Klausur zur Geometrie

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Geometrie"

Transkript

1 PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen Sie, warum es sich um eine regulär parametrisierte Kurve handelt. (1 P) b) Finden Sie eine Umparametrisierung φ, so dass c φ nach Bogenlänge parametrisiert ist. (4 P) c) Berechnen Sie die Krümmung der Kurve. (3 P) Lösung zu Aufgabe 1 a) Es gilt was die Regularität zeigt. b) Wir berechnen t ċ(s) ds = t ċ(t) = ( 3 3 t 1/2 ), t 9 + 9s ds = s ds = = (1 + s)3/2 s=t s= = 2 (1 + t)3/2 2 Wir setzen ψ(t) := 2 (1 + t) 3/2 2. Die Umkehrabbildung φ := ψ 1 erhält man, indem man nach t auflöst: 2(1 + t) 3/2 2 = s φ(s) = ( s ) 2/3 1. Verwendet man φ: (1, ) (, ) als Umparametrisierung, dann ist c φ nach Bogenlänge parametrisiert. c) Wir berechnen ( ) c(t) = 3 2 t 1/2.

2 Mit der Formel für die Krümmung einer nicht notwendig nach Bogenlänge parametrisierten ebenen Kurve erhält man κ(t) = det(ċ(t), c(t)) = t 1/2 3 t 1/2 = ċ(t) (1 + t) 3/2 Aufgabe 2 Sei im R 3 eine Schraubenlinie gegeben durch c: R R 3, c(t) = 1 4 cos(t) 4 sin(t). 3t 1 6 t(1 + t) 3/2. a) Zeigen Sie, dass die Kurve nach Bogenlänge parametrisiert ist. (1 P) b) Bestimmen Sie das begleitende Dreibein (v(t), n(t), b(t)). ( P) c) Berechnen Sie Krümmung κ und Torsion τ. (2 P) Lösung zu Aufgabe 2 a) Es gilt ċ(t) 2 = 1 (16 2 cos(t) sin(t) 2 + 9) = 1. b) Man erhält durch ein- bzw. zweimaliges Ableiten: v(t) = ċ(t) = 1 4 sin(t) 4 cos(t) und c(t) = 1 4 cos(t) 4 sin(t) 3 und damit: n(t) = c(t) c(t) = cos(t) sin(t). Den Binormalenvektor b(t) erhalten wir, indem wir das Kreuzprodukt von v(t) und n(t) bilden: b(t) = v(t) n(t) = 1 3 sin(t) 3 cos(t). 4 c) Wir erhalten κ(t) = c(t) = 4. Um die Torsion zu bestimmen, berechnet man ṅ(t) = sin(t) cos(t) und erhält τ = ṅ, b = 3. Alternativ: Nach der Frenetschen Formel ḃ = τn kann man, nach Ableiten von b(t), an den Ergebnissen der vorangehenden Teilaufgabe τ(t) = 3 ablesen. Aufgabe 3

3 a) Sei c eine nach Bogenlänge parametrisierte Raumkurve mit positiver Krümmungsfunktion. Beweisen Sie: Der Binormalenvektor ist genau dann konstant, wenn c in einer affinen Ebene des R 3 verläuft. (4 P) b) Beweisen Sie: Die Teilmenge { (x, y, z) R 3 x 2 + y 2 = e z} des R 3 ist eine reguläre Fläche. (2 P) Lösung zu Aufgabe 3 a) Dass die Raumkurve c: I R 3 ganz in einer affinen Ebene des R 3 verläuft, ist dazu äquivalent, dass es einen von Null verschiedenen Vektor w R 3 gibt mit w, c(t) = const. Angenommen, das Bild ist ganz in einer affinen Ebene des R 3 enthalten und sei w R 3 gibt mit w, c(t) = const. Dann folgt durch ein- bzw. zweimaliges Ableiten: w, ċ(t) = w, c(t) =, d.h. ċ(t), c(t) w für alle t I. Also gilt für das begleitende Dreibein v(t), n(t) w und es folgt, dass b(t) = ±w/ w. Aus Stetigkeitsgründen folgt nun, dass entweder b(t) +w/ w oder b(t) w/ w gilt und somit b(t) konstant ist. Sei nun b(t) =: w konstant. Dann folgt w ċ(t) für alle t I und somit t w, c(t) = w, ċ(t) =. dt b) Wir berechnen den Gradienten der Funktion f : R 3 R, f(x, y, z) = x 2 + y 2 e z : gradf(x, y, z) = 2x 2y. e z Der Gradient verschwindet nirgends und somit ist insbesondere f 1 ({}) ein reguläres Urbild. Aufgabe 4 Sei durch cos(φ)(4 + cos(ϑ)) F (φ, ϑ) = sin(φ)(4 + cos(ϑ)) sin(ϑ) ein Rotationstorus parametrisiert. a) Bestimmen Sie die Strukturmatrix g ij der ersten Fundamentalform bezüglich F. (3 P) b) Bestimmen Sie die zweite Fundamentalform, d.h. die Funktionen h ij. Hinweis: Sie dürfen ohne Begründung verwenden, dass durch cos(φ) cos(ϑ) N(φ, ϑ) := sin(φ) cos(ϑ) sin(ϑ) ein Einheitsnormalenfeld gegeben ist. (4 P) c) Bestimmen Sie die Gaußsche Krümmung am Punkt F (φ, ϑ). (3 P)

4 Lösung zu Aufgabe 4 a) Wir berechnen sin(φ)(4 + cos(ϑ)) cos(φ) sin(ϑ) F φ = cos(φ)(4 + cos(ϑ)), F ϑ = sin(φ) sin(ϑ). cos(ϑ) Daraus ergibt sich sowie und g φφ = sin(φ) 2 (4 + cos(ϑ)) 2 + cos(φ) 2 (4 + cos(ϑ)) 2 = (4 + cos(ϑ)) 2 g φϑ = g ϑϑ = cos(φ) 2 sin(ϑ) 2 + sin(φ) 2 sin(ϑ) 2 + cos(ϑ) 2 = = (cos(φ) 2 + sin(φ) 2 ) sin(ϑ) 2 + cos(ϑ) 2 = 1. b) Wir berechnen cos(φ)(4 + cos(ϑ)) sin(φ) sin(ϑ) F φφ = sin(φ)(4 + cos(ϑ)), F φϑ = cos(φ) sin(ϑ) und cos(φ) cos(ϑ) F ϑϑ = sin(φ) cos(ϑ). sin(ϑ) Einsetzen ins Skalarprodukt mit dem Einheitsnormalenfeld N(ϑ, φ) ergibt h φφ = (4 + cos(ϑ)) cos(ϑ), h φϑ =, h ϑϑ = 1, c) Aus den obigen Ergebnissen erhalten wir Aufgabe Daraus ergibt sich det(g ij ) = (4 + cos(ϑ)) 2 und det(h ij ) = (4 + cos(ϑ)) cos(ϑ). κ(f (φ, ϑ)) = det(h ij) det(g ij ) = cos(ϑ) 4 + cos(ϑ). a) Was besagt der Umlaufsatz? (2 P) b) Geben Sie (ohne Begründung) die Tangentendrehzahlen der folgenden geschlossenen orientierten ebenen Kurven an. Lösung zu Aufgabe (2 P)

5 a) Eine einfach geschlossene ebene orientierte Kurve hat Tangentendrehzahl +1 oder 1. b) Bei der linken Kurve ist die Tangentendrehzahl gleich 1, bei der rechten gleich 4. Aufgabe 6 Wir betrachten die xy-ebene S = x y x, y R im R 3. a) Begründen Sie zunächst, warum für jede glatte Kurve c: ( ε, ε) S und jedes tangentiale Vektorfeld v längs c gilt: (2 P) dt v(t) = d dt v(t). b) Auf S führen wir nun Polarkoordinaten F : U S, F (r, φ) = (r cos(φ), r sin(φ), ), U = (, ) (, 2π) ein. Berechnen Sie die kovarianten Ableitungen X Y für die Koordinatenvektorfelder X, Y {F r, F φ }. (4 P) Lösung zu Aufgabe 6 a) Für ein tangentiales Vektorfeld v längs einer glatten Kurve c gilt, dass die dritte Komponente von v(t) = v 1(t) v 2 (t) v 3 (t) konstant gleich Null ist und dies gilt dann auch für die Ableitung nach t. Die orthogonale Projektion R 3 T p S ist aber in jedem Punkt durch x y x y z gegeben. Daher stimmt die kovariante Ableitung in diesem Fall mit der gewöhnlichen Ableitung überein.

6 b) Wegen a) gilt im Punkt p = F (r, φ) r F r (p) = F rr =, r F φ (p) = φ F r (p) = F rφ = sin(φ) cos(φ), r cos(φ) φ F φ (p) = F φφ = r sin(φ).

Vorlesung zur Geometrie

Vorlesung zur Geometrie PD Dr A Kollross Dr J Becker-Bender Vorlesung zur Geometrie Universität Stuttgart SoSe 3 Auswahl an Hausaufgaben mit Lösungshinweisen Version, 9 Juli 3, :45 Aufgabe (Aufgabe 3 von Blatt In der xy-ebene

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt

2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt 2.2. Die Tangentialebene. Definition 2.12 (Tangentialebene). Sei S eine reguläre Fläche, sei p S. Dann heißt { } T p S = X R 3 es gibt ein ε > 0 und eine glatte parametrisierte Kurve c : ( ε,ε) S mit c(0)

Mehr

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie.

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Krümmungskreise. Dazu brauchen wir selbstverständlich einige Vorarbeit.

Krümmungskreise. Dazu brauchen wir selbstverständlich einige Vorarbeit. Krümmungskreise Postulat 2. Eine allgemeine Kurve c soll als Krümmung κ(t) die Krümmung desjenigen Kreises haben, der die Kurve im Punkt c(t) am besten (wird erklärt) approximiert. Erstes Ziel für heute:

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1 Differentialgeometrie 2.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Kapitel 4. Raumkurven. 4.1 Graphische Darstellung

Kapitel 4. Raumkurven. 4.1 Graphische Darstellung Kapitel 4 Raumkurven 4.1 Graphische Darstellung Für die Darstellung von Raumkurven existiert in MAPLE der Befehl spacecurve aus der Bibliothek plots. Diesem Befehl lassen sich noch einige Parameter mitgeben.

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

Jacobifelder und konjugierte Punkte

Jacobifelder und konjugierte Punkte Jacobifelder und konjugierte Punkte Vortrag Seminar ierentialgeometrie TU ortmund eingereicht bei Prof. r. L. Schwachhöfer vorgelegt von Melanie Voss Sommersemester 211 Vortrag 7, am 17.5.211 1 Einleitung/Wiederholung

Mehr

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis Vorbereitung für die mündliche Examensprüfung Geometrie von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann Inhaltsverzeichnis Bezeichnungen 2 1 Euklidische Geometrie 2 1.1 Der axiomatische

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1

Inhaltsverzeichnis Differentialgeometrie 3 Klassische Flächentheorie Jürgen Roth Differentialgeometrie 3.1 Differentialgeometrie 3.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Differentialgeometrie

Differentialgeometrie Differentialgeometrie Daniel Grieser Skript zur Vorlesung im Wintersemester 2008/2009 1 Überarbeitet 2013 Einleitung Dies ist das Skript zur Vorlesung Differentialgeometrie, die ich im erstmalig Wintersemester

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

10.5. Räumliche Krümmung und Torsion

10.5. Räumliche Krümmung und Torsion 10.5. Räumliche Krümmung und Torsion Gegeben sei eine zweimal differenzierbare Parameterdarstellung w einer Raumkure. Wir lassen im Folgenden meist den Parameter t weg, um etwas bequemere Formeln zu bekommen.

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Richtungsableitungen.

Richtungsableitungen. Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)

Mehr

Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl

Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl Wintersemester 213/214 Vorwort Dieses

Mehr

Vorlesungsskript Geometrie für Geodäten WS 2014/15. Tillmann Jentsch

Vorlesungsskript Geometrie für Geodäten WS 2014/15. Tillmann Jentsch Vorlesungsskript Geometrie für Geodäten WS 2014/15 Tillmann Jentsch Die Vorlesung basiert auf dem Skriptum zur Vorlesung Geometrie im SS 2012 von Prof. Uwe Semmelmann. KAPITEL 1 Kurventheorie 1. Kurven

Mehr

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet.

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Eine globale eingebettete Fläche nicht-standarde Definition: Def. Eine (globale eingebettete) Fläche ist eine Teilmenge M von R

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Elementare Krümmungskonzepte in Mathematik und Physik

Elementare Krümmungskonzepte in Mathematik und Physik Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Lehrstuhl für mathematische Physik Elementare Krümmungskonzepte in Mathematik und Physik Christian Hainzl Nadine Bellon

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Vorkurs Mathematik Übungen zu Kurven im R n

Vorkurs Mathematik Übungen zu Kurven im R n Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.

Mehr

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1.

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1. Florian Niederreiter Karolina Stoiber Ferienkurs Analysis für Physiker SS 15 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Differenzialgeometrie

Differenzialgeometrie Skript zur Vorlesung Differenzialgeometrie gelesen von Dr. M. Geißert Martin Gubisch Konstanz, Sommersemester 2009 Inhaltsverzeichnis Kurventheorie 3. Regulär parametrisierte Kurven.................................

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Kurvenintegral, Tangenten

Kurvenintegral, Tangenten Vorzeigeaufgaben: HS10 Aufgabe 2 WS05/06 Aufgabe 1a+b HS11 Aufgabe 2: falls Zeit am Ende vom Kursblock 1, ansonsten als Hausaufgabe. Empfohlene Bearbeitungsreihenfolge: HS09 Aufgabe 1 HS08 Aufgabe 3 HS12

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen Inhaltsverzeichnis:. Hilfsmittel Fritzsche 2. Parametrisierte Kurven Ballnus, 29.0. 3. Ebene Krümmung Ballnus, 05.. 4. Raumkurven Stergiou, 2.. 5. Globale Eigenschaften

Mehr

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2

Mehr

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht.

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 2: ǫ Tensor [6] Gegeben sind die Vektoren a =

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Raumkurven I. Moritz Korte-Stap. 26. Februar 2013

Raumkurven I. Moritz Korte-Stap. 26. Februar 2013 Raumkurven I Moritz Korte-Stap 26. Februar 23 Inhaltsverzeichnis Raumkurven 3. Definition....................................... 3 2 Gerahmte Raumkurven 4 2. Frenet-Rahmen/Frenet-Dreibein...........................

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Definition 2.40 (Lebesque-Integrierbarkeit). Eine Funktion f : S R mit f S V = 0 heißt (Lebesque-)integrierbar, falls die Funktion U R

Definition 2.40 (Lebesque-Integrierbarkeit). Eine Funktion f : S R mit f S V = 0 heißt (Lebesque-)integrierbar, falls die Funktion U R 2.7. Fl cheninhalten und Integration auf Flächen. ei eine reguläre Fläche und (U, F, V) eine lokale Parametrisierung von. Zunächst betracteh wir nur Funktionen f : R, die außerhalb des Koordinatenbereiches

Mehr

Kapitel 5. Flächen im dreidimensionalen Raum. 5.1 Die Darstellung parametrisierter Flächen mit MAPLE

Kapitel 5. Flächen im dreidimensionalen Raum. 5.1 Die Darstellung parametrisierter Flächen mit MAPLE Kapitel 5 Flächen im dreidimensionalen Raum 5.1 Die Darstellung parametrisierter Flächen mit MAPLE In diesem Abschnitt wollen wir uns mit dem Studium parametrisierter Flächen im dreidimensionalen Raum

Mehr

Vorlesungsskript Geometrie SS Uwe Semmelmann

Vorlesungsskript Geometrie SS Uwe Semmelmann Vorlesungsskript Geometrie SS 212 Uwe Semmelmann Die Vorlesung basiert auf dem Buch Elementare Differentialgeometrie von Christian Bär, de Gruyter, 2. Auflage, 21. KAPITEL 1 Kurventheorie 1. Kurven in

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen 1 Hilfsmittel 1.1 Erinnerung an die Analysis 2 f : B R heißt in 0 (total) differenzierbar, wenn es eine Linearform L : R n R und eine Funktion r : B R gibt,

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

11.1 Parametrisierung einer ebenen Kurve Analysis mit der Parameterdarstellung Flächen und Längen in Polarkoordinaten...

11.1 Parametrisierung einer ebenen Kurve Analysis mit der Parameterdarstellung Flächen und Längen in Polarkoordinaten... Inhaltsverzeichnis Vorwort 7 Kapitel 11 Parameterdarstellung und Polarkoordinaten 11 11.1 Parametrisierung einer ebenen Kurve... 13 11.2 Analysis mit der Parameterdarstellung... 27 11.3 Polarkoordinaten...

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Übungen zur Einführung in die algebraischen Geometrie

Übungen zur Einführung in die algebraischen Geometrie Hochschule Rhein-Main WS 01/13 Stg. Angewandte Mathematik Algebraische Geometrie Erich Selder, FH Frankfurt am Main Übungsblatt 8, Lösungshinweise Übungen zur Einführung in die algebraischen Geometrie

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit (Eine kurze Einführung im Rahmen des Seminars Spektraltheorie des Laplace-Operators, Sommersemester 2009) Inhalt: 1) Einführung 2) (Unter-)

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Geschlossene Kurven. c(a )=c(b ) c(a)=c(b)

Geschlossene Kurven. c(a )=c(b ) c(a)=c(b) Geschlossene Kurven Def. Eine parametrisierte Kurve c C 0 ([a,b];r n ) heißt geschlossen, wenn c(a) = c(b). Sie heißt k- Glatt (Bezeih. C k ), wenn außerdem c (a) = c (b),...,c (k) (a) = c (k) (b), d.h.

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Kurven und Flächen. Kapitel Kurven im R n Definition von Kurven

Kurven und Flächen. Kapitel Kurven im R n Definition von Kurven Kapitel 7 Kurven und Flächen Mit dem vorliegenden siebenten Kapitel leiten wir anhand elementarer differentialgeometrischer Begriffe die Grundlagen der Differentialrechnung für Abbildungen mehrerer Veränderlicher

Mehr

Differentialgeometrie 1. Florian Modler

Differentialgeometrie 1. Florian Modler Differentialgeometrie 1 Florian Modler 16. Januar 21 Inhaltsverzeichnis 1 Was ist eine Kurve? 4 1.1 Beispiele für Kurven...................................... 4 1.2 Was ist eine Kurve?......................................

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Differentialgeometrie I Kurven und Flächen

Differentialgeometrie I Kurven und Flächen Differentialgeometrie I Kurven und Flächen 1. Februar 2014 Inhaltsverzeichnis 1 Lokale Kurventheorie.................. 3 1.1 Parametrisierte Kurven..................... 3 1.2 Frenetkurven...........................

Mehr

Schein-Klausur. Analysis 2

Schein-Klausur. Analysis 2 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer Schein-Klausur Analysis 2 28. Juli 26 2. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Kapitel II Differentialgeometrie

Kapitel II Differentialgeometrie Kapitel II Differentialgeometrie Ê 7 Kurven und Flächen im 3 In diesem Paragraphen stellen wir die differentialgeometrischen Grundbegriffe Krümmung, Geodätische und Parallelverschiebung für Flächen im

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Vorlesung Klassische Differentialgeometrie

Vorlesung Klassische Differentialgeometrie Vorlesung Klassische Differentialgeometrie Ich werde mindestens die ersten Vorlesungen mit Beamer halten; die Folien sind auf meiner Homepage verfügbar. Die Vorlesung wird im Modus 4+2 angeboten. Lehramt-Studierende

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Erste und zweite Variation der Bogenlänge; Satz von Bonnet 1.Teil: Einleitung und Vorbereitung

Erste und zweite Variation der Bogenlänge; Satz von Bonnet 1.Teil: Einleitung und Vorbereitung echnische Universität Dortmund Fakultät für Mathematik Lehrstuhl VII: Differentialgeometrie Erste und zweite Variation der Bogenlänge; Satz von Bonnet.eil: Einleitung und Vorbereitung Seminar zur Vorlesung

Mehr

Modulteilprüfung Geometrie (BaM-GS, L3M-RF)

Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Prof. Dr. Martin Möller SoSe 2011 // 05. Juli 2011 Kontrollieren Sie, ob Sie alle Blätter (12 einschließlich zweier Deckblätter) erhalten haben, und geben Sie

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Fenchels Theorem. Daniel Weber. Proseminar Kurven. Wintersemester 2012/13. Prof. Dr. Franz Pedit

Fenchels Theorem. Daniel Weber. Proseminar Kurven. Wintersemester 2012/13. Prof. Dr. Franz Pedit Proseminar Kurven Wintersemester 212/13 Prof. Dr. Franz Pedit Inhaltsverzeichnis 1 Einleitung 2 2 Prolog 3 2.1 (Hemi-)Sphären.................................... 3 2.2 Groß- und Kleinkreise................................

Mehr

Differentialgeometrie

Differentialgeometrie Skriptum Differentialgeometrie mit Professor T. Grundhöfer Würzburg, 2001 c by M E ii Vorwort: To be or not to be So, noch eine kleine Bemerkung vorneweg: Für Hinweise auf Fehler, Verbesserungsvorschläge,

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr