Transformationsmat Kapitel 13 3D-Transformationen 13.1 Translation Mit homogenen Koordinaten lat sich der um den Translationsvektor t =(t ;t ;t )verschobene Punkt P =(; ; ) in der folgenden Form darstellen: ( 0 ; 0 ; 0 ):=(

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Übungen zur Physik II PHY 121, FS 2018

Übungen zur Physik II PHY 121, FS 2018 Übungen zur Physik II PHY 2, FS 208 Serie 0 Abgabe: Dienstag, 5. Mai 2 00 Quellenfrei = source-free Wirbel = curl, ey, vortex Verschiebungsstrom = isplacement current Eisenkern = iron/magnet core quellenfreies

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

Schattenwurf mit Perspective Shadow Maps

Schattenwurf mit Perspective Shadow Maps 16. April 2010 Xpiriax Software Wer wir sind und was wir machen Hobby-Entwicklerteam, zur Zeit 6 Personen gegründet Anfang 2008 Schwerpunkte: Spiele- & 3D-Engine-Programmierung Ziele: Erfahrung, Arbeitsproben,

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Geometric Algebra Computing Rotationen in GA Dr. Dietmar Hildenbrand

Geometric Algebra Computing Rotationen in GA Dr. Dietmar Hildenbrand Geometric Algebra Computing Rotationen in GA 11.12.2014 Dr. Dietmar Hildenbrand Technische Universität Darmstadt Aufgaben 1. wie lautet der Rotor für eine Rotation um den Vektor (v1,v2,v3)? 2. numerische

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil 3 SIEGFRIED PETRY Fassung vom 5. Juni 06 I n h a l t Transformation der Komponenten eines Vektors bei Basiswechsel. Einführung einer neuen Basis. Transformation der

Mehr

Mathematische Modelle und numerische Methoden in der Biologie

Mathematische Modelle und numerische Methoden in der Biologie Institut für Angewante un Numerische Mathematik Prof. Dr. Tobias Jahnke, Dipl.-Biol. Michael Kreim Mathematische Moelle un numerische Methoen in er Biologie Sommersemester 2012 5. Übungsblatt Gruppenübung

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Verdeckung Graphische DV und BV, Regina Pohle, 20. Verdeckung Einordnung in die Inhalte der Vorlesung Einführung mathematische und

Mehr

Skalierbarkeit virtueller Welten

Skalierbarkeit virtueller Welten $86=8*'(5 )2/,(1 9505 9RUOHVXQJ Dr. Ralf Dörner *RHWKH8QLYHUVLWlWÃ)UDQNIXUW *UDSKLVFKHÃ'DWHQYHUDUEHLWXQJ hehueolfn Der Begriff VR Perspektivisches Sehen in 3D Skalierbarkeit virtueller Welten Echtzeitanforderungen

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Projektionen und Transformationen Qt Kontextmenüs Koordinatensysteme

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Abbildung von Weltkoordinaten nach Bildkoordinaten

Abbildung von Weltkoordinaten nach Bildkoordinaten Abbildung von Weltkoordinaten nach Bildkoordinaten Werner Mayer 28. Februar 24 Zusammenfassung Dieses Dokument beschreibt die Abbildungsvorschrift von 3D-Punkten nach Pixelkoordinaten eines Bildes. Dabei

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

(10) View Transformation

(10) View Transformation () Vie Transformation Vorlesng Comtergrahik I S. üller KOBLENZ LNDU KOBLENZ LNDU S. üller - - Wiederholng I ffine Transformationen atrienmltilikation ist assoiati, aber nicht kommtati. Transformationsmatrien

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

AP 2008 Analysis A1 Nichttechnik

AP 2008 Analysis A1 Nichttechnik . Gegeben ist ie reelle Funktion f k Der Graph wir mit G fk bezeichnet. (, ) x fss( k, x) 6 k +, esto steiler ie Tangente. BE. Weisen Sie nach, ass ie Tangente an G fk im Schnittpunkt mit er y-achse eine

Mehr

Projektion. Kapitel Bildebene P 2. Sehstrahlen P 1. Projektionszentrum (Augenpunkt) Objekt. Bildebene

Projektion. Kapitel Bildebene P 2. Sehstrahlen P 1. Projektionszentrum (Augenpunkt) Objekt. Bildebene Kapite 14 Projektion 14.1 Bidebene Für die Aneige am weidimensionaen Ausgabegerät muß eine Abbidung (Projektion) der räumichen, dreidimensionaen Sene auf eine weidimensionae Projektionsebene erfogen. Gegeben

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Sechs Grundansichten (Six Principal Views):

Sechs Grundansichten (Six Principal Views): Sechs Grundansichten (Six Principal Views): Projektionsmethode E bzw. 1 (First Angle Projection) Projektionsmethode A bzw. 3 (3 rd Angle Projection) 1 Vorderansicht (Front view) 2 Ansicht von oben (Top

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Diagnostiktest Mathematik

Diagnostiktest Mathematik Dignostiktest Mthemtik Sie bebsichtigen b em nächsten Schuljhr ie Srlänische Meister- un Technikerschule, Führungskemie es Hnwerks zu besuchen. Herzlichen Glückwunsch zu Ihrem Vorhben. Dmit Sie zielgerichtet

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten

Mehr

Computergrafik 1 3D Rendering

Computergrafik 1 3D Rendering Computergrafik 3D Rendering Hearn/Baker 5.9-6,7.-9,7. Based on material b Werner Purgathofer and Dieter Schmalstieg Creating an Illusion The environment The imaging process = rendering The camera 2 Rendering

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

- Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

- Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 2.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

Grundlagen der 3D-Grafik

Grundlagen der 3D-Grafik Seminar Programmierung von Grafikkarten Grundlagen der 3D-Grafik 8.5.26 Dominik Bossdorf Christian Schulze Marco Sebastiao 1 Inhalt Grafikhardware Rendering Pipeline am Beispiel OpenGL 3D Theorie mit homogenen

Mehr

View Morphing. Department of Computer Sciences University of Wisconsin Madison publiziert in SIGGRAPH 96, pp

View Morphing. Department of Computer Sciences University of Wisconsin Madison publiziert in SIGGRAPH 96, pp View Morphing Steven M. Seitz Charles R. Der Department of Computer Sciences Universit of Wisconsin Madison publiziert in SIGGRAPH 96, pp. 21 30 Abhandlung von Christian Limpach Eidgenössische Technische

Mehr

Elementare Geometrie Vorlesung 18

Elementare Geometrie Vorlesung 18 Elementare Geometrie Vorlesung 18 Thomas Zink 26.6.2017 1.Bild eines Vektors bei einer affinen Abbildung Es sei f : E E eine affine Abbildung von Ebenen. Es sei v ein Vektor der Ebene E, d.h. eine Translation.

Mehr

AUSBILDUNG für INDUSTRIELLE BILDVERARBEITUNG - Skizze für tertiären Bereich

AUSBILDUNG für INDUSTRIELLE BILDVERARBEITUNG - Skizze für tertiären Bereich AUSBILDUNG für INDUSTRIELLE BILDVERARBEITUNG - Skizze für tertiären Bereich FH-Prof. DI. Kurt Niel University of Applied Sciences Upper Austria Faculty of Engineering and Environmental Sciences kurt.niel@fh-wels.at

Mehr

9 Konvexe Funktionen, Stütz- und Distanzfunktion

9 Konvexe Funktionen, Stütz- und Distanzfunktion U BREHM: Konvexgeometrie 9-9 Konvexe Funktionen, Stütz- un Distanzfunktion Definition: Sei K IR, f : K IR eine Abbilung f heißt konvex, wenn K konvex ist un für alle x, y K un alle, gilt f( x( ) y) f(

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

14 Erhaltungssätze und das Variationsprinzip

14 Erhaltungssätze und das Variationsprinzip 14 Erhaltungssätze un as Variationsprinzip 14.1 Globale Erhaltungssätze Bisher haben wir nur Variationen es Wirkungsintegrals betrachtet, ie ie Werte er Freiheitsgrae (r, v, φ, A) an en Enpunkten es Zeitintegrals

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2004

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 2. Koordinaten eines Manipulator.................. 32 Warum

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

Koordinatensysteme und Clipping

Koordinatensysteme und Clipping Koordinatensysteme und Clipping Michael Olp Inhaltsverzeichnis 1 Einführung in die perspektivische Projektion 1 1.1 Projektion von Liniensegmenten....... 1 2 Koordinatensysteme 2 2.1 Modeling....................

Mehr

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy)

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy) Man nde die gesuchten Funktionswerte. Übung (i) f(, ) = + 3 f(, ) f(, ) f(, 3) f( 3, ) f(, ) = sin() f(, π/6) f( 3, π/) f(π, /) f( π/, 7) Übung Man nde und skizziere den enitionsbereich und nde den Wertebereich

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

OpenGL Transformationen: Modeling

OpenGL Transformationen: Modeling OpenGL Transformationen: Modeling transponiert! Punkt-Trfn = Matrizen-Multiplikationen von links (s.o.): v neu = T n (... ) T 2 T 1 v alt = T gesamt v alt OpenGL: Laden mat[16]: glloadmatrix{fd}(mat) Matrizen-Multiplikation:

Mehr

Mathematics for 3D Game Programming & Computer Graphics. 10. Shadows. Sonja Barth & Martin Siebenborn. Proseminar Numerik

Mathematics for 3D Game Programming & Computer Graphics. 10. Shadows. Sonja Barth & Martin Siebenborn. Proseminar Numerik Mathematics for 3D Game Programming & Computer Graphics 1. Shadows Sonja Barth & Martin Siebenborn Proseminar Numerik Prof. Schul Übersicht 1. Verschiedene Techniken 2. Algorithmus Übersicht 3. Berechnung

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Geometric Algebra Computing

Geometric Algebra Computing Geometric Algebra Computing 3..22 Dr. Dietmar Hildenbrand Technische Universität Darmstadt Organisatorisches Mündliche Prüfung am Ende des Semesters Im Seminar-Raum Cocoon Wann wären gute Termine? Bonus

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr.

Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr. The Rendering Pipeline Universität Trier FB IV Mathematik PS Mathematics for 3D Game Programming & Computer Graphics - WS 07/08 Seminarleiter: Prof. Dr. Volker Schulz Referent: Carsten Kurz Datum 25.10.07

Mehr