c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung.

Größe: px
Ab Seite anzeigen:

Download "c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung."

Transkript

1 3.6. Exponentialabbildun. Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S ein Punkt. Zu eimen Tantialvektor v T p S betrachten wir die eindeutie Geodätische c : I S mit c0 p, c 0 v und maximalem Definitionsintervall I. Falls c noch zur Zeit t 1 definiert ist, d.h. falls 1 I, setzen wir 14 exp p v : c1. Ist exp p für v T p S definiert und δ 0,1], so ist 4exp p für δv T p S definiert. Diese Überleun zeit, dass der Definitionsbereich D p T p S von exp p eine bzl. sternförmie Teilmene von T p S ist und zwar c v t exp p tv. Nach dem Satz über die Abhänikeit der Lösun ewöhnlicher Differentialleichunen von den Anfanswerten ist D p eine offene Teilmene von T p S und ist exp p : D p S eine latte Abbildun. Definition 3.55 Exponentialabbildun. Die Abbildun exp p : D p S heißt Exponentialabbildun. Beispiel Sei S R 2 {0} die x y Ebene mit der ersten Fundamentalform als riemannsche Metrik. Sei p S und v T p S R 2 {0}. Die eodätische c in S mit c0 p und c 0 v ist die Gerade ct p+tv. Also ilt D p T p S 2 R 2 {0} und exp p v p+v. Beispiel Sei S S 2 die Sphäre, wiederum mit der ersten Fundamentalform als riemannscher Metrik. Sei p S und v T p S p. Schreibe v δw, wobei w T p S ein Einheitsvektor ist, w 1 und δ v 0. Die Geodätische c ist in S mit c0 p und c 0 v ist eeben durch den Großenkreis ct cosδtp + sinδtw. Also ilt D p T p S und exp p v { cos v p+sin v v v, v 0 p, v 0. Lemma Das Differential der Exponentialabbildun an der Stelle 0 ist die Identität, d 0 exp p id : T p S T p S. Beweis: Sei v T p S. Gemäß 14 ist die Geodätische c mit c0 p und c 0 v eeben durch ct exp p tv. 98

2 Setze τ tv. τ ist eine Kurve in T p S mit τ0 0 und τ 0 0. Nach der Definition des Differentials haben wir d 0 exp p v d dt exp p ct d t0 dt exp ptv 0 t d dt ct t0 c 0 v Nach dem Umkehrsatz ibt es eine Umebun W von 0 D p, so dass exp p W : W exp p W S ein Diffeomorphismus ist. Für eine lokale Parametrisierun U 1,F 1,V 1 der Tanentialebene T p S erhalten wir durch die Wahlen U : F1 1 W, F : exp p F 1 U und V R 3 offen mit V S exp p W eine lokale Parametrisierun U,F,V von S. Beispiel Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S, und sei X 1, X 2 eine Orthonormalbasis der Tanentialebene T p S. Wir nehmen die Parametrisierun durch kartesische Koordinaten für T p S, nämlich U 1 R 2 und F 1 u 1,u 2 u i X i. Die entsprechende lokale Parametrisierun von S, Fu 1,u 2 exp p u i X i, heißt Parametrisierun durch riemannsche Normalkoordinaten um Punkt p. Satz Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S, sei F eine lokale Parametrisierun durch riemannsche Normalkoordinaten um den Punkt p. Dann ilt für die zuehörie Komponentenfunktionen der Metrik und die Christoffel-Symbole i F0,0 p ii ij 0,0 δ ij, i,j 1,2 iii ij 0,0 0 und Γ k u k ij 0,0 0, i,j,k 1,2. Beweis: Aussae i ist klar und Aussae ii besat erade, dass d 0 exp p eine Identität ist. Nun brauchen wir nur noch iii zu zeien. Nach der Definition der Exponentialabbildun wissen wir, dass für beliebies x R 2, t tx eine Geodätische in riemannschen Normalkoordinaten ist, d.h. Γ k ij txxi x j 0 k 1,2. i,j Speziell für t 0 ilt somit Γ k ij0x i x j 0, k 1,2 i,j 99

3 für alle x. Ween der Symmetrie Γ k ij 0 Γk ji 0, folt Γ k ij 0,0 0 für alle i,j,k. Aus der Gleichun folt u i jm k Γ k ij km +Γ k im kj ij u k 0,0 0 für alle i,j,k. Beispiel Sei wie oben S eine beliebie reuläre Fläche mit einer riemannschen Metrik, sei p S, und sei X 1, X 2 eine Orthonormalbasis von T p S. Wir nehmen diesmal Polarkoordinaten für T p S, F 1 r,ϕ r cosϕx 1,sinϕX 2. Die zuehörie lokale Parametrisierun von S Fr,ϕ exp p r cosϕx 1,sinϕX 2 ist die Parametrisierun durch eodätische Polarkoordinaten um den Punkt p. Satz 3.62 Gauß-Lemma. Sei S eine reuläre Fläche mit einer riemannschen Metrik. Sei p S, und sei F eine lokale Parametrisierun durch eodätische Polarkoordinaten r,ϕ. Dann hat bzl. dieser lokalen Parametrisierun die riemannsche Metrik die Form ij r,ϕ ij 0 f 2 r,ϕ mit einer positiven Funktion f, die erfüllt. lim fr,ϕ 0 und lim r r,ϕ 1 Beweis: Für festes ϕ 0 ist die Kurve cr Fr,ϕ 0 nach Definition der Exponentialabbildun die Geodätische mit c 0 cosϕ 0 X 1 + sinϕ 0 X 2. Wir haben schon bewiesen, dass Geodätische proportional zur Boenläne parametrisiert sind. Da c 0 ein Einheitsvektor ist, so ist 11 r,ϕ 0 c r,c r

4 Da die riemannsche Metrik positiv definit ist, ist 22 > 0 und kann in der Form 22 f 2 eschrieben werden. Ähnlich wie früher berechnen wir lim f2 22 r,ϕ 0 Außerdem ilt d Fr,ϕ0 exp p r,ϕ 0 ϕ 0 d Fr,ϕ0 exp pry 1,d Fr,ϕ0 exp pry 2 d 0 exp p 0,d 0 exp p 0 0. lim r,ϕ fr,ϕ 0 0 r,d Fr,ϕ0 exp p 22 r,ϕ 0 r 2 r,ϕ 0 ϕ 0 d Fr,ϕ0 exp py 2,d Fr,ϕ0 exp py 2 d 0 exp p Y 2,d 0 exp p Y 2 Y 2,Y 2 1. Lemma Seien die Bezeichnunen wie in Satz Dann ilt für die Gauß-Kümmun KFr,ϕ 1 2 f fr,ϕ 2r,ϕ. Beweis: Gemäß Satz 3.62 hat die riemannsche Metrik in eodätischen Polarkoordinaten die Form ij r,ϕ ij 0 f 2. r,ϕ Die inverse Matrix ist ij r,ϕ ij 0 f 2 r,ϕ Man berechnet durch die Formel Γ k ij m1. jm u i + im u j ij u m Γ 1 22 f und 101 Γ f ϕ,

5 die Christoffel-Symbole, die nicht verschwinden. Ferner ilt r,ϕ 0 r,ϕ 12, ϕ r,ϕ 0, ϕ r,ϕ 0 r c r, }{{} ϕ r,ϕ 0 + r,ϕ 0, 0 r,ϕ 0, ϕ r,ϕ ϕ, 0. }{{} r,ϕ0 1 + r,ϕ 0, ϕ r,ϕ 0 ϕ r,ϕ 0 Somit ist für festes ϕ ϕ 0 die Funktion 12 konstant in r. Setze Y 1 : cosϕ 0 X 1 + sinϕ 0 X 2 und Y 2 : sinϕ 0 X 1 + cosϕ 0 X 2. Dies ist auch die Orthonormalbasis von T p S. Setze Fr,ϕ rcosϕx 1 +sinϕx 2. Klar ist r,ϕ 0 Y 1 und ϕ r,ϕ 0 ry 2. Wir berechnen lim 12r,ϕ 0 r,ϕ 0, d Fr,ϕ0 exp p ϕ r,ϕ 0 r,ϕ 0,d Fr,ϕ0 exp p d Fr,ϕ0 exp py 1,d Fr,ϕ0 exp pry 2 d 0 exp p Y 1,d 0 exp p 0 0. ϕ r,ϕ 0 Da 12 konstant ist, ist Also ij ij

6 Die Vektoren und 1 f ϕ bilden eine Orthonormalbasis der Tanentialebene. Nach dem Theorema Ereium ist die Gauß-Krümmun eeben durch κ R, 1 1 f ϕ f ϕ, 1 f 2R f 2 1 f 2 1 f 2 1 f Γ 1 22 Γ1 12 ϕ +Γ1 1k Γk 22 Γ1 2k Γk 22 2 f 2 f Γ1 22Γ f 2 f f 2. Bemerkun. In eodätischen Polarkoordinaten ist die esamte Information über die riemannsche Metrik in der Funktion f enthalten. Falls die Gauß- Krümmun k κ konstant ist, d.h., κ 1 2 f fr,ϕ 2r,ϕ, mit den Anfansbedinunen f0,ϕ 0 und 0,ϕ 1 erhalten wir 1 sin κr, κ > 0 κ fr,ϕ r, κ 0, 1 sinh κr, κ < 0. κ Korollar Sind S 1 und S 2 zwei reuläre Flächen mit derselben konstanten Gauß-Krümmun κ, so sind S 1 und S 2 lokal isometrisch. Es ibt noch Koordinaten, die besonders an eine voreebene Kurve auf der Fläche anepasst sind. Lemma Sei S eine reuläre Fläche mit riemannscher Metrik. Sei c : I S eine nach Boenläne parametrisierte Kurve. Sei n : I R 3 ein Vektorfeld läns c mit nt 1 und c,n 0. Dann ibt es zu jedem t 0 I ein ε > 0, so dass F : ε,ε ε,ε S, Ft,s : exp ct snt, 103

7 eine lokale Parametrisierun von S ist. Läns c hat die riemannsche Metrik bezülich dieser Parametrisierun die Gestalt ij t,0 ij. 0 1 Beweis: Wir berechnen t t,0 d dt exp ct0 c t und s t,0 d ctexp ct nt nt. Die Vektoren t t,0 und s t,0 bilden eine Orthonormalbasis von T cts. Nach dem Umkehrsatz ist F nach eeineter Einschränkun eine lokale Parametrisierun. Ween der Orthoonalität ist die Behauptun über ij t,0 klar. 104

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt 2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt { } T p S = X R 3 es gibt ein ε > 0 und eine glatte parametrisierte Kurve c : ( ε,ε) S mit c(0)

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt

Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt Karlsruher Institut für Technoloie (KIT) Institut für Alebra und Geometrie 17.05.2011 JProf. Dr. Gabriela Weitze-chmithüsen Dipl.-Math. André Kappes Alebraische Geometrie 2 Lösunen zum Lanen Übunsblatt

Mehr

Klausur zur Geometrie

Klausur zur Geometrie PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen

Mehr

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag:

Universität Wien. Elementare Differentialgeometrie. Lehrveranstaltungsleiter Roland Steinbauer. Verfasser: Vortrag: Universität Wien Elementare Differentialgeometrie Lehrveranstaltungsleiter Roland Steinbauer Verfasser: Peter Egger Julian Wiederin a885415 a1046139 Vortrag: 4.11.015 Zuletzt geprüfte Version: 17.1.015

Mehr

Klausur zur Geometrie für Bachelor und Lehramt

Klausur zur Geometrie für Bachelor und Lehramt Klausur zur Geometrie für Bachelor und Lehramt Aufgabe ( Punkt) Lösung Aufgabe Kurzfragen (jeweils Punkte) (a) Skizzieren Sie qualitativ eine ebene Kurve c : R R mit Krümmung κ(t) = t (b) Ist die ebene

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Sommersemester 2013 Blatt 10 21.06.2013 Übungen zur Analysis 2 10.1 Betrachten Sie die Funktion f : R 2 R, f(x, y) =x 2 + y 2, den

Mehr

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber 18.11.2015 Inhaltsverzeichnis 1 Reduzibilität 2 1.1 G-Modul................................ 2 1.2 Orthonormalbasen..........................

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Musterlösung zur Klausurvorbereitung in der Differentialgeometrie 1

Musterlösung zur Klausurvorbereitung in der Differentialgeometrie 1 Prof. Dr. B. Wilking WiSe 011/1 Dr. A. Wörner Musterlösung zur Klausurvorbereitung in der Differentialgeometrie 1 Zu Aufgabe 1 Wir nehmen an, dass der Mittelpunkt des großen Kreises im Ursprung liegt.

Mehr

1.6 Homomorphismen von Gruppen

1.6 Homomorphismen von Gruppen 16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Ziel: die geodätische Krümmung einer Kurve γ : I U

Ziel: die geodätische Krümmung einer Kurve γ : I U Ziel: die geodätische Krümmung einer Kurve γ : I U Sei c = f γ nach Bogenlänge parametrisiert. Wir betrachten den Krümmungsvektor c und zerlegen ihn orthogonal in einen Anteil tangential und einen Anteil

Mehr

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet.

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Eine globale eingebettete Fläche nicht-standarde Definition: Def. Eine (globale eingebettete) Fläche ist eine Teilmenge M von R

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen Inhaltsverzeichnis:. Hilfsmittel Fritzsche 2. Parametrisierte Kurven Ballnus, 29.0. 3. Ebene Krümmung Ballnus, 05.. 4. Raumkurven Stergiou, 2.. 5. Globale Eigenschaften

Mehr

(sin φ +tan αcos φ) (4)

(sin φ +tan αcos φ) (4) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninhofen, M. Hummel Blatt WS 8/9 1.1.8 1. Wurf am Abhan. Sie stehen an einem Abhan, der den Steiunswinkel α hat, und wollen (4Pkt.) einen Stein

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit (Eine kurze Einführung im Rahmen des Seminars Spektraltheorie des Laplace-Operators, Sommersemester 2009) Inhalt: 1) Einführung 2) (Unter-)

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform Vorlesung 2 Differentialgeometrie: Grundlagen 49 Wir werden jetzt κ(v) durch Untersuchung von d p N bestimmen. Dazu beobachten wir zunächst, das aus dn(v) N folgt, dass es zu jedem v T p U ein w T p U

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Übungen zur Vorlesung Differentialgeometrie I

Übungen zur Vorlesung Differentialgeometrie I Sommersemester 2005 Blatt 12 1) Liouvillesche Flächen sind per definitionem solche, deren erste Fundamentalform sich in der Form E = G = U + V, F = 0, schreiben lassen, wobei U = U (u) bzw. V = V (v) in

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

Äußere Geometrie von Flächen

Äußere Geometrie von Flächen Äußere Geometrie von Flächen Bezeichnungen und Wiederholung der Analysis II. Auf der übernächsten Folie werden wir definieren, was ein (parametrisiertes) Flächenstück ist. Als mathematisches Objekt ist

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

5 Die Liealgebra einer Liegruppe

5 Die Liealgebra einer Liegruppe $Id: liealg.tex,v 1.5 2010/09/03 07:51:34 hk Exp hk $ 5 Die Liealgebra einer Liegruppe Wir sind noch immer mit der Konstruktion der Liealgebra zu einer Liegruppe G beschäftigt. In der letzten Sitzung hatten

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

Richtungsableitungen.

Richtungsableitungen. Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten)

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Prof. Dr. Daniel Grieser 18.12.2008 Inhaltsverzeichnis Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Untermannigfaltigkeiten

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Mathematische Methoden

Mathematische Methoden Institut für Theoretische Physik der Universität zu Köln http://www.thp.uni-koeln.de/~berg/so/ http://www.thp.uni-koeln.de/~af/ Johannes Berg Andrej Fischer Abgabe: Montag,. Juni Mathematische Methoden.

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) )

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) ) 14. KRÜMMUNG 67 14. Krümmung Definition 14.1 zweite kovariante Ableitung). Sei M, g) eine Riemannsche Mannigfaltigkeit, sei M. Seien ξ T M η,ψ VM). Dann ist η ψ VM) 2 ξ,η ψ := ξ η ψ ξ ηψ T M heißt zweite

Mehr

Kapitel 7. Christoffelsymbole und Geodätische. 7.1 Christoffelsymbole

Kapitel 7. Christoffelsymbole und Geodätische. 7.1 Christoffelsymbole Kapitel 7 Christoffelsymbole und Geodätische 7.1 Christoffelsymbole Für viele Anwendungen in der elementaren Differentialgeometrie, darunter auch für Geodätische, spielen die zweiten Ableitungen X ij :=

Mehr

Oliver Schnürer, Universität Konstanz Sommersemester 2010 Matthias Makowski

Oliver Schnürer, Universität Konstanz Sommersemester 2010 Matthias Makowski Blatt 1 Aufgabe 1.1. Sei α : I R 2, I ein offenes Intervall, eine reguläre Kurve der Klasse C 2. Zeige: (i) α hat genau dann konstante Krümmung κ, wenn sie Teil eines Kreises mit Radius 1 κ ist, falls

Mehr

Helmuts Kochrezept Nummer 5:

Helmuts Kochrezept Nummer 5: Helmuts Kochrezept Nummer : Lokale Koordinatentransformation von Vektorfedern Version 2, 19.03.2018) Dieses Kochrezept erklärt Dir, wie du ein Vektorfeld von einem orthonormalen Koordinatensystem z.b.

Mehr

XII.3 Spontane Symmetriebrechung. Higgs-Boson

XII.3 Spontane Symmetriebrechung. Higgs-Boson XII.3 Spontane Symmetriebrechun. His-Boson Im orien Abschnitt wurde das Potential V ˆΦ des His-Feldes eineführt, um seine Selbstwechselwirkun zu beschreiben. Dieser Abschnitt befasst sich enauer mit den

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

Differentialgeometrie für Geodäten Wintersemester 2011/12. Mark Hamilton

Differentialgeometrie für Geodäten Wintersemester 2011/12. Mark Hamilton Differentialgeometrie für Geodäten Wintersemester 2011/12 Mark Hamilton 30. Januar 2012 Inhaltsverzeichnis 1 Kurven im R 3 3 1.1 Grundlagen der Topologie..................... 3 1.2 Kurven im R n............................

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1 Differentialgeometrie 3.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B? Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) H m v 0 y 0000 00000 00000 000 000 00 000 0 v A 000 00

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

Holonomiegruppen Riemannscher Mannigfaltigkeiten

Holonomiegruppen Riemannscher Mannigfaltigkeiten Holonomiegruppen Riemannscher Mannigfaltigkeiten Skript zum Seminarthema Holonomiegruppen von Überlagerungen und Riemannschen Produkten Sommersemester 2009 an der Humbol Universität zu Berlin. Daniel Schliebner

Mehr

Addieren und Subtrahieren kann man nur Größen gleicher Dimension.

Addieren und Subtrahieren kann man nur Größen gleicher Dimension. 9 Dimensionsanalyse Wir haben bis jetzt Variablen oder Konstanten betrachtet und uns nie Gedanken über die Einheiten emacht. Wir können neben Länen auch Massen, Kräfte oder Zeiten haben. Diese physikalischen

Mehr

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c

Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Klausur zur Analysis II Prof. Dr. C. Löh/M. Blank 13. Februar 01 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten haben.

Mehr

1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit A A max.

1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit A A max. Keine Abgabe und Bewertung. Das Übungsblatt wird in der Übung am 10.4. besprochen. Präsenzübungen 1. Aufgabe Es sei A ein Atlas auf dem Hausdorffraum M. Dann gibt es genau einen maximalen Atlas A max mit

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1 Aufgabe. Zeichnen Sie die Spur des Weges c : [ 4 π,π] R, der durch ct := + sint cost definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie

Grundlagen der Differentialgeometrie und Einführung in die Allgemeine Relativitätstheorie Grundlagen der Differentialgeometrie und Einführung in die 4. Theoretiker-Workshop der jungen Deutschen Physikalischen Gesellschaft auf dem Dürerhof in Waldkappel-Gehau Vortrag am 05. Januar 2013 Definition

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Riemannsche Geometrie

Riemannsche Geometrie Vorlesungsskript Riemannsche Geometrie Fachbereich Mathematik und Statistik, Universität Konstanz Wintersemester 2018/19 Jan-Hendrik Treude 19. Dezember 2018 Inhaltsverzeichnis 1. Längen, Abstände und

Mehr

Einführung in die Morse-Theorie: Änderung der Homotopieklasse von f 1 ((, a]) bei nicht einem degenerierten kritischen Punkt

Einführung in die Morse-Theorie: Änderung der Homotopieklasse von f 1 ((, a]) bei nicht einem degenerierten kritischen Punkt Einführung in die Morse-Theorie: Änderung der Homotopieklasse von f 1 ((, a]) bei nicht einem degenerierten kritischen Punkt Mara Sommerfeld Seminar Dynamische Systeme und Ergodentheorie September 2008

Mehr

Geometrie und Topologie von

Geometrie und Topologie von Prof. Dr. Sebastian Hensel Sommersemester 2018 Geometrie und Topologie von Flächen Kurzskript Einige kleine Hinweise Dieses Kurzskript ist eine Auswahl der wichtigsten Resulate der Vorlesung. Er ersetzt

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x !

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x ! Wolfgang Erben (1. Januar 016) WS 01 Analysis Aufgabe 1. (6 Punkte) Gegeben sei die Funktion f () sinh sin a) Zeigen Sie, dass f () für alle 0 durch eine Potenzreihe um 0 dargestellt werden kann. Geben

Mehr

H.J. Oberle Analysis III WS 2012/ Differentiation

H.J. Oberle Analysis III WS 2012/ Differentiation H.J. Oberle Analysis III WS 2012/13 13. Differentiation 13.1 Das Differential einer Abbildung Gegeben: f : R n D R m, also eine vektorwertige Funktion von n Variablen x = (x 1,..., x n ) T, wobei D wiederum

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 1. Übungsblatt Institut ür Analysis WS2017/18 Pro. Dr. Dir Hundertmar 30.10.2017 Dr. Michal Jex Höhere Mathemati I ür die Fachrichtun Physi Lösunsvorschläe zum 1. Übunsblatt Auabe 1: Vorbemerun Für, n N deiniert man

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Riemannsche Geometrie

Riemannsche Geometrie HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR MATHEMATIK GEOMETRISCHE ANALYSIS UND SPEKTRALTHEORIE Riemannsche Geometrie Creative Commons Namensnennung-Nicht-kommerziell-Weitergabe unter gleichen Bedingungen

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 3 30. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 3 30. Oktober 2013 1 / 23 3. Erste Fundamentalform parametrisierten

Mehr

Blatt 3 Hausaufgaben

Blatt 3 Hausaufgaben Blatt 3 Hausaufgaben (Abgabe: 14. May, 13:15) 1. Drehungen Ein 3-Tupel (a 1, a 2, a 3 ) enthält die Komponenten eines Vektors a in kartesischen Koordinaten. Beim Übergang von einem Koordinatensystem K

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

3.1 Affine Abbildungen, baryzentrische Koordinaten und das Teilverhältnis. In diesem Abschnitt betrachten wir affine Abbildungen in der Form

3.1 Affine Abbildungen, baryzentrische Koordinaten und das Teilverhältnis. In diesem Abschnitt betrachten wir affine Abbildungen in der Form Affine Geometrie 3 Eine erste Verallemeinerun der euklidischen Geometrie, bei der man auf die Orthoonalität der Transformationsmatrix verzichtet, führt auf den Beriff der affinen Geometrie. Eine wichtie

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Übungen zur Analysis II

Übungen zur Analysis II Übungen zur Analysis II Prof. Dr. C. Löh/M. Blank Blatt 10 vom 3. Dezember 011 Aufgabe 1 (Beispiel für eine Kurve). Sei γ : R R 3 t (cos t, sin t, t). 1. Zeigen Sie, dass γ eine reguläre parametrisierte

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.3 2014/04/17 18:51:19 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir begonnen eindimensionale Untermannigfaltigkeiten des R d zu untersuchen.

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr