Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern

Größe: px
Ab Seite anzeigen:

Download "Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern"

Transkript

1 Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Thomas Hübner, Stefan Turek LS III: Angewandte Mathematik und Numerik TU Dortmund Vortrag, München

2 Inhalt 1. Lattice-Boltzmann Gleichung als PDE 2. Implizite Zeitdiskretisierung 3. Ortsdiskretisierung auf unstrukurierten Gittern 4. Konvergenz 5. Effiziente Löser 6. Neue Gleichgewichtsformulierung der LB Gleichung

3 Kapitel 1 Lattice-Boltzmann Gleichung als PDE

4 1. Lattice-Boltzmann Gleichung Lattice-Boltzmann Equation (LBE) für laminare, in- bzw. schwach kompressible Strömungen f i t + e i f i = 1 eq τ (fi f i ) bzw. stationäre Formulierung e i f i = 1 eq τ (fi f i )

5 1. Lattice-Boltzmann Gleichung e i f i = 1 eq (fi f i ) τ Approximiere Dichte und Geschwindigkeit durch Momente ρ = i f i, u = i e i f i Quadratischer Gleichgewichtsterm des inkompressiblen Modells f eq i = w i (ρ + 3 2c (e 2 i u) + 9 2c (e 4 i u) 2 3 2c u 2 ) 2 Viskosität bestimmt Relaxationszeit durch τ = 3ν c 2 Schallgeschwindigkeit c linear in e i, quadratisch in rechter Seite

6 Kapitel 2 Implizite Zeitdiskretisierung

7 2. Zeitdiskretisierung Zeitdiskretisierung f n+1 i fi n t + e i f n+1 i + 1 τ i (f n+1 i f eq,n+1 i ) = 0 Mit hi n := e i fi n + 1 τ (f i n f eq,n ) erhalte Time-Stepping-Schema f n+1 i + θ t h n+1 i = (θ 1) t hi n + fi n θ {0, 1 2, 1}: Expliziter Euler, Crank-Nicholson, Impliziter Euler

8 Kapitel 3 Ortsdiskretisierung auf unstrukurierten Gittern

9 3. Ortsdiskretisierung Ortsdiskretisierung gibt (lineare and nichtlineare) Operatoren T i F i e i f i, M i F i 1 τ f i, 8 j=0 N ij F j 1 τ f eq i Dann kann die LBE geschrieben werden als F n+1 i + t(t i F n+1 i + M i F n+1 i 8 j=0 N ijf n+1 j ) = F n i, i = 0,...,8 Resultiert in diskretem, gekoppelten, nichtlinearen Gleichungssystem T M N N 08 T := , M := , N := M T 8 N N 88 8 A = t(t + M N), B = (1 θ)af n + F n (Id + θa)f n+1 = B

10 3. Transport

11 3. 1D Ansatz für das Transportproblem Diskretsierung 2er Ordnung ergibt (mit h 1 + h 2 = r h 1 ) β u(v 0 ) = u (v 0 ) = (1 r2 )u(v 0 ) r 2 u(v 1 ) + u(v 2 ) h 1 (r 2 r) Hohe Genauigkeit Untere Dreiecksmatrizen löse Transportschritte direkt Nur möglich durch spezielles Sortierverfahren Matrixfreie Implementierung + O(h 1, h 2 ) 2

12 3. Knotennummerierung ausgehend vom Rand alle Knoten abarbeiten naiver Algorithmus sogar auf kartesischem Gitter inkonsistent Struktur der Differenzengleichung entspricht gerichtetem Graphen Hilfe aus der Graphentheorie (Topologische Nummerierung)

13 3. Transportoperatoren in der Praxis nz = 6925

14 3. Transportoperatoren in der Praxis nz = 6925

15 3. Transportoperatoren in der Praxis nz = 6925

16 3. Transportoperatoren in der Praxis nz = 6925

17 3. Transportoperatoren in der Praxis nz = 6925

18 3. Transportoperatoren in der Praxis nz = 6925

19 3. Transportoperatoren in der Praxis nz = 6925

20 3. Transportoperatoren in der Praxis nz = 6925

21 3. Transportoperatoren in der Praxis nz = 6925

22 Kapitel 4 Konvergenz

23 4. Testprobleme

24 4. Testprobleme

25 4. Rotating Couette Flow Analytische Lösung, unabhängig von Viskosität Fehlerraten gleichbleibend bei konstantem Verhältnis ν c

26 4. Rotating Couette Flow Analytische Lösung, unabhängig von Viskosität Fehlerraten gleichbleibend bei konstantem Verhältnis ν c

27 4. Rotating Couette Flow Analytische Lösung, unabhängig von Viskosität Fehlerraten gleichbleibend bei konstantem Verhältnis ν c

28 4. Rotating Couette Flow Analytische Lösung, unabhängig von Viskosität Fehlerraten gleichbleibend bei konstantem Verhältnis ν c

29 4. Driven Cavity Driven Cavity, CFD-Referenzlösung mit n= Gitterpunkten

30 4. Driven Cavity Driven Cavity, CFD-Referenzlösung mit n= Gitterpunkten

31 4. Driven Cavity Driven Cavity, CFD-Referenzlösung mit n= Gitterpunkten

32 4. Benchmark, Re=2 Zylinder im Kanal, CFD-Referenzlösung mit n=66976 Gitterpunkten

33 Kapitel 5 Effiziente Löser

34 5. Lösung der nichtlinearen Probleme Nichtlinearen Defekt lösen (auf 10 6 ) für stationären Benchmark Re = 2 c=1 c=10 c= Fixpunkt Newton Re = 20 c=1 c=10 c= Fixpunkt 180 > 300 > > >300 Newton = Newton Schema klappt gut für verschiedene h und Re

35 5. Preconditioner 1 Nummerierung entsprechend dem Transport Direkte Anwendung wegen der unteren Dreiecksstruktur nz = 6925

36 5. Preconditioner 1 Nummerierung entsprechend dem Transport Direkte Anwendung wegen der unteren Dreiecksstruktur

37 5. Eigenwertverteilung QR-Zerlegung für Driven Cavity (Re=100), c=1 Systemmatrix A der stationären Gleichung

38 5. Eigenwertverteilung QR-Zerlegung für Driven Cavity (Re=100), c=1 Modifizierte Eigenwerte durch Transport-Vorkonditionierer T 1 A

39 5. Kondition Eigenwerte der vollimpliziten Systemmatrix A bzw. der modifizierten Matrix T 1 A Kondition für c sehr schlecht max λ A max λ min λ min λ c1 n= E E E+02 n= E E E+03 n= E E E+03 c100 n= E E E+06 n= E E E+06 n= E E E+06 T 1 max λ A max λ min λ min λ c1 n= E E E+02 n= E E E+02 n= E E E+02 c100 n= E E E+04 n= E E E+04 n= E E E+04

40 5. Preconditioner 2 Alternative Nummerierung entsprechend den Kollisionen Block-Jacobi-Vorkonditionierer nz = 6925

41 5. Preconditioner 2 Alternative Nummerierung entsprechend den Kollisionen Block-Jacobi-Vorkonditionierer

42 5. Lösung der linearen Systeme Lineares System lösen (um 6 Stellen relativ) für Driven Cavity mit t = 1, Re = 100 Kleines c: Transport-Preconditioner levelunabhängig Dominante Kollisionen: Block-Jacobi Variante c-unabhängig plain bl-jac tr-pre c=1 n= n= n= n= c=10 n= n= n= n= c=100 n= n= n= n= c=1000 n= n= n= n= = Nicht optimal!

43 Kapitel 6 Gleichgewichtsformulierung der LB Gleichung

44 6. Umformulierung des Systems Versuche das System umzuformulieren, um den Transportlöser besser, direkter auszunutzen Analog zum Verfahren der generalized mean intensity (GMI) aus dem Gebiet des Strahlungstransports Neue generalized equilibrium formulation (GEF) der LB Gleichung Die invertierten Transportschritte sind dann Teil der (impliziten) Systemmatrix

45 6. Gleichgewichtsformulierung Ausgehend von der diskretisierten LBE, mit T i f i e i f i + 1 τ f i wird die Gleichung T i f i = 1 τ f eq i zu f i = T 1 1 i τ f eq i (1) und mit den entsprechenden Gewichten multipliziert und aufsummiert: f eq i = k w ik f k = k w ik T 1 1 k τ f eq k Erhalte Distributionen f i im postprocess direkt mit Gleichung (1)

46 6. Gleichgewichtsformulierung: System Id f eq i k w ik T 1 1 k τ f eq k = 0 ergibt ein LGS Ax = b mit impliziter Systemmatrix w 11 τ T 1 w 12 1 τ T 1 w 2 10 τ T 1 0 w 21 τ T 1 1 w 22 τ T w 01 τ T 1 1. w 00 τ T 1 0 f eq 1 f eq 2. f eq 0 Vorkonditionierung ist möglich, da Diagonalen der inversen Transportoperatoren bekannt sind invertiere 9x9 Systeme = 0

47 6. Performanz der Formulierung Vergleich mit Transport/Block-Jacobi Vorkonditionierer Direkte Formulierung über f i vs. Gleichgewichtsformulierung per f eq i plain bl-jac tr-pre c=1 n= n= n= n= c=10 n= n= n= n= c=100 n= n= n= n= c=1000 n= n= n= n= GEF GEF(diag) c=1 n= n= n= n= c=10 n= n= n= n= c=100 n= n= n= n= c=1000 n= n= n= n= = Nicht unabhängig von Gitterweite h!

48 Kapitel 7 Multigrid

49 7. Erste Schritte mit Mehrgitter Gute Mehrgitterraten mit beiden Glättervarianten Mehr Glättungsschritte besser, Levelabhängigkeit nur im positiven Sinne c10 c100 tr-pre bl-jac GEF GEF(diag) tr-pre bl-jac GEF GEF(diag) n= n= Aber: Gittertransfer noch nicht optimal

50 Zusammenfassung Moderne Numerik für PDE angewandt auf die LBE Finite-Differenzen Upwind Diskretisierung mit konst. Char. Auf unstrukturierten Gittern von 1er und 2er Ordnung Spezielle Nummerierung liefert untere Dreiecksmatrix für Transportoperator Implizite Zeitdiskretisierung sowie stationäre Formulierung Spezielle Vorkonditionierer für transport- und kollisionsdominante Systeme Gleichgewichtsformulierung liefert einen neuen Zugang zur LBE

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Institut für Aerodynamik und Strömungstechnik DLR 10.11.2011 1 / 24 Übersicht Motivation DG-Verfahren Gleichungen p-mehrgitter Voraussetzungen

Mehr

Vorkonditionierer. diskrete stationäre Eulergleichungen

Vorkonditionierer. diskrete stationäre Eulergleichungen Übersicht Bernhard Pollul,, RWTH Templergraben 55, 52056, E-mail: pollul@igpm.rwth-aachen.de Vorkonditionierer für diskrete stationäre Eulergleichungen 1/13 1., Teilprojekt B4 2. Vorkonditionierung 3.

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

Kapitel 3. Diskretisierungsverfahren. 3.1 Elliptische Differentialgleichung

Kapitel 3. Diskretisierungsverfahren. 3.1 Elliptische Differentialgleichung Kapitel 3 Diskretisierungsverfahren 3.1 Elliptische Differentialgleichung Wir beschränken uns auf elliptische Randwertaufgaben. Gesucht ist eine Funktion u (x, y) in R 2, welche die allgemeine partielle

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen 4.4 Anfangsrandwertprobleme Die Diskretisierung von zeitabhängigen partiellen Differentialgleichungen mit der Linienmethode führt auf Systeme gewöhnlicher Dgl

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 7. Vorlesung Stefan Hickel Druck-Geschwindigkeits-Kopplung Lösung der Navier-Stokes Gleichungen Kompressible NSG! Massenerhaltung! Impulserhaltung ρu t! Energieerhaltung

Mehr

Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren

Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren Seminar: Numerik gewöhnlicher Differentinalgleichungen Diagonal implizite Runge-Kutta Verfahren Manuel Hofmann 4..00 Einleitung Ziel dieser Arbeit ist es den Begriff der S-Stabilität einzuführen und im.

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Heat Flow. Daniel Raß. 12. Juli

Heat Flow. Daniel Raß. 12. Juli d-rass@web.de 12. Juli 2007 Übersicht Einleitung Zuerst einige theoretische Grundlagen zur Diskretisierung der Wärmeleitungsgleichung und der Poissongleichung. Ausgangsgleichung Ausgehend von Masse-, Impuls-

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation ngewandte Strömungssimulation 8. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung uswertung Parameter und Kennzahlen

Mehr

Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik. Andreas Wilde

Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik. Andreas Wilde Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik Andreas Wilde Einführung/Überblick Frage: Kann man mit Lattice-Boltzmann Strömungsakustik machen? 2 Einführung/Überblick Frage: Kann man

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung Verfahren zur Lösung der Monge-Ampère-Gleichung Yasemin Hafizogullari Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zu aktuellen Themen der Numerik im Wintersemester 2010/2011 1

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Numerik II Numerik Elliptischer Differentialgleichungen

Numerik II Numerik Elliptischer Differentialgleichungen Numerik II 207 12 Numerik Elliptischer Differentialgleichungen 12 Numerik Elliptischer Differentialgleichungen TU Bergakademie Freiberg, SS 2010 Numerik II 208 12.1 Die Laplace-Gleichung in einem Quadrat

Mehr

1 Die Problemstellung

1 Die Problemstellung Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph.D. ScientifiComputing Wir wollen als erstes das in diesem Praktikum zu behandelnde Problem aus

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Iterative Verfahren für lineare Gleichungssysteme

Iterative Verfahren für lineare Gleichungssysteme Iterative Verfahren für lineare Gleichungssysteme Vorlesung Sommersemester 013 Humboldt-Universität zu Berlin Zeiten können noch nach Wunsch vereinbart werden! Kontakt: Dr. Rüdiger Müller Weierstraß-Institut

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 9. Vorlesung Stefan Hickel Validierung und Fehlererkennung Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung

Mehr

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren (2/2) Ziel dieser Vorlesung Wie schnell können wir Gleichungssysteme lösen? O(n 3 ) LR- oder QR-Zerlegung: Immer anwendbar Standardverfahren Aber:

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 25.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 25. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 25. Oktober 2017 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Bildverarbeitung: Kontinuierliche Energieminimierung D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Idee Statt zu sagen, wie die Lösung geändert werden muss (explizite Algorithmus, Diffusion),

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Praktikum Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Block 1 jeder Anfang ist eindimensional Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Lattice-Boltzmann-Methode

Lattice-Boltzmann-Methode Lattice-Boltzmann-Methode Ausarbeitung zum CES-Seminarvortrag Markus Frings (274290) 27. Juli 2013 Inhaltsverzeichnis 1 Einleitung 1 2 Zelluläre Automaten 2 3 Lattic-Gas-Automaten 2 3.1 FHP-I.....................................

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 10

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 10 D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz Serie 10 Abgabedatum: 23.5/24.5, in den Übungsgruppen Koordinatoren: Luc Grosheintz, HG G 46, luc.grosheintz@sam.math.ethz.ch Webpage:

Mehr

Stationäre Newtonsche Strömung

Stationäre Newtonsche Strömung Stationäre Newtonsche Strömung Bettina Suhr Inhaltsverzeichnis 1 Einleitung 2 2 Die Navier-Stokes-Gleichungen 2 3 Die schwache Formulierung 2 4 Die Ortsdiskretisierung 5 4.1 Taylor-Hood Elemente........................

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 7. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung Auswertung Parameter und Kennzahlen

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

Extrapolationsverfahren

Extrapolationsverfahren Extrapolationsverfahren Vortrag im Rahmen des Seminars Numerik gewöhnlicher Differentialgleichungen unter der Leitung von Prof. Peter Bastian WS 2010/11 Marlene Beczalla 21.12.2010 1. Beschreibung des

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 7. Teil Die Impulsgleichungen

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung................................................. 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität...... 11 2.1 Kondition eines Problems................................

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Numerische Simulation mit finiten Elementen. O. Rheinbach

Numerische Simulation mit finiten Elementen. O. Rheinbach Numerische Simulation mit finiten Elementen O. Rheinbach Numerische Simulation mit finiten Elementen INHALT 0.1 Finite Differenzen in 2D 1. Einleitung 1.1 Vorbemerkungen 1.2 Rand- und Anfangswertaufgaben

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 Inhaltsverzeichnis 1 Einleitung 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilitat 11 2.1 Kondition eines Problems 11 2.1.1 Elementare Beispiele 12 2.1.2 Bemessen, Normen 15 2.1.3 Relative und Absolute

Mehr

14 Numerik hyperbolischer Differentialgleichungen

14 Numerik hyperbolischer Differentialgleichungen Numerik II 256 14 Numerik hyperbolischer Differentialgleichungen Während parabolische PDG Diffusionsvorgänge modellieren stellen hyperbolische PDG Modelle für Wellenphänomene dar. Wichtigste Anwendungsgebiete

Mehr

Hyperbolische Erhaltungsgleichungen und die Wellengleichung

Hyperbolische Erhaltungsgleichungen und die Wellengleichung Hyperbolische Erhaltungsgleichungen und die Wellengleichung Stefanie Günther Universität Trier 11.November 2010 Stefanie Günther (Universität Trier) Seminar Numerik 1/29 11.November 2010 1 / 29 Inhaltsverzeichnis

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben: MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE FELIX LIEDER DR. GEORG JANSING.9.7 ZWEITE KLAUSUR zur Numerik I mit Lösungen Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik

Berechnungsmethoden der Energie- und Verfahrenstechnik Institute of Fluid Dynamics Berechnungsmethoden der Energie- und Verfahrenstechnik Prof. Dr. Leonhard Kleiser c L. Kleiser, ETH Zürich Transition zur Turbulenz in einem drahlbehafteten Freistrahl. S. Müller,

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Anordnungstechniken für konvektionsdominante Probleme im Ê 3. Dimensionsunabhängige Verfahren. Algorithmen für planare Graphen. Numerische Beispiele

Anordnungstechniken für konvektionsdominante Probleme im Ê 3. Dimensionsunabhängige Verfahren. Algorithmen für planare Graphen. Numerische Beispiele Anordnungstechniken für konvektionsdominante Probleme im Ê 3 Inhalt: Einführung Dimensionsunabhängige Verfahren Algorithmen für planare Graphen Anordnungen im Ê 3 Numerische Beispiele 2 Einführung betrachtet

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

Übersicht zur Numerik II für Ingenieure

Übersicht zur Numerik II für Ingenieure Übersicht zur Numerik II für Ingenieure Petr Tichý und Jörg Liesen Technische Universität Berlin 19. Februar 2004 Modellierung Real world Problem Mathematisches Modell (Differentialgleichung) Diskretisierung

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung... 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität... 11 2.1 KonditioneinesProblems... 11 2.1.1 ElementareBeispiele... 12 2.1.2 Bemessen,Normen... 15 2.1.3 RelativeundAbsoluteKondition...

Mehr

Spline-Interpolation

Spline-Interpolation Spline-Interpolation Tim Schmölzer 20 November 2009 Tim Schmölzer Spline-Interpolation 20 November 2009 1 / 38 Übersicht 1 Vorbemerkungen 2 Lösbarkeit des Interpolationsproblems 3 Stabilität der Interpolation

Mehr

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens 9.11.2010 Contents 1 Allgemein 2 1.1 Definition................................................. 2 1.2 Klassifikation............................................... 2 1.3 Lösbarkeit.................................................

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung

Teil XIII. Simulation mit PDEs: Wärmeleitungsgleichung Teil XIII Simulation mit PDEs: Wärmeleitungsgleichung IN8008, Wintersemester 2011/2012 284 ODE vs. PDE Differentialgleichungen bei der Molekulardynamik: nur eine unabhängige Variable: Zeit gewöhnliche

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Blatt 4. 1 Einführung. Programmierpraktikum Computational Finance. WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll

Blatt 4. 1 Einführung. Programmierpraktikum Computational Finance. WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll Programmierpraktikum Computational Finance WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll Programmierpraktikum Computational Finance Blatt 4 1 Einführung Die auf den ersten drei Blättern besprochenen

Mehr

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme Kapitel 6 Iterationsverfahren für lineare Gleichungssysteme Falls n sehr groß ist und falls die Matrix A dünn besetzt ist (sparse), dann wählt man zur Lösung von Ax = b im Allgemeinen iterative Verfahren.

Mehr