Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg

Größe: px
Ab Seite anzeigen:

Download "Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg"

Transkript

1 Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten Ableitunen folender Ausdrücke: a) y abx cdx Lösun a) bc ad cdx Lösun b) x x 1 Lösun c) x 1 x b) yarcsin x 1 x c) y1 x. Aufabe: Berechnen Sie die unbestimmten Interale: a) xsin x dx b) ln x dx c) 1 8 x dx Lösun a) xcos xsin xc Lösun b) xln x 1C Lösun c) arcsin x 8 C 3. Aufabe: Berechnen Sie die bestimmten Interale: a) axbcos x dx b) 1 e x cos xdx c) x dx

2 Lösun a) a 8 b Lösun b) cos x e x dx e x sin xcos x cos x e x dx [ e x sin xcos x ] 1 {e 1 e 1} 1,7 Lösun c) 1 1 x dx [ 1 ln x] 1475,88 4. Aufabe: Bilden Sie von der Funktion yx den Differenzenquotienten y x y x 1 y x x 1 x an der Stelle x 1 3. Dabei soll x die Werte ; 1; ;,9;,99; annehmen. Zeien Sie raphisch und arithmetisch, welchem Wert der Differenzenquotient zustrebt, wenn xx 1 x een Null strebt. An der Stelle x 1 3 ereben sich folende Funktionswerte: x 1,9,99 y / x ,9 5,99 y x xx 1 -x Aus der Darstellun lässt sich erkennen, dass der Differenzenquotient für x een Null der Zahl 6 zustrebt. Dabei ist zu beachten, dass der Differenzenquotient für x nicht definiert ist.

3 3 x lim 3 x 3 x lim x 1 x y x 1 yx x 1 x 3 x3 x lim 3 x 3 x x 1 3 lim 3 x 6 3 x 5. Aufabe: In ein Dreieck (b1, h6) ist ein Rechteck eineschrieben. a) Es ist die Fläche A dieses Rechtecks als Funktion von x auszudrücken. b) Bestimmen Sie den maximalen Wert von A. Die Fläche des Rechtecks als Funktion von x: A x h b x hx Nun werden die Extremwerte von A(x) esucht: x max b 5 LE Damit kann nun die maximale Fläche berechnet werden: A max 6 LE 1 LE 5 LE 5 LE 6 LE 15 LE 6. Aufabe: Die x-achse bedeutet die Grenze zweier Medien; in dem einen ist die Lichtquelle P(a,b). Ein Lichtstrahl, der sich in dem einen Medium (y>) mit der Geschwindikeit c 1 und in dem anderen Medium (y<) mit c fortbewet, durchläuft die Strecke PAQ in kürzester Zeit (Fermatsches Prinzip).

4 Berechnen Sie das Verhältnis sin sin. Zur Vereinfachun der Bezeichnun führen wir die Strecken s 1, e, s und f ein (siehe Abbildun). Die Laufzeiten des Lichtstrahles in den beiden Medien betraen: t 1 s 1 c 1 t s c t t 1 t Erebnis: c 1 c sin sin t s 1 c 1 s c 7. Aufabe: Die Gleichun für den Ausschla einer edämpften Schwinun sei se,3t sin3t, wobei t die Variable (Zeit) ist. Stellen Sie den Ausschla s und die Geschwindikeit v ds im Zeitbereich von t bis dt t5 rafisch dar und untersuchen Sie die Lae der Maxima und Minima. Die Geschwindikeit ist die erste Ableitun des Ausschlaes nach der Zeit: v d dt st 6e,3t{ 1 1 sin3tcos3t }

5 Gedämpfte Schwinun s v Zusammenfassun: Nullstellen k Z lokale Maxima k Z lokale Minima k Z t s, k 3 Ausschla s t v, 1 3 arcsin 1 11 k 3 t v, 1 3 arcsin k 3 Geschwindikeit v t v, 1 3 arcsin 1 11 k 3 t v, Max arcsin k 3 t v, Max arcsin 3 k 3 Die raphische Darstellun (vl. oben) zeit das typische Bild einer edämpften Schwinun - eine Sinuskurve mit sich ständi verrinernder Amplitude. Dabei stimmen die Nullstellen der Geschwindikeit mit den Extremstellen des Ausschlaes überein, jedoch lieen die Extremstellen der Geschwindikeit etwas vor den Nullstellen des Ausschlaes. Beides ist charakteristisch für eine edämpfte Schwinun. 8. Aufabe: Das von der Parabel yx, der x-achse und der Geraden x1 berenzte Flächenstück ist durch eine Senkrechte zur x-achse a) zu halbieren, b) im Verhältnis m:n zu teilen. Welche Gleichun hat die Senkrechte?

6 Die Gerade x teile den Flächeninhalt im Verhältnis m:n (Halbieren ist der Spezialfall mn1): A A 1 A 1 A x dx A 1 Allemeine 1 3 m nm Für den Spezialfall mn1 eribt sich: 1 x dx A x dx mn ,94 9. Aufabe: Es ist die Masse eines Stabes der Läne l1 m zu bestimmen, wenn die lineare Dichte des Stabes mit der Entfernun x von einem Ende des Stabes eeben ist durch x, x [ k m ] [k] 1. Aufabe: Es ist die Wärmemene Q zu berechnen, die durch einen Wechselstrom II sin t während einer Periode T in einem Leiter mit dem Ohmschen T Widerstand R entsteht.

7 Q T 1 R I T 11. Aufabe: Die Arbeit da, die von einem Gas eleistet wird, wenn es von dem Volumen V 1 bei konstanter Temperatur T auf das Volumen V 1 +dv ebracht wird, ist leich da R T dv, wobei R V die universelle Gaskonstante ist. Berechnen Sie die vom Gas eleistete Arbeit beim Überan vom Volumen V 1 zum Volumen V und diskutieren Sie das Erebnis für V 1 >V sowie für V 1 <V. A R T ln V V 1 Diskussion: V 1 >V eribt ln V V 1, damit folt A< Die eleistete Arbeit hat ein neatives Vorzeichen: Es wird vom Gas Arbeit eleistet. V >V 1 eribt ln V V 1, damit folt A> Die eleistete Arbeit hat ein positives Vorzeichen: Es wird am Gas Arbeit eleistet. 1. Aufabe: Ein Körper fällt im freien Fall aus der Höhe s 1 m auf den Erdboden. Welche Geschwindikeit besitzt der Körper zum Zeitpunkt des Aufschlaes, wenn er in der Höhe s ruhte? Nach welcher Zeit, emessen vom Zeitpunkt t des Loslassens des Körpers, schlät er auf dem Erdboden auf? Für ist der Wert 1 m s zu verwenden. Im Geensatz zur Aufabenstellun lassen wir die x-achse unseres Koordinatensystems nach unten zeien, damit haben wir s und s 1 1 m: s t v eeben: s 1 1 m 1 m s esucht: v 1, t 1 d s dv dt dt dv dt t 1 s Einsetzen in (1) liefert: v 1 s s

8 Einsetzen der Zahlen liefert: t 1 1 m 1m s s 1,41s v 1 1 m 1 m s 1 m s 1 14,1 m s 1 5 km h 1

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik BERUFSAKADEMIE SACHSEN Staatliche Studienakademie Leipzig Prof. Dr. Ingolf Brunner Studienrichtung Informatik Brückenkurs Mathematik 12. - 15. September 2011 Sie möchten Informatik studieren? Dann ist

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

Mathematische Modellierung Lösungen zum 2. Übungsblatt

Mathematische Modellierung Lösungen zum 2. Übungsblatt Mathematische Modellierun Lösunen zum 2 Übunsblatt Klaus G Blümel Lars Hoeen 3 November 2005 Lemma 1 Unter Vernachlässiun der Luftreibun beschreibt ein Massepunkt, der im Punkt 0, 0) eines edachten Koordinatensystems

Mehr

Addieren und Subtrahieren kann man nur Größen gleicher Dimension.

Addieren und Subtrahieren kann man nur Größen gleicher Dimension. 9 Dimensionsanalyse Wir haben bis jetzt Variablen oder Konstanten betrachtet und uns nie Gedanken über die Einheiten emacht. Wir können neben Länen auch Massen, Kräfte oder Zeiten haben. Diese physikalischen

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik für Chemiker 1 Prof. J. Lipfert WS 018/19 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine maximale Reichweite

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE)

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE) 006 AII.0 Geeben sind die reellen Funktionen f : x f x x : x f x mit ID f ID IR.. Zeien Sie, dass in der esamten Definitionsmene und f x f x 0 ilt und eben Sie die Bedeutun dieser Gleichun für den Graphen

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

K l a u s u r G k P h 11

K l a u s u r G k P h 11 K l a u s u r G k P h Aufabe a) Aus welcher Höhe muß ein Körper frei fallen, damit er mit der Geschwin- dikeit auf den Boden aufschlät? v 8 km h b) Wie lane dauert der freie Fall des Körpers? Aufabe 2

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Aufgabe 2: Analysis (WTR)

Aufgabe 2: Analysis (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 2 a) (1) STARTPUNKT BERECHNEN Der x Wert des Startpunktes ist mit 8 gegeben. Der zugehörige y Wert ist 8 1 50 8 3 106 8 4,24. 4 25 Der Startpunkt liegt

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7

Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2016): Differential und Integralrechnung 7 7.1 (Herbst 2015, Thema 1, Aufgabe 4) Gegeben sei das Dreieck und die Funktion f : R mit Bestimmen Sie f(

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Kunming Metallurgy College Mathematik 2. Semester Frühjahr Skript Übungen Vokabular DE CH

Kunming Metallurgy College Mathematik 2. Semester Frühjahr Skript Übungen Vokabular DE CH Kunming Metallurgy College Mathematik. Semester Frühjahr 05 Skript Übungen Vokabular DE CH Autor: Herbert Müller herbert-mueller.info) Quellen: Mathematik-Aufgaben-Sammlung. Semester der Hochschule Anhalt

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

Protokoll M1 - Dichtebestimmung

Protokoll M1 - Dichtebestimmung Protokoll M1 - Dichtebestimmun Martin Braunschwei 15.04.2004 Andreas Bück 1 Aufabenstellun 1. Die Dichte eines Probekörpers (Kuel) ist aus seiner Masse und den eometrischen Abmessunen zu bestimmen. Die

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung

Abiturprüfung Mathematik 13 Technik A II - Lösung GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie

Mehr

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }. Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

Hauptprüfung 2007 Aufgabe 3

Hauptprüfung 2007 Aufgabe 3 Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ].

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. 73. a) dx = d x = [x] = = b) sin x dx = [ cos x] = cos + cos ( ) = ( ) + ( ) = Hinweis: Dieses Ergebnis folgt auch aus der Punktsmmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. e

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mathematik BeispielAbiturprüfung Prüfungsteile A und B (CAS) Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrachten Prüfungsleistungen hat sich für jede

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Einfache eindim. Bewegungen unter Krafteinwirkung

Einfache eindim. Bewegungen unter Krafteinwirkung Einfache eindim. Beweunen unter Krafteinwirkun N. Peters, A. Oettin, C. Janetzki (Dr. W. Seifert) 4. Noember 203 Senkrechter Wurf und Fall im D Für den senkrechten Fall und Wurf (x-achse nach oben) ilt

Mehr

Wiederholung: Differential- und Integralrechnung1

Wiederholung: Differential- und Integralrechnung1 Wiederholung: Differential- und Integralrechnung. Richtig, der Differenzenquotient ist die Steigung der Sekante. Durch den Grenzübergang erhält man die Steigung der Tangente (= Differentialquotient. Falsch,

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

Physik 1 für Maschinenwesen Probeklausur 1. Semester

Physik 1 für Maschinenwesen Probeklausur 1. Semester Physikdepartment E3 TU München Physik für Maschinenwesen Probeklausur. Semester Prof. Dr. Peter Müller-Buschbaum 6.0.0, 7:00 h 8:00 h Name Vorname Matrikelnummer Hiermit bestätie ich, die vorlieende Klausur

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik) Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems!

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems! Aufgaben zur Prüfungsvorbereitung Komplex 1 - Grundlagen der Mathematik 1.1.) Führen Sie die Polynomdivision aus! x 5 3 x x 3 x 19 x8 : x 5 x 3 1.) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen

Mehr

System: Das mathematische Pendel

System: Das mathematische Pendel System: Das mathematische Pendel Verhaltensbeschreibun durch eine Formel (für die Größen) Zuan zur Formel Nutzun der Formel Näherun Datennahme Beispiel für modulares Vorehen Benötites und Benutztes: (Winkel

Mehr

MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL

MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL ALYSIS DIFFERENTIALRECHNUN HNUNG Autor: W. Fraunholz, J. Dillinger 2005 by TR-Verlagsunion GmbH, München... Name Straße Ort Kolleggruppe Bitte verwenden

Mehr

1. Di erenzialrechnung für Funktionen einer Veränderlichen

1. Di erenzialrechnung für Funktionen einer Veränderlichen . Di erenzialrechnung für Funktionen einer Veränderlichen. estimmen Sie die Grenzwerte a) x + x lim x! x d) x + x lim x! x ; b) lim x! ; e) lim x! x x x + x + ; x + x x x. x x c) lim x! x + ; e an.. estimmen

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Coaching für den Wettbewerb

Coaching für den Wettbewerb 1. Bayreuther Ta der Mathematik 08. Juli 006 Klassenstufen 7-8 Aufabe 1: Die Zwilline Peter und Michael besuchen dieselbe Klasse. Beide verlassen morens leichzeiti das Haus und benutzen denselben We zur

Mehr

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 Frae 1 ( Punkte) Der skizzierte Mechanismus besteht aus drei Stäben, die über Drehelenke miteinander verbunden sind. Der Stab 1 wird mit der konstanten Winkeleschwindikeit ω 1 anetrieben. 3

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

(sin φ +tan αcos φ) (4)

(sin φ +tan αcos φ) (4) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninhofen, M. Hummel Blatt WS 8/9 1.1.8 1. Wurf am Abhan. Sie stehen an einem Abhan, der den Steiunswinkel α hat, und wollen (4Pkt.) einen Stein

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Zweite Schularbeit Mathematik Klasse 7A G am

Zweite Schularbeit Mathematik Klasse 7A G am Zweite Schularbeit Mathematik Klasse 7A G am 14.01.2016 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe.0 Gegeben sind die reellen Funktionen f mit dem Funktionsterm f a ( x) wobei x, a IR und a 0. = x a x a x, Teilaufgabe.

Mehr

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003 Übunen zur Physikvrlesun für Wirtschaftsinenieure WS2003 Lösunsvrschläe zum Übunsblatt 2 1. Ein June verma einen Schlaball unter einem Abwurfwinkel vn 30 52m weit zu werfen. Welche Weite könnte er bei

Mehr