Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Größe: px
Ab Seite anzeigen:

Download "Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität"

Transkript

1 Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber Inhaltsverzeichnis 1 Reduzibilität G-Modul Orthonormalbasen Vollständie Reduzibilität Maschkes Theorem 4 3 Schurs Lemma 5 4 Das Orthoonalitätstheorem Theorem und Beweis Wichtie Folerun

2 1 Reduzibilität 1.1 G-Modul Wiederholun Denition Sei G ein Gruppe. Ein G-Modul ist eine abel'sche Gruppe (M, +) mit der Bedinun, dass die Abbildun G M M, (, m) m homomorph ist. Ein Vektorraum V ist insbesondere eine abel'sche Gruppe bezülich der Addition und somit ein G-Modul, wenn die Abbildun (G V ) V, (, u) T ()u homomorph ist, wobei T () eine Darstellun von G ist. Reduzibilität und G-Modul Eine Darstellun heiÿt reduzibel, wenn es ein Submodul ibt, also einen Untervektorraum U V, welcher eschlossen ist unter den Operationen der Gruppe bzw. ihrer Darstellun: u U V T ()u U Sei nun {e i }, i = 1,..., m eine Basis von U. Wir können diese durch Basisvektoren {e i }, i = m + 1,..., m + n zu einer Basis von V erweitern, wobei diese Vektoren einen Unterraum W mit Dimension n aufspannen. Bezülich dieser Basis ist die darstellende Matrix D() zu einer linearen Transformation T eeben durch T ()e j = D ij ()e i Da U ein Submodul und damit eschlossen ist, haben die Basisvektoren aus U keine Komponenten in W. Die darstellende Matrix hat also die Einträe D ij = 0, wenn sowohl j = 1,..., m und i = m + 1,..., m + n ilt. Damit eribt sich, was wir über die Matrix D() bereits wussten: ( ) A() C() D() = 0 B() Wir werden später sehen, dass C() für endliche Gruppen null sein muss. 1.2 Orthonormalbasen Denitionen 1. Ein Vektor v V heiÿt Einheitsvektor, wenn v = Eine Basis {e i } von V aus Einheitsvektoren heiÿt Orthonormalbasis, wenn e i, e j = δ ij 2

3 Bemerkun Die Matrixelemente D ij einer linearen Transformation T, deniert durch die Gleichun T e j = D ij e i (siehe Vortra "Darstellunstheorie I "), sind eeben durch Weiterhin ilt: D ij = e i, T e j u, T v = u i D ij v j u, T v = u Dv bzw. wobei u = (u ) T 1.3 Vollständie Reduzibilität Zunächst wollen wir nun noch einmal zum Submodul und zur Reduzibilität zurückkommen. Wir können die Basis unserer Unterräume U V, W V orthonormal wählen. Dadurch würde jeder Vektor w W orthoonal zu jedem u U lieen. Insbesondere ist W damit das orthoonale Komplement von U, es ilt also: W = {w V w, u = 0 u U} Wenn nun nicht nur U eschlossen ist unter Gruppenoperationen, sondern auch W, so ist T () vollständi reduzibel. Bemerkunen 1. Wenn T () bezülich des ewählten Skalarprodukts unitär ist für alle G, so ist die Darstellun reduzibel, denn T ()w, u = w, T 1 ()u. Weiterhin ist T 1 () = T ( 1 ) und U unter Gruppenoperationen eschlossen, sodass mit T ( 1 )u = u U ilt: T ()w, u = w, u = 0 T ()w = w W Für unitäre T () ist als auch W eschlossen und damit T () eine vollständi reduzible Darstellun. Wir stellen weiterhin fest, dass damit D ij () = 0 für j = m + 1,..., m + n und leichzeiti i = 1,..., m. Also ist die Matrix C() = 0. 3

4 2 Maschkes Theorem Maschkes Theorem. Alle reduziblen Darstellunen von endlichen Gruppen sind vollständi reduzibel. Beweis. Für reduzible unitäre Darstellunen haben wir bereits esehen, dass sie vollständi reduzibel sind. Wir wollen nun zeien, dass wir für jede endliche Gruppe ein Skalarprodukt nden können, bezülich dessen die Darstellun unitär ist. Dieses Skalarprodukt werden wir im Folenden mit, G bezeichnen. Wir denieren es wie folt: v, v G := 1 [] mit v, v V. Sei nun h G. Dann ist T (h)v, T (h)v G = 1 [] = 1 [] T ()v, T ()v G T ()T (h)v, T ()T (h)v T (h)v, T (h)v Da h G, schreibe h =. Da die Summen und leich sind, ilt: T (h), v, T (h)v G = 1 T ( )v, T ( )v [] = v, v G Bemerkunen 1. Wenn wir wieder Martizen betrachten, so können wir T (h) darstellen durch eine unitäre Matrix D (h). Dazu wählen wir eine Orthoonalbasis {f i } bezülich unseres denierten invarianten Skalarprodukts (Gram-Schmidt). Die ersten m Basisvektoren sollen dabei U aufspannen. Es ilt nun: D (h) = SD(h)S 1, wobei S den Basiswechsel zwischen {f i } und {e i } beschriebt. D ist also äquivalent zu einer vollständi reduziblen Darstellun D. 2. Das Theorem ilt ebenso für unendliche, aber kompakte Gruppen. 4

5 3 Schurs Lemma Wir werden im Folenden sowohl mit Matrizen als auch mit linearen Operatoren im Allemeinen arbeiten. In der Notation unterscheiden sich diese wie folt: Matrizen: B Lineare Operatoren: ˆB Schurs erstes Lemma. Eine Matrix B, die mit allen Matrizen D() einer irreduziblen Darstellun kommutiert, muss ein Vielfaches der Einheitsmatrix sein: (BD() = D()B G) B = λ1 Alternativ: ( ˆBT () = T () ˆB G) ˆB = λe Beweis. Wir werden das Lemma in der zweiten Form beweisen, da Matrizen eine Teilmene der linearen Operatoren sind. Sei b ein Eienvektor von ˆB mit Eienwert λ: ˆBb = λb Dann ilt aufrund der vorausesetzten Kommutativität: ˆB(T ()b) = T () ˆBb = T ()λb = λt ()b Mit b ist also auch immer T ()b ein Eienvektor von ˆB und hat insbesondere denselben Eienwert. Die Eienvektoren b spannen nun einen Unterraum von U auf, welcher eschlossen ist unter den Operationen T () der Gruppe, also ist der Unterraum ein G-Modul. Da wir aber irreduzible Darstellunen efordert haben, existiert kein Submodul auÿer (a) U selbst und (b) dem Raum aus dem Nullvektor. Mit letzterem Fall müssen wir uns nicht beschäftien, da er unmölich ist, denn eine lineare Abbildun hat immer mindestens einen nicht-trivialen Eienvektor (auÿer der Nullabbildun, die wir aber nicht betrachten). Kommen wir also zum Fall (a): Wenn der Raum der Eienvektoren der anze Raum U ist, so ilt für alle u U: ˆBu = λu. Damit ilt ˆB = λe. 5

6 Schurs zweites Lemma. Für zwei inäquivalente irreduzible Darstellunen D,D ilt: (BD() = D ()B G) B = Ô bzw. für lineare Operatoren: ( ˆBT () = T () ˆB G) ˆB = Ô wobei Ô der Nulloperator bezülich U ist. Beweis. Wir müssen beim Beweis von Schurs zweitem Lemma verschiede Fälle von Dimensionen betrachten. Seien n := dim U und n := dim U. Fall n < n : Wenden wir T () ˆB auf einen beliebien Vektor u U an, dann ist nach Voraussetzun: T () ˆBu = ˆBT ()u Weiterhin wissen wir, dass U ein G-Modul ist, also T ()u U. Darum muss elten: T ()( ˆBu) ˆBU ˆBU ist also ein Submodul von U. Da wir efordert haben, dass die Darstellunen irreduzibel sind und deshalb auch U nicht weiter reduziert werden kann, muss nach den ersten Lemma ˆBU entweder der anze Raum U oder der Nullvektor 0 sein. Da dim U < dim U ist, kann das Bild von ˆB nicht der anze Raum sein. Also muss das Bild von ˆB der Nullvektor sein und somit ˆB = Ô. Fall n > n : In diesem Fall müssen wir für den Beweis den Kern K := {k U ˆBk = 0 } betrachten. Dieser Raum ist ein Submodul von U, denn ˆB (T () k) = T () ˆBk = 0 Weiterhin muss aufrund der Irreduzibilität der Darstellun auch U irreduzibel sein. Damit aber ist der Kern K entweder der anze Raum U oder der Nullvektor. Da die Dimension unter ˆB aber verrinert wird, kann der Kern nicht trivial 0 sein. Also ist der Kern K = U und damit ˆB = Ô Fall n = n : Wieder muss K ein Submodul von U sein. Jetzt ist der Fall K = 0 auseschlossen, weil die Darstellunen nicht äquivalent sein sollen. Also muss wieder K = U elten und damit ˆB = Ô 6

7 4 Das Orthoonalitätstheorem 4.1 Theorem und Beweis Orthoonalitätstheorem. Seien und D (ν) die Matrizen zweier irreduzibler Darstellunen. Dann ilt: ir ()D(ν) sj ( 1 ) = [] δ µν δ rs δ ij n µ Beweis. Seien zunächst U ν und U µ die G-Module zweier nicht äquivalenter, irreduzibler Darstellunen. Ohne Beschränkun der Allemeinheit seien die Indizes ν und µ positiv und anzzahli. Sei weiterhin  : U ν U µ eine lineare Abbildun. Wir denieren ˆB := T (µ) ()ÂT (ν) ( 1 ) Sei nun h G. Wir betrachten die Wirkun von T (µ) (h) auf ˆB: T (µ) (h) ˆB = = T (µ) (h)t (µ) ()ÂT (ν) ( 1 ) T (µ) (h)ât (ν) ( 1 ) Nun sei h =:. Damit können wir das Arument von T (ν) umschreiben zu 1 = 1 h. Dabei wechselt der Index der Summe einfach von zu, da über jedes Gruppenelement summiert wird: T (µ) (h) ˆB = T (µ) ( )ÂT (ν) ( 1 h) = T (µ) ( )ÂT (ν) ( 1 )T (ν) (h) T (µ) (h) ˆB = ˆBT (ν) (h) Wir sehen direkt, dass ˆB damit die Voraussetzun für Schurs zweites Lemma erfüllt und damit ˆB = Ô ilt, es sei denn, µ = ν. In dem Falle wären also die Darstellunen T (ν) und T (µ) leich und die Bedinun für Schurs erstes Lemma erfüllt, also würde elten ˆB = λe. In Matrixschreibweise erhalten wir also: B := () AD (ν) ( 1 ) = λ (µ) A δµν 1 (1) 7

8 Der Faktor λ (µ) A hänt nun noch von der Darstellun sowie der Wahl der Matrix A ab. Seien nur alle Einträe von A Null, auÿer A rs = 1. Wir können diese Eienschaft umschreiben zu A lm = δ lr δ ms. Weiterhin benennen wir λ (µ) A um zu λ rs (µ). Das Matrixelement B ij aus Gleichun (1) wird dann wie folt berechnet: B ij = ir ()D(ν) sj ( 1 ) = λ (µ) rs δ µν δ ij (2) Wir wollen nun noch λ (µ) rs alle i, j:,i bestimmen. Dazu setzen wir ν=µ und sumieren über ir ()D(µ) si ( 1 ) = ( ( 1 ) () ) sr = n µ λ (µ) rs (3) wobei n µ die Dimension der Matrix ist. Da aber ( 1 ) () = 1 ist, ilt für den sr-ten Eintra: ( ( 1 ) () ) sr = δ sr (4) Damit eribt die Summe über alle Gruppenelemente G entweder die Anzahl der Gruppenelemente [] oder 0, je nach s und r: ( ( 1 ) () ) = []δ sr rs Wenn wir nun (3) und (4) verleichen, so erhalten wir: []δ rs = n µ λ (µ) rs Füen wir unser Erebnis in (2) ein, so kommen wir zur Aussae des Theorems: ir ()D(ν) sj ( 1 ) = [] δ µν δ rs δ ij n µ 8

9 4.2 Wichtie Folerun Wir wollen das Orthoonalitätstheorem nun auf unitäre Darstellunen anwenden. Wie sehen zunächst: ir ()D(ν) sj ( 1 ) = [] δ µν δ rs δ ij n µ ir ()D(ν) js () = [] n µ δ µν δ rs δ ij (5) Betrachten wir die linke Seite dieser Gleichun. Wir stellen fest, dass wir die Summe über unsere [] Gruppenelemente unter der Annahme, dass wir die Indizes i und r konstant lassen, mit einem komplexen Skalarprodukt identizieren können zwischen den zwei Vektoren { ir ( 1), ir ( 2),..., ir ( [])} und {D (ν) js ( 1), D (ν) js ( 2),..., D (ν) js ( [])}. Da jeder Index n µ verschiedene Werte annehmen kann, ibt es insesamt n 2 µ verschiedene Vektoren, die aufrund von (5) alle orthoonal sind. Ebenso sehen wir anhand von (5), dass alle Vektoren der Darstellun orthoonal sind zu jedem Vektor einer anderen Darstellun D (µ ). Addieren wir die Anzahl aller mölichen orthoonalen Vektoren, so erhalten wir n 2 µ. In einem Raum der Dimension [] kann es aber maximal [] orthoonale µ (und damit linear unabhänie) Vektoren eben, sodass wir für die Dimensionen unserer Darstellunen folende Beschränkun erhalten: n 2 µ [] µ 9

10 Literatur [1] H.F. Jones, Groups, Representations and Physics, Adam Hiler Ltd.,

Grundlagen der Gruppentheorie

Grundlagen der Gruppentheorie Grundlaen der Gruppentheorie Eine Gruppe G besteht entsprechend ihrer Ordnun aus Elementen a, b, c,..., zwischen denen eine Multiplikationsoperation so definiert ist, 1. dass das Produkt beliebi zweier

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit.

Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Projektive Abbildungen, Beziehung zwischen anen und projektiven Räumen, Projektive Unabhängigkeit. Agnieszka Wenska 2008-02-19 1 Wir wissen bereits: Was projektive Räume und Unterräume sind Wie man die

Mehr

Elemente der Gruppentheorie

Elemente der Gruppentheorie Elemente der Gruppentheorie Tobias Sudmann 06.11.2006 Rolle der Gruppentheorie in der Physik abstraktes mathematisches Modell Symmetriebegriff historisch: Harmonievorstellung bei Plato, Pythagoras, Kepler,...

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

1 Grundlagen zur Darstellungstheorie

1 Grundlagen zur Darstellungstheorie Seminar Gruppen in der Physik SS 06 Vortrag 1 Gruppen und ihr Darstellung Matthias Nagl 1 Grundlagen zur Darstellungstheorie In diesem Vortrag wird es nur um lineare Darstellungen endlicher Gruppen in

Mehr

1.6 Homomorphismen von Gruppen

1.6 Homomorphismen von Gruppen 16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

Irreduzible Darstellungen von SU 2 (C)

Irreduzible Darstellungen von SU 2 (C) Irreduzible Darstellungen von SU 2 (C) Alessandro Fasse Email: fasse@thp.uni-koeln.de WS14/15 - Universität zu Köln 26.01.2015 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 2 2 Darstellungstheorie

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

5. Tutorium zur Analysis I für M, LaG und Ph

5. Tutorium zur Analysis I für M, LaG und Ph Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 9. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching November, 07 Erinnerung Ein Skalarprodukt ist eine Abbildung, : E n E n E, (v, w) v, w n k v kw k so dass:

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

Lineare Darstellungen von Symmetrischen Gruppen

Lineare Darstellungen von Symmetrischen Gruppen Lineare Darstellungen von Symmetrischen Gruppen 150 232 (Holtkamp) 2st., Mi 12.00-14.00, NA 2/24 1 Beispiel 1. Freies Monoid über Alphabet X Beispiel 2. S 1, S 2, S 3,... Satz 1. (Bijektion zw. Partitionen

Mehr

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung.

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung. 3.6. Exponentialabbildun. Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S ein Punkt. Zu eimen Tantialvektor v T p S betrachten wir die eindeutie Geodätische c : I S mit c0 p, c 0 v und maximalem

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Lineare Algebra I Ferienblatt

Lineare Algebra I Ferienblatt Wintersemester 09/0 Prof. Dr. Frank-Olaf Schreyer Dr. Janko Boehm Lineare Algebra I Ferienblatt. Sei, das Euklidische Skalarprodukt auf R. Das Kreuzprodukt a b von Vektoren a, b R ist durch die Formel

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Bernhard Werner Geometriekalküle WS 205/6 www-m0.ma.tum.de/geometriekalkuelews56 Lösunen zu Aufabenblatt 3 (8. November 205) Präsenzaufaben Aufabe. Dualisieren.

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 0. April 00 M. Schütz, Vorlesung Gruppentheorie

Mehr

3 Die Strukturtheorie der Vektorräume

3 Die Strukturtheorie der Vektorräume Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 3 Die Strukturtheorie der Vektorräume Sei V ein K-Vektorraum Sei v 1,...v r V endlich viele vorgegebene Vektoren. Definition: 1. Jeder Vektor

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30

Algebra für Informatiker, SS 10 Vorlesungsklausur, , 12:00-13:30 Algebra für Informatiker, SS 10 Vorlesungsklausur, 2.7.2010, 12:00-13:30 Name: Matrikelnr.:. (1) Es sind keine Unterlagen und keine elektronischen Hilfsmittel (Taschenrechner, Notebook, u.ä. ) erlaubt!

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

Proseminar: Darstellungstheorie von endlichen Gruppen. Vorläuges Programm

Proseminar: Darstellungstheorie von endlichen Gruppen. Vorläuges Programm Prof. Dr. S. Orlik WiSe 2011/12 MSc. Mark Kuschkowitz Proseminar: Darstellungstheorie von endlichen Gruppen Vorläuges Programm 27.10.: Wiederholung: Gruppen und Gruppenoperationen. (Literatur: Bücher über

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Aline Kaszuba, Lukas Böke 15. März 2016 Die folgende Diskussion

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

T2 Quantenmechanik Lösungen 7

T2 Quantenmechanik Lösungen 7 T2 Quantenmechanik Lösungen 7 LMU München, WS 7/8 7.. Lineare Algebra Prof. D. Lüst / Dr. A. Schmidt-May version: 28.. Gegeben sei ein komplexer Hilbert-Raum H der Dimension d. Sei { n } mit n,..., d eine

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

43 Unitäre Vektorräume

43 Unitäre Vektorräume 43 Unitäre Vektorräume 43 1 Zusammenfassung In diesem Paragrafen werden die gleichen Themen wie in 41 abgehandelt, jetzt allerdings für den komplexen Fall. Die Aussagen entsprechen sich weitgehend, daher

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Gruppentheorie in der Physik

Gruppentheorie in der Physik Gruppentheorie in der Physik Alexander Weiße Institut für Physik, Universität Greifswald, Germany Freitags, 8:30 10 Uhr, Raum A 202 Inhalt I Grundlagen & Einführung Motivation Definition einer Gruppe &

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Kap.2 Darstellungstheorie (allgemein)

Kap.2 Darstellungstheorie (allgemein) Stand 07.05.2004 Kap.2 Darstellungstheorie (allgemein) 2.0 Begriffe Lineare Darstellung D einer Gruppe G: Jedem Gruppenelement ist eine lineare Abbildung eines Vektorraums V (in der Regel über C) zugeordnet,

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2)

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2) TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 006/07 en Blatt 11 15.01.007 Basisdarstellung und das Skalarprodukt (Teil )

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

H. Stichtenoth WS 2005/06

H. Stichtenoth WS 2005/06 H. Stichtenoth WS 25/6 Lösungsvorschlag für das. Übungsblatt Aufgabe : Der gesuchte Unterraum U ist die lineare Hülle von v und v 2 (siehe Def. 5. und Bsp. 5.5b), d. h. U : Spanv,v 2 } v R : v λ v + λ

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Satz von Riemann-Roch

Satz von Riemann-Roch Satz von Riemann-Roch Paul Schwadke 6042140 12. Dezember 2011 Der Satz von Riemann sagt aus, dass in einem Funktionenkörper F/K vom Geschlecht g ein Divisor A Div(F ) der Ungleichung dim K L(A) dega +

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Darstellungstheorie endlicher Gruppen Charaktere

Darstellungstheorie endlicher Gruppen Charaktere Darstellungstheorie endlicher Gruppen Charaktere Ramon Braunwarth, Georg Grützner. März 016 Die folgenden Ausführungen sind eine geringfügig veränderte Exposition des Kapitels 13 aus [1]. Sei F ein algebraisch

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana.

Lineare Algebra. 5. Übungsstunde. Steven Battilana. Lineare Algebra 5. Übungsstunde Steven Battilana stevenb@student.ethz.ch November, 6 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen +: E E! E, (x, y) 7! x + y (Addition) : E E! E, (x, y) 7! x

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr