Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt

Größe: px
Ab Seite anzeigen:

Download "Algebraische Geometrie 2 Lösungen zum Langen Übungsblatt"

Transkript

1 Karlsruher Institut für Technoloie (KIT) Institut für Alebra und Geometrie JProf. Dr. Gabriela Weitze-chmithüsen Dipl.-Math. André Kappes Alebraische Geometrie 2 Lösunen zum Lanen Übunsblatt Aufabe 1 (2 Punkte) Es sei pec(a) ein affines chema. eie, dass die Abbildun x {x} eine Bijektion zwischen pec(a) und den nichtleeren, abeschlossenen, irreduziblen Teilmenen von pec(a) liefert. Lösun: Es sei M die Mene der nichtleeren, abeschlossenen, irreduziblen Teilmenen von pec A. u zeien ist, dass Φ : pec A M, x {x} eine Bijektion ist. unächst ist Φ wohldefiniert, denn {x} ist irreduzibel und nichtleer, und damit auch der Abschluss von {x}. Als nächstes behaupten wir dass {x} = V(x) ilt. Denn wenn es p V(x) mit p {x} äbe, dann äbe es eine offene Umebun U pec A von p mit U {x} =. Insbesondere äbe es ein f A mit p D( f ) U. Also wäre x V( f ) und ween p V(x) würde f x p folen, ein Widerspruch. Also folt aus Φ(y) = Φ(x), dass y {x} = V(x) ist, und damit x y. Analo sieht man y x, also insesamt x = y. ei schließlich V M. Dann ist V = Φ(x) für ein x pec A, denn nach Vorlesun ist jede abeschlossene, nichtleere, irreduzible Mene von der Form V(x) = {x} für ein Primideal x A. Aufabe 3 (3 Punkte) Es sei ein chema mit einer offenen Überdeckun = i I i. Außerdem seien und chemata mit chemamorphismen f : und :. Wir setzen i = f 1 ( i ) und i = 1 ( i ). eie: ofern die Faserprodukte existieren, ilt für jedes i I i i i i. Lösun: Wir zeien zunächst folende Hilfsaussaen. Behauptun 1: Offene Immersionen sind Monomorphismen. ei i : U eine offene Immersion. Per Definition ist i also ein Isomorphismus auf sein Bild, dass ein offenes Unterschema von ist. eien a, b : U zwei weitere Morphismen mit ia = ib. i hat eine Inverse i 1 : i(u) U. Wenn wir diese auf die Gleichun ia = ib loslassen, so erhalten wir a = b. 1

2 Behauptun 2: Wenn η : ein chemamorphismus ist mit η() U und U eine offene Teilmene von ist, dann ibt es enau einen chemamorphismus θ : U mit η = i θ. Hierbei sei i : U die Inklusion und U werde zu einem chema durch die Restriktion i 1 O = O U = O U der trukturarbe von. Topoloisch definieren wir θ als η. Dann ist klar, dass θ steti ist. Weiter brauchen wir einen Garbenmorphismus θ # : O U θ O. Für eine offene Mene W U ist η 1 (U) = θ 1 (U). Also können wir θ # W : O U(W) = O (W) O (θ 1 (W)) = O (η 1 (W)) leich η # W wählen. Das liefert einen Garbenmorphismus. Da η # p für alle p lokal ist, und θ die Einschränkun von η auf U ist, ist auch θ # p für alle p lokal. Weiter ist nachzurechnen, dass η # = i (θ # ) i # ilt. Es sei W offen und s O (W). Dann ist i # W (s) = s U W O U (i 1 (W)) und i (θ # ) W (s U W ) = θ # U W (s U W) = η # U W (s U W) = η # (s) U W. Aber die Restriktion η O (W) η O (U W) ist die Identität, da η 1 (W) = η 1 (U W). Das zeit, dass η # = i (θ # ) i # ilt. Die Eindeutikeit folt mit Behauptun 1, denn i ist eine offene Immersion. Behauptun 3: i ist das Faserprodukt von mit i über. Wir müssen also zeien, dass es zu einem chema und p :, q : i mit p = ιq einen eindeutien Morphismus θ : i ibt mit ι θ = p und θ = q. θ p q i ι i ι Für z ilt q(z) i und ιq(z) = q(z) = p(z). Also ist p(z) i = 1 ( i ). Da i offen ist, erhalten wir nach Behauptun 2 einen eindeutien Morphismus θ : i, der ι θ = p erfüllt. Dieser brint auch das untere Dreieck zum Kommutieren, denn ιθ = ι θ = p = ιq. Da ι eine offene Immersion ist, ist ι nach Behauptun 1 ein Monomorphismus, also folt θ = q und wir haben Behauptun 3 ezeit. Behauptun 4: Die Verkettun zweier cartesischer Diaramme ist cartesisch. Dabei heiße ein Diaramm der Form 2

3 f cartesisch, wenn ilt. In diesem Fall macht man zuweilen auch ein in die Mitte des Diaramms. Die Behauptun lautet enauer: Wenn die beiden Diaramme q 2 W f f T cartesisch sind, dann auch q 2 W f f T um Beweis: eien ein chema A mit Morphismen r : A W und s : A eeben, so dass r = f f s ilt (siehe auch untenstehendes Diaramm). Umklammern zeit, dass f s : A und r : A W ein Paar von Pfeilen sind, auf die wir die UAE von anwenden können. Wir erhalten also enau einen Pfeil θ : A mit q 2 θ = r und θ = f s. Nun machen wir mit der UAE von weiter, was uns die Gleichun θ = f s erlaubt. Wir erhalten enau einen Morphismus ϑ : A mit ϑ = θ und ϑ = s. Also ist q 2 ϑ = q 2 θ = r. Damit ist ϑ : A ein Pfeil für die UAE von T W. Es bleibt zu zeien, dass es nicht zwei verschiedene Pfeile ϑ 1, ϑ 2 : A eben kann mit q 2 ϑ i = r und ϑ i = s für i = 1, 2. Aber dann wären ϑ i zwei Pfeile wie in der UAE von, denn und q 2 ( ϑ i ) = r ϑ i = f ϑ i = f s. Also ist ϑ 1 = ϑ 2 = θ ween der Eindeutikeit von θ. Nun schlät aber die UAE von zu. Follich ilt ϑ 1 = ϑ 2. 3

4 A θ r s ϑ W q 2 T f f Lösun der Aufabe: Nun folt die Aussae der Aufabe, indem man das Diaramm i i i i ι i i f ι betrachtet. Das linke Quadrat ist per Definition cartesisch und das rechte nach Behauptun 2. Mit Behauptun 3 folt, dass auch das esamte Rechteck cartesisch ist, d.h. links oben steht (bis auf kanonische Isomorphie) auch das Faserprodukt i, was zu zeien war. Aufabe 4 (4 Punkte) Es sei ein chema und K ein Körper. a) Extrahiere aus einem chemamorphismus pec(k) einen Punkt x und eine Körpererweiterun κ(x) K des Restklassenkörpers κ(x) = O,x /m,x. b) Konstruiere umekehrt zu jedem Paar (x, i), wobei x ein Punkt und i : κ(x) K eine Körpererweiterun ist, einen chemamorphismus pec(k). Die Mene Mor(pec(K), ) = (K) heißt die Mene der K-wertien Punkte von. Lösun: a) ei ϕ : pec K ein chemamorphismus. Da pec K = {(0)}, ist Bild(ϕ) = {x} einpunkti. Außerdem haben wir einen Garbenmorphismus ϕ # : O ϕ O K. Dieser induziert einen lokalen Morphismus ϕ # : O (0),x O K,(0) = K auf den Halmen. Also ist (ϕ # (0) ) 1 (m,x ) = (0) wobei m,x das maximale Ideal in O,x ist. Damit faktorisiert ϕ # über (0) einen Morphismus κ(x) = O,x /m,x K. Dieser ist nicht 0, sonst wäre ϕ # nicht lokal (0) ewesen, also ist er injektiv und damit eine Körpererweiterun von κ(x). b) Wir definieren einen Morphismus topoloisch durch ϕ((0)) = x. Das liefert eine stetie Abbildun. Den Garbenmorphismus ϕ # : O ϕ O K definieren wir folendermaßen. Für U mit x U ist ϕ # U : O (U) O K (ϕ 1 (U)) = O K ( ) notwendi der 0-Pfeil. Ansonsten, also für x U, sei ϕ # U die Komposition O (U) O,x O,x /m,x = κ(x) K, 4

5 wobei der letzte Pfeil durch i eeben ist. Mit der Tatsache, dass O,x der injektive Limes der O (U) (für U offen, x U) ist, folt, dass dies einen Garbenmorphismus liefert. Auf dem einzien Halm ist dieser lokal, denn O,x O K,(0) faktorisiert per Definition über κ(x) K, was bedeutet, dass (ϕ # x) 1 ((0)) = m,x ist. 5

1.6 Homomorphismen von Gruppen

1.6 Homomorphismen von Gruppen 16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft

Mehr

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung.

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung. 3.6. Exponentialabbildun. Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S ein Punkt. Zu eimen Tantialvektor v T p S betrachten wir die eindeutie Geodätische c : I S mit c0 p, c 0 v und maximalem

Mehr

5. Tutorium zur Analysis I für M, LaG und Ph

5. Tutorium zur Analysis I für M, LaG und Ph Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:

Mehr

9.A Kategorien, Limiten und Funktoren

9.A Kategorien, Limiten und Funktoren 9.A Kategorien, Limiten und Funktoren Die Sprache der Kategorien und Funktoren ist unabdingbar für viele Aussagen in der heutigen Mathematik. Sie ist formal und weniger als Selbstzweck anzusehen, sondern

Mehr

Grundlegendes zu Kategorien

Grundlegendes zu Kategorien Grundleendes zu Kateorien Jonathan Zachhuber 26. pril 2011 Der Vortra orientiert sich weitläui an [W05]. Manche nsätze sind aber aus [Kü09] und [HS90], sowie aus [MM07]. Deinition 1 (Kateorie): Eine Kateorie

Mehr

Übungsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösung -

Übungsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösung - Übunsblatt 2: Das Dornbusch-Fischer-Samuelson Modell - Lösun - Philipp Herkenhoff und Alexander Tarasov Aufabe 1: Nutzenmaximierun mit Cobb-Doulas Präferenzen Nutzen und das Budet sind eeben durch U =

Mehr

Coaching für den Wettbewerb

Coaching für den Wettbewerb 1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur

Mehr

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist.

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist. Prof. Dr. Annette Werner Algebraische Geometrie I (alias Algebra II) SS 05 Übungsaufgaben. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten

Mehr

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4 Wintersemester 2010/2011 Topologieseminar Faserbündel Michael Espendiller 16. Oktober 2010 Universität Münster - Inhaltsverzeichnis 1 Allgemeine Bündel 1 2 Morphismen und Schnitte 2 3 Faserbündel oder

Mehr

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Physik. Lösungsvorschläge zum 1. Übungsblatt Institut ür Analysis WS2017/18 Pro. Dr. Dir Hundertmar 30.10.2017 Dr. Michal Jex Höhere Mathemati I ür die Fachrichtun Physi Lösunsvorschläe zum 1. Übunsblatt Auabe 1: Vorbemerun Für, n N deiniert man

Mehr

Exakte Differenzialgleichungen

Exakte Differenzialgleichungen Exakte Differenzialleicunen In der nacfolenden Diskussion benötien wir die so. symmetrisce Darstellun einer Dl 1. Ordnun. Diese lautet (x, y) + (x, y)dy = 0. Dies entsprict im Falle (x, y) 0 der Dl y (x)

Mehr

Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche

Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche Über die Zerlegung eines Quadrats in Dreiecke gleicher Fläche Moritz W. Schmitt Blockseminar Pflasterungen Januar 2010 Gliederung 1 Einführende Bemerkungen 2 Grundlagen der Bewertungstheorie 3 Satz von

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos

Mehr

1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen

1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen 1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen Vereinbarung. In dieser Vorlesung sei ein Ring stets ein kommutativer Ring mit Einselement. Für einen Ringhomomorphismus φ

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik 1. - 15. September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten

Mehr

Eine wichtige Sache in der Geometrie sind Abstandsberechnungen. Den Abstand zweier Punkte A und B habe wir ja schon behandelt, es gilt:

Eine wichtige Sache in der Geometrie sind Abstandsberechnungen. Den Abstand zweier Punkte A und B habe wir ja schon behandelt, es gilt: 4 Abstandsberechnunen 4 Abstandsberechnunen ine wichtie Sache in der Geometrie sind Abstandsberechnunen. Den Abstand zweier unkte A und B habe wir ja schon behandelt, es ilt: d A,B Wir wollen nun den Abstand

Mehr

Lösungen zu Übungsblatt 1 Höhere Mathematik 1 WS 10/11 Prof. Dr.B.Grabowski. Zu Aufgabe 1. Zu Aufgabe 2

Lösungen zu Übungsblatt 1 Höhere Mathematik 1 WS 10/11 Prof. Dr.B.Grabowski. Zu Aufgabe 1. Zu Aufgabe 2 Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk Zu Aufabe 1 Zu Aufabe 2 1 Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk 2 Zu Aufabe 3 Se de Mene aller Studerenden

Mehr

Musterlösung zur Probeklausur zu Elemente der Algebra Prof. Dr. Helmut Maier, Hans- Peter Reck

Musterlösung zur Probeklausur zu Elemente der Algebra Prof. Dr. Helmut Maier, Hans- Peter Reck Musterlösung zur Probeklausur zu Elemente der Algebra Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 130 Punkte, 100 Punkte= 100 % 1. Es sei S 9 die symmetrische Gruppe der Ordnung 9 und ( )

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

3 Schemata. Affine Schemata, Schemata. Inhalt

3 Schemata. Affine Schemata, Schemata. Inhalt 1 3 Schemata Inhalt Affine Schemata, Schemata Einfache Eigenschaften von Schemata Prävarietäten als Schemata Rationale Abbildungen, Funktionenkörper Nicht algebraisch abgeschlossene Grundkörper Notationen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 8 Homomorphie- und Isomorphiesatz Satz 8.1. Seien G,Q und H Gruppen, es sei ϕ :G H ein Gruppenhomomorphismus und ψ : G Q ein surjektiver

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 13 Projektionen Zu einer direkten Summenzerlegung V = U 1 U 2 nennt man die Abbildung p 1 : V U 1, v 1

Mehr

Musterlösung für die Klausur Algebra I. vom

Musterlösung für die Klausur Algebra I. vom Prof. Dr. M. Rapoport A. Mihatsch Sommersemester 2016 Musterlösung für die Klausur Algebra I vom 21.07.2016 Aufgabe 1: (10) Sei A ein Ring mit Nilradikal n := Nil(A). Zeige die Äquivalenz folgender Aussagen.

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

4 Isomorphismen affiner und projektiver Ebenen

4 Isomorphismen affiner und projektiver Ebenen $Id: isomorphie.tex,v 1.3 2018/11/26 18:45:03 hk Exp $ 4 Isomorphismen affiner und projektiver Ebenen Wir haben gezeigt das alle Ternärkörper der projektiven Ebene PG(V ) über einem Vektorraum V isomorph

Mehr

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die ALGEBRAISCHE VARIETÄTEN MARCO WEHNER UND MAXIMILIAN KREMER 1. Strukturgarben Sei V k n. Wir wollen nur gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten:

Mehr

Lineare Darstellungen von Symmetrischen Gruppen

Lineare Darstellungen von Symmetrischen Gruppen Lineare Darstellungen von Symmetrischen Gruppen 150 232 (Holtkamp) 2st., Mi 12.00-14.00, NA 2/24 1 Beispiel 1. Freies Monoid über Alphabet X Beispiel 2. S 1, S 2, S 3,... Satz 1. (Bijektion zw. Partitionen

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik für Chemiker 1 Prof. J. Lipfert WS 018/19 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine maximale Reichweite

Mehr

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ 1 2 3 4 5 Σ Aufgabe 1 (i) X Menge, Äquivalenzrelation auf X, x, y X x y [x] = [y] [x] [y], X ist disjunkte Vereinigung aller Äquivalenzklassen (Letzte Aussage) Paarweise verschiedene Äquivalenzklassen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 11 Zerfällungskörper Wir wollen zu einem Polynom F K[X] einen Körper konstruieren, über dem F in Linearfaktoren zerfällt. Dies

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorlesung Kategorientheorie 2. Übung am

Vorlesung Kategorientheorie 2. Übung am Kategorientheorie 1 Vorlesung Kategorientheorie 2. Übung am 23.1.2018 Die Aufgaben 6 und 10 sind schriftlich zu lösen und spätestens zu Beginn der Übung abzugeben. Bemerkung: Die Aufgaben können sicher

Mehr

Seminar Kategorientheorie

Seminar Kategorientheorie Seminar Kategorientheorie Holger rnold 20. pril 2004 1 Kategorien Begrie: Kategorie, Objekt, Morphismus, kommutatives Diagramm, Monoid Deinition 1 (Kategorie) Eine Kategorie C = (Obj C, Mor C,, id) ist

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Einführung in die Algebraische Geometrie

Einführung in die Algebraische Geometrie Skript zur Vorlesung Einführung in die Algebraische Geometrie Sommersemester 2011 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Faserprodukte 1 2 Eigenschaften von Schemata und ihren

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Lösungshinweise Aufgabenblatt 5

Lösungshinweise Aufgabenblatt 5 Höhere Algebra Wintersemester 21/11 Prof. C. Schweigert Bereich Algebra und Zahlentheorie Fachbereich Mathematik, Universität Hamburg Lösungshinweise Aufgabenblatt 5 Aufgabe 1 1. Ja, denn sei Φ : M M surjektiv.

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Bernhard Werner Geometriekalküle WS 205/6 www-m0.ma.tum.de/geometriekalkuelews56 Lösunen zu Aufabenblatt 3 (8. November 205) Präsenzaufaben Aufabe. Dualisieren.

Mehr

Vektoralgebra. - Anwendungen: Geraden FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1

Vektoralgebra. - Anwendungen: Geraden FACHBEREICH BAUINGENIEURWESEN PROF. DR. PETER SPARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1 Vektralebra - Anwendunen: Geraden FACHBEREICH BAUINGENIEURWESEN ROF. DR. ETER SARLA & DR. BRITTA FOLTZ MATHEMATIK 1 1 Achtun! Dieses Flienskript sll den Studierenden einies an mechanischer Schreibarbeit

Mehr

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE)

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE) 006 AII.0 Geeben sind die reellen Funktionen f : x f x x : x f x mit ID f ID IR.. Zeien Sie, dass in der esamten Definitionsmene und f x f x 0 ilt und eben Sie die Bedeutun dieser Gleichun für den Graphen

Mehr

(sin φ +tan αcos φ) (4)

(sin φ +tan αcos φ) (4) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninhofen, M. Hummel Blatt WS 8/9 1.1.8 1. Wurf am Abhan. Sie stehen an einem Abhan, der den Steiunswinkel α hat, und wollen (4Pkt.) einen Stein

Mehr

Mathematische Grundlagen der Computerlinguistik Algebren

Mathematische Grundlagen der Computerlinguistik Algebren Mathematische Grundlagen der Computerlinguistik Algebren Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen math. Grundlagen 116 Algebren (algebraische Strukturen) Eine Algebra A ist eine Menge A

Mehr

Fairness und Netzinvarianten

Fairness und Netzinvarianten .4 Fairness und Netzinvarianten Formale Grundlaen der Informatik II Kap : Verifikation bei Petrinetzen (Teil 2) Seite d denken Ph idle 2 e essen active Ph 2 Ph Ph 5 Ph 5 2 5 5 Ph2 4 Ph4 Ph Ph 4 Formale

Mehr

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

Stabile Reduktion I. AG Deligne-Mumford, Winter 2014/2015. Fabian Januszewski. I d,

Stabile Reduktion I. AG Deligne-Mumford, Winter 2014/2015. Fabian Januszewski. I d, Stabile Reduktion I AG Deligne-Mumford, Winter 2014/2015 Fabian Januszewski 1 Blow-ups Es sei I eine kohärente Idealgarbe auf einem lokal noetherschen Schema X. Wir definieren die graduierte O X -Algebra

Mehr

Funktionentheorie auf Riemannschen Flächen

Funktionentheorie auf Riemannschen Flächen Funktionentheorie auf Riemannschen Flächen Universität Regensburg Sommersemester 2014 Daniel Heiß: 5: Maximale analytische Fortsetzung 20.05.2014 Abstract Zunächst werden Garben und weitere benötigte Begriffe

Mehr

Kategorientheorie. 1 Kategorien

Kategorientheorie. 1 Kategorien Kategorientheorie 1 Kategorien Eine Kategorie C besteht aus den folgenden Daten: (1) Einer Klasse (Menge) Ob(C) von Objekten. (2) Einer Menge Mor(C, D) zu jedem geordneten Paar (C, D) von Objekten C, D

Mehr

Übung 10 Körpererweiterungen

Übung 10 Körpererweiterungen Übung 10 Körpererweiterungen Mögliche Literatur: S. Bosch, Algebra, Seiten 84-95, 110-112 und 114-121 (Quelle für sämtliche Aufgaben - und fast alle Tipps - dieses Übungsblattes). Algebraische Erweiterungen

Mehr

Algebraische Topologie WS 2016/17 Kategorien und Funktoren

Algebraische Topologie WS 2016/17 Kategorien und Funktoren 6.132 - Algebraische Topologie WS 2016/17 Kategorien und Funktoren Martin Frankland 2.1.2017 Dieses Skript beschreibt einige Grundbegriffe der Kategorientheorie und Beispiele, die für algebraische Topologie

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht. 17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Moduln - Teil 1. Moduln und Modulhomomorphismen. Thomas Poguntke. 23. April Definition 1: Beispiele: Definition 2:

Moduln - Teil 1. Moduln und Modulhomomorphismen. Thomas Poguntke. 23. April Definition 1: Beispiele: Definition 2: Moduln - Teil 1 Thomas Poguntke 23. April 2010 Moduln und Modulhomomorphismen Es sei R ein kommutativer Ring. Definition 1: Ein R-Modul ist eine abelsche Gruppe (M, +) mit einer Skalarmultiplikation µ

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 6.132 - Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 Martin Frankland 17.11.2016 Aufgabe 1. Seien X und Y Räume. Zeigen Sie, dass Homotopie f g eine Äquivalenzrelation auf der Menge

Mehr

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber 18.11.2015 Inhaltsverzeichnis 1 Reduzibilität 2 1.1 G-Modul................................ 2 1.2 Orthonormalbasen..........................

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 14 Restklassenbildung Nach Satz 13.6 ist der Kern eines Ringhomomorphismus ein Ideal. Man kann umgekehrt zu jedem Ideal I R in

Mehr

3. Übungsblatt Lösungsvorschlag

3. Übungsblatt Lösungsvorschlag Algebraische Geometrie SoSe 2012 Prof. Dr. Urs Hartl Martin Brandenburg 3. Übungsblatt Lösungsvorschlag 2. Seien X 1, X 2 A n (k) algebraische Mengen. Zeigen Sie: (a) I(X 1 X 2 ) = I(X 1 ) I(X 2 ) (b)

Mehr

Komplexe Differenzierbarkeit und das Dirichlet-Problem

Komplexe Differenzierbarkeit und das Dirichlet-Problem RWTH Aachen Lehrstuhl A für Mathematik Komplexe Differenzierbarkeit und das Dirichlet-Problem Schriftliche Ausarbeitung im Rahmen des Seminars zur Fourieranalysis Betreuer: Prof. Dr. H. Führ Dipl.-Gyml.

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Spaltende Kettenkomplexe, Zylinder und Kegel

Spaltende Kettenkomplexe, Zylinder und Kegel Spaltende Kettenkomplexe, Zylinder und Kegel Tobias Columbus 25. November 28 Kettenkomplexe seien hier stets Kettenkomplexe von R-Moduln. Abbildungen seien Morphismen in der entsprechenden Kategorie. 1

Mehr

Anhang A Übungen. Übung 0 vom 24. April Aufgabe 1 Sei X ein topologischer Raum, A eine abelsche Gruppe und x X.

Anhang A Übungen. Übung 0 vom 24. April Aufgabe 1 Sei X ein topologischer Raum, A eine abelsche Gruppe und x X. Anhang A Übungen Übung 0 vom 24. April 2012 Aufgabe 1 Sei X ein topologischer Raum, A eine abelsche Gruppe und x X. { A, x U Die Wolkenkratzergarbe auf X ist definiert durch W(U) := {0}, x / U für U X

Mehr

und induziert eine Abbildung f : βx βy durch pr h f = h. Da h für alle h C(Y, I) stetig ist ist pr h f und damit f stetig.

und induziert eine Abbildung f : βx βy durch pr h f = h. Da h für alle h C(Y, I) stetig ist ist pr h f und damit f stetig. Eine Kompaktifizierung (Y ϕ) eines topologischen Raumes X ist ein kompakter Raum K mit einer injektiven Abbildung ϕ : X K für die ϕ(x) dicht in K ist und ϕ als Abbildung X ϕ(x) ein Homöomorphismus ist.

Mehr

2.13 Lokale Ringe und Lokalisierung

2.13 Lokale Ringe und Lokalisierung 2.13. LOKALE RINGE UND LOKALISIERUNG 71 Die Aussage (ii) des Satzes nennt man auch Satz von Bézout. 2.69 Definition. Ein Integritätshalbring R heißt euklidischer Ring, wenn es eine Abbildung d : R\{0}

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Eine Einführung in die Kategorientheorie

Eine Einführung in die Kategorientheorie 1 / 41 Eine Einführung in die Kategorientheorie RHO-Sommercamp, Waren Martin Haufschild 17. August 2009 2 / 41 Inhalt Wozu Kategorientheorie? Motivation: Direktes Produkt in Gruppen und top. Räumen Kategorien

Mehr

Übungen zur Vorlesung Lineare Algebraische Gruppen im Wintersemester 2012/13

Übungen zur Vorlesung Lineare Algebraische Gruppen im Wintersemester 2012/13 Übung 1.1. (k = k). Es sei k die multiplikative Gruppe und k die additive Gruppe. Welche Homomorphismen gibt es von jeder der algebraischen Gruppen k, k zu jeder der algebraischen Gruppen k, k? Übung 1.2.

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: ) Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s

Mehr

Algebraische Varietäten, diskrete Bewertungsringe und algebraische Kurven Vortragsausarbeitung

Algebraische Varietäten, diskrete Bewertungsringe und algebraische Kurven Vortragsausarbeitung Elliptic curves and the Weil conjectures (Seminar SS2016) Algebraische Varietäten, diskrete Bewertungsringe und algebraische Kurven Vortragsausarbeitung Kerstin Blomenhofer 6. Juni 2016 Inhaltsverzeichnis

Mehr

1 4. Algebraisch abgeschlossene Körper

1 4. Algebraisch abgeschlossene Körper 1 4. Algebraisch abgeschlossene örper Z iel: onstruktion einer kleinsten algebraisch abgeschlossenen örpererweiterung des örpers und Eindeutigkeit von bis auf -Isomorphie. 1 4. 1. Definition: Ein örper

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 56 Basiswechsel bei Tensorprodukten Lemma 56.1. Es sei K ein Körper und seien V 1,...,V n endlichdimensionale

Mehr

Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $

Affine und projektive Ebenen, WS 2018/2019 Mittwoch 9.1. $Id: trans.tex,v /01/10 10:54:32 hk Exp $ $Id: trans.tex,v 1.5 2019/01/10 10:54:32 hk Exp $ 7 Translationsebenen Wir hatten einen Unterkörper F Kern(K des Kerns eines Quasikörpers K zentral in K genannt wenn ab = ba für alle a K, b F gilt und

Mehr

Anwendungen der K-Theorie von C*- Algebren: AF-Algebren und die irrationale Rotationsalgebra

Anwendungen der K-Theorie von C*- Algebren: AF-Algebren und die irrationale Rotationsalgebra Anwendungen der K-Theorie von C*- Algebren: AF-Algebren und die irrationale Rotationsalgebra PD Dr. Alexander Alldridge Universität zu Köln VL C*-Algebren und K-Theorie, WS 2016/7 Köln, 8.2.2017 Inhalte

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.12 2016/12/01 19:00:20 hk Exp $ 2 Riemannsche Flächen 2.4 Direkte Limites und Halme von Garben Am Ende der letzten Sitzung hatten wir die Windungspunkte einer holomorphen Funktion

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 8

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 8 1. Aufabe Clapeyron'sche Gleichun dp dt = H schmelz T V schmelz M(Benzol) = 78,11 mol -1 ; M(Wasser) = 18,01 mol -1 1 atm 1,01325 10 5 Pa ; 1 cm 3 1 10 6 m 3 1 J 1 10 6 1,01325 10 5 atm cm 3 = 9,8692 atm

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Symplektische Geometrie

Symplektische Geometrie Symplektische Geometrie Def. Eine symplektische Form auf U R 2n ist eine geschlossene, nichtausgeartete 2-Differentialform. }{{}}{{} d.h. dω = 0 wird gleich definiert Wir bezeichnen sie normalerweise mit

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

LAII 2002 (Hiß) 22. Juli Liste auf

LAII 2002 (Hiß) 22. Juli Liste auf LAII 2002 (Hiß) Alexander Langer Wer dieses Skript vervollständigen möchte, findet die Sourcen auf www.s-inf.de 22. Juli 2002 Literatur 1. Liste auf http://www.math.rwth-aachen.de/laii2002/

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.6 2016/11/16 12:37:19 hk Exp $ 2 Riemannsche Flächen 2.2 Karten und holomorphe Funktionen auf Flächen Am Ende der letzten Sitzung hatten wir einige der Grundeigenschaften holomorpher

Mehr

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009 Vortrag 11: Der Satz von Bézout Friedrich Feuerstein, Christian Pehle 17. Juli 2009 1 Einleitung Ziel dieses Vortrages ist es zu zeigen, dass zwei Kurven vom Grad s bzw. t in der Ebene genau st Schnittpunkte

Mehr

Direktes Bild und Inverses Bild von D-Moduln

Direktes Bild und Inverses Bild von D-Moduln Direktes Bild und Inverses Bild von D-Moduln Konrad Voelkel 3. Juli 2009 Abstract Seien stets X, Y Top, f : X Y stetig und F Sh /X sowie G Sh /Y. Wir untersuchen nun, wie sich, mittels f, F als Garbe auf

Mehr

3.1 Affine Abbildungen, baryzentrische Koordinaten und das Teilverhältnis. In diesem Abschnitt betrachten wir affine Abbildungen in der Form

3.1 Affine Abbildungen, baryzentrische Koordinaten und das Teilverhältnis. In diesem Abschnitt betrachten wir affine Abbildungen in der Form Affine Geometrie 3 Eine erste Verallemeinerun der euklidischen Geometrie, bei der man auf die Orthoonalität der Transformationsmatrix verzichtet, führt auf den Beriff der affinen Geometrie. Eine wichtie

Mehr