Angewandte Aufgaben für lineare Gleichungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Angewandte Aufgaben für lineare Gleichungen"

Transkript

1 Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/5 Angewandte Aufgaben für lineare Gleichungen Gleichungen sind ein Hilfsmittel, mit dem schwierige Probleme systematisch in lösbare Teilprobleme zerlegt werden können. Man gibt der unbekannten Grösse einen Namen und schreibt auf, was diese Grösse für Beziehungen mit anderen (bekannten) Grössen hat - man tut, wie wenn man sie kennen würde. Steht die Gleichung einmal, muss man nur noch richtig rechnen, um zur Lösung zu gelangen. Der Lösungsvorgang gliedert sich in folgende Schritte: a) Aufgabe verstehen b) Unbekannte Grösse für Gleichung wählen c) Gleichung aufstellen. Dabei wird die in der Aufgabe gegebene Information sorgfältig in mathematische Ausdrücke übersetzt. Am Schluss nochmals kontrollieren! d) Gleichung lösen e) Resultat in die ursprüngliche Aufgabe einsetzen und Richtigkeit überprüfen. f) Kontrollieren, was in der Aufgabe gefragt ist! Das muss nicht dasselbe sein wie die Lösung der Gleichung. Tips: Aufgaben, in denen die Zeit vorkommt, löst man häufig am besten über die Geschwindigkeit bzw. Leistung. Geschwindigkeiten addieren sich bei gleichzeitiger Tätigkeit, Ausführungszeiten nicht! Bei Mischungsrechnungen die Gleichung für die Menge eines der reinen Inhaltsstoffe aufstellen. 1. Ein Vater ist 40 Jahre alt, sein Sohn 16 Jahre. In wie vielen Jahren wird der Vater doppelt so alt sein wie sein Sohn? x: Anzahl Jahre Gleichung: 40 + x = 2 (16 + x), Lösung x = 8 2. Eine 42-jährige Mutter hat eine 12-jährige Tochter. In wievielen Jahren wird die Mutter dreimal so alt sein wie ihre Tochter? x: Anzahl Jahre Gleichung: 42 + x = 3 (12 + x), Lösung x = 3 3. Ein Rechteck hat einen Umfang von 240 mm. Die Länge ist um 34 mm grösser als die Breite. Wie lang sind die Seiten des Rechtecks? x: Breite, dann ist die Länge x + 34 Gleichung: 2 (x + (x + 34)) = 240, Lösung x = 43, Seiten 43mm und 77mm. 4. In einem Rechteck hat die Seite a eine Länge von 7 cm. Verkürzt man a um 2 cm und verlängert gleichzeitig b um 2 cm, verkleinert sich die Fläche um 2 cm². Wie lang war Seite b im ursprünglichen Rechteck? Ursprüngliches Rechteck: Seiten a = 7 und b = x, Fläche 7x. Fläche nach der Veränderung: (7 2) (x + 2) = 7x - 2, Lösung x = 6 5. Ein Fisch von 54 kg wird in 3 Teile zerlegt. Der Kopf wiegt 10 kg, der Rumpf doppelt so viel wie Kopf und Schwanz zusammen. Wie schwer ist jeder Teil? Kopf = 10, Schwanz = x, Rumpf = 2 (10 + x) Gleichung: 10 + x + 2 (10 + x) = 54, Lösung x = 8

2 Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 2/5 6. Ein Kunde erhält 5% Rabatt. Gäbe es nur 4% Rabatt, müssten 2.50 mehr bezahlt werden. Wie teuer war die Ware? x: Preis Gleichung: 0.95x = 0.96x, Lösung x = Eine Hausfrau kauft für total 5 Franken je 1 kg Kartoffeln, Aepfel und Bohnen. Die Aepfel kosten 8x und die Bohnen 3½x so viel wie die Kartoffeln. Wieviel kostet 1 kg jeder Sorte? x: Preis der Kartoffeln Gleichung: 8x + 3.5x + x = 5, Lösung x = 0.40, etc. 8. Ein Mann kauft 15 kg Nägel und 1 kg Schrauben für total Franken. 1 kg Schrauben kostet 2½ mal soviel wie 1 kg Nägel. Wieviel kostet 1 kg jeder Sorte? x: Preis der Nägel Gleichung: 15x + 2.5x = 87.50, Lösung x = 5, etc. 9. Der Weg von A nach D über B und C ist 90 km lang. B liegt von C 5x so weit entfernt wie B von A, C liegt von D 4x so weit entfernt wie A von B. Wie weit ist A von B entfernt? x: Entfernung AB Gleichung: x + 5x + 4x = 90, Lösung x = Ein Brückenpfeiler ist 24 m lang. Der Teil, der im Erdboden versenkt ist, ist doppelt so lang, der aus dem Wasser herausragende Teil fünfmal so lang wie der Teil, der sich im Wasser befindet. Wie tief ist der Fluss? x: Teil im Wasser Gleichung: 2x + x + 5x = 24, Lösung x = Zwei Radfahrer A und B fahren von den Orten P und Q, deren Entfernung 140 km beträgt, mit konstanter Geschwindigkeit einander entgegen. A legt in der Stunde 12.5 km zurück, B 15.5 km. Nach wie viel Stunden Fahrt kreuzen sie einander? Wie weit liegt dieser Punkt von P entfernt? x = Zeit in h bis Treffen, Weg = Geschwindigkeit Zeit Gleichung: 12.5x x = 140, Lösung x = 5, = 62.5km 12. Zwei Autos fahren von München und dem 360 km entfernten Mannheim gleichzeitig ab und einander entgegen. Das Münchner Auto legt in der Stunde 120 km zurück, das Mannheimer Auto 105 km. Nach wie viel Stunden Fahrt kreuzen sie einander? Wie weit liegt dieser Punkt von München entfernt? x: Zeit in h bis Treffen, Weg = Geschwindigkeit Zeit Gleichung: 120x + 105x = 360, Lösung x = 1.6 1h 36min, = 192km 13. Ein Schiff verlässt um 8 Uhr den Hafen mit einer Geschwindigkeit von 32 km/h. 4½ Stunden später fährt ein zweites Schiff mit 35 km/h dem ersten hinterher. Um welche Zeit holt das zweite Schiff das erste ein, und wie weit ist dieser Punkt vom Hafen entfernt? Gleich ist die bis zum Einholen zurückgelegte Distanz. Zurückgelegter Weg = Geschwindigkeit Zeit. x: Fahrzeit in h des ersten Schiffes bis zum Einholen Gleichung: 32x = 35 (x 4.5), Lösung x = 52.5, 12:30 2 Tage später, 1680km

3 Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 3/5 14. Ein Schiff verlässt einen Hafen in Japan mit einer Durchschnittsgeschwindigkeit von 40 km/h, um einen Hafen in Südamerika in 8900 km Entfernung anzulaufen. Von diesem Hafen fährt 1 Tag und 6 Stunden später ein Schiff mit 50 km/h auf der gleichen Route nach Japan. Wie viele Tage und Stunden nach Abfahrt des ersten Schiffes sind die Schiffe 500 km voneinander entfernt? x: Fahrzeit in h des ersten Schiffes bis zur Entfernung 500km vom anderen Schiff Gleichung: 40x (x 30) = 8900, Lösung x = Tage 14h 15. Zwei Männer gehen jeden Tag von A nach B zur Arbeit. Der erste legt pro Minute 66 m zurück, der zweite 80 m. Der erste geht 10 Minuten früher fort. Kann der zweite den ersten einholen? Wenn ja, nach wie vielen Minuten? x: Marschzeit des zweiten Mannes bis zum Einholen in min Gleichung: 80x = 66 (x + 10), Lösung x = 47.14min (gerundet) 16. In einen Wasserbehälter münden drei Zuflussrohre. Das erste Rohr allein füllt den Behälter in 10 Minuten, das zweite allein in 18 Minuten, das dritte allein in 22 Minuten. In welcher Zeit wird der Behälter gefüllt, wenn alle drei Rohre gleichzeitig offen sind? x: Zeit (min) bei allen drei Rohren Leistung des ersten Rohres: 1/10 Behälter/min Leistung des zweiten Rohres: 1/18 Behälter/min Leistung des dritten Rohres: 1/22 Behälter/min Leistung zusammen: 1/x Behälter/min Gleichung: 1/10 + 1/18 + 1/22 = 1/x, Lösung x = 990/ (gerundet) 17. Ein Behälter fasst 860 l und hat 3 Zuflüsse A, B und C. A liefert in 2 Minuten 17.2 l, B in 3 Minuten 12.9 l und C in 14 Minuten 43 l. Wie lange dauert es für alle Zuflüsse zusammen, bis der Behälter voll ist? x: Zeit (min) bei allen drei Rohren Leistung des Rohres A: 17.2/2 l/min Leistung des Rohres B: 12.9/3 l/min Leistung des Rohres C: 43/14 l/min Gleichung: (17.2/ /3 + 43/14) x = 860, 15.97x = 860, Lösung x = min (gerundet) 18. Ein Wasserbehälter hat zwei Zuflüsse A und B und einen Abfluss C. A allein füllt den Behälter in 80 Minuten, B in 90 Minuten. C entleert den vollen Behälter in 60 Minuten. Wie lange dauert der Füllvorgang bei geöffnetem Abfluss? x: Zeit in min für Füllvorgang Leistung des Rohres A: 1/80 Behälter/min Leistung des Rohres B: 1/90 Behälter/min Leistung des Ablaufs C: 1/60 Behälter/min Leistung zusammen: 1/x Behälter/min Gleichung: 1/80 + 1/90-1/60 = 1/x, Lösung x = 144 Diese Aufgabe kann auch ohne Gleichung gelöst werden, indem man berechnet, welcher Bruchteil des Behälters pro min mehr ein- als ausfliesst.

4 Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 4/5 19. Ein Wasserbehälter fasst 30 l. Er ist 30 cm breit und 50 cm lang. Wieviel Wasser enthält er, wenn der Wasserspiegel vom Boden 10 cm weiter entfernt ist als von der Oberkante? 1l 1dm³. Der Behälter ist 30/3/5 = 2dm tief. x: Entfernung des Wasserspiegels von der Oberkante in cm Entfernung vom Boden in cm: x + 10 Höhe 20cm, also Gleichung (x + 10) + x = 20, Lösung x = 5, 22.5l. 20. Der Kohlenvorrat für eine Anzahl Heizkessel reicht 5 Wochen. Werden drei Kessel ausser Betrieb genommen, reicht der Vorrat für 7½ Wochen. Wieviele Kessel sind im ganzen vorhanden? (Tip: wie lange für 1 Kessel?) x: Anzahl Kessel Kessel Wochen = konstant, Für 1 Kessel reicht der Vorrat für 5x Wochen. Gleichung 5x = 7.5 (x 3), Lösung x = Ein Bauer muss 38 Kühe wegen Futtermangels verkaufen, weil der Vorrat sonst statt für 8 Wochen nur für 6 Wochen gereicht hätte. Wie viele Kühe besass er? x: Anzahl Kühe Kühe Wochen = konstant. Für x Kühe reicht es für 6 Wochen, für x - 38 Kühe für 8 Wochen. Gleichung 6x = 8 (x 38), Lösung x = Diese Aufgabe weglassen! Um Meerestiefen zu messen, wird das Echolot benutzt. Der Schallerreger befindet sich auf der einen Bordseite, der Schallempfänger auf der anderen Bordseite; die Schiffsbreite beträgt 16 m. Der Schall pflanzt sich im Wasser mit einer Geschwindigkeit von 1510 m/s fort. Wie gross ist die Wassertiefe für eine Laufzeit von 0.1 Sek.? Zurückgelegter Weg in 0.1sec: 151m Das ist die 2x die Hypotenuse eines rechtwinkligen Dreiecks mit der halben Schiffsbreite als einer Kathete und der Wassertiefe als der anderen. x: Wassertiefe Gleichung: 8² + x² = (151/2)², Lösung x = 75 (gerundet) 23. Ein Mann braucht 21 Tage, um eine Flasche auszutrinken. Wenn ihm seine Partnerin dabei hilft, ist die Flasche nach 14 Tagen leer. Wie lange hätte die Frau allein? x: Anzahl Tage der Frau Tages-Trinkleistung des Mannes: 1/21 Tages-Trinkleistung der Frau: 1/x Gleichung: 1/21 + 1/x = 1/14, Lösung x = A braucht für eine bestimmte Arbeit allein 8 Tage, B 9 Tage, C 10 Tage und D 11 Tage. Wie lange dauert es, wenn alle vier gleichzeitig arbeiten? x: Zeit zusammen Gleichung: 1/8 + 1/9 + 1/10 + 1/11 = 1/x, Lösung 2.34 Tage (gerundet) 25. Eine Arbeit wird von Arbeiter A allein in 7 Tagen 4 Stunden, von A und B zusammen in 3 Tagen ausgeführt. Wie lange hätte B allein? (1 Tag = 8 Stunden) x: Zeit von B Gleichung: 1/60 + 1/x = 1/24, Lösung x = 40h 3 Tage 4h

5 Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 5/5 26. Hans braucht für eine Arbeit 9 Tage. Nachdem er schon 4 Tage allein gearbeitet hat, hilft ihm Fritz, und nach 2 Tagen ist alles fertig. Wie lange würde Fritz allein für die ganze Arbeit brauchen? x: Zeit von Fritz Leistung Hans: 1/9 Arbeiten/Tag, Arbeitszeit Hans: = 6 Tage Leistung Fritz: 1/x Arbeiten/Tag, Arbeitszeit Fritz 2 Tage Gleichung: 6 1/ /x = 1 Arbeit, Lösung x = Wieviel Wasser muss 200 g einer 30%-igen Salzlösung zugesetzt werden, damit der Salzgehalt 17% beträgt? x: Wassermenge in g Salzmenge: = 0.17 (200 + x), Lösung x = 153g (gerundet) alternativ: Wassermenge: x = 0.83 (200 + x) 28. Ein Apotheker will aus 5 l 90%-igem Alkohol und 10 l 45%-igem Alkohol durch Hinzufügen von Wasser 42%-igen Alkohol herstellen. Wieviel Wasser muss er zusetzen? x: Wassermenge in l Alkoholmenge: = 0.42 ( x), Lösung x = 6.43 (gerundet) alternativ: Wassermenge: x = 0.58 ( x) 29. Mischt man 12 l Wasser mit 15 l Alkohol, so ist die Mischung 32%-ig. Wie stark war der benutzte Alkohol? x: Konzentration Alkoholmenge: 15x = 0.32 ( ), Lösung x = 0.576, also 57.6% 30. Wie viel 72%-igen Alkohol muss man mit 435 cm³ 32%-igem Alkohol mischen, um 42%-igen Alkohol zu erhalten? x: Menge in cm³ Alkoholmenge: 0.72x = 0.42 (x + 435), Lösung Ein Drogist hat 1.5 l Eierlikör mit 20% Alkoholgehalt. Wieviele cm³ 96%-igen Alkohol muss er zusetzen, damit der Eierlikör 35%-ig wird? x: Menge in cm³ Alkoholmenge: x = 0.35 ( x), Lösung (gerundet) 32. Wieviel Säure der Dichte 1.15 g/cm³ und wieviel Säure mit 1.2 g/cm³ ergeben zusammen 2.5 l mit 1.17 g/cm³? Dichte = Gewicht/Volumen. x: Menge Säure mit 1.15 g/cm³ in cm³ Dann ist die Menge der anderen Säure 2500 x. Das Gewicht bleibt erhalten: Gleichung 1.15x (2500 x) = , Lösung x = 1500

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21.

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Gleichungen mit einer Variablen

Mehr

AUFNAHMEPRÜFUNG BERUFSMATURA 2013 LÖSUNGEN MATHEMATIK

AUFNAHMEPRÜFUNG BERUFSMATURA 2013 LÖSUNGEN MATHEMATIK Berufsfachschulen Graubünden 3. April 03 AUFNAHMEPRÜFUNG BERUFSMATURA 03 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten Hinweise: Löse die Aufgaben auf den beigelegten leeren Blättern. Alle Lösungsblätter sind

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Übung 15. Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit:

Übung 15. Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit: Übung 15 Name: Abgabe: 23.05.05 Geschätzte Bearbeitungszeit: Pflichtaufgabe 1 Im Getränkemarkt kostet eine 0,7 l Flasche Mineralwasser 0,34. Dazu kommen pro Flasche 15 Cent Pfand. a) Ermittle durch einen

Mehr

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444

60 h+ 9. = 0.01679 60min = 1.0074 min = 1min + 0.0074min = 1min + 0.0074 60s = 1min + 0.444s = 1:00.444 Seiten 5 / 6 / 7 Berechnungen mit s, v und t Seiten 3 / 4 Umrechnen von Geschwindigkeit und Zeitangaben 1 km h 36 9 158 83 30.96 50 120 54 140.4 m s 10 2.5 43.89 23.06 16.67 8.6 13.89 33.33 15 39 :3.6

Mehr

Lineare Gleichungen zu Sachaufgaben. Was sind Sachaufgaben?

Lineare Gleichungen zu Sachaufgaben. Was sind Sachaufgaben? R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2010 Lineare Gleichungen zu Sachaufgaben Was sind Sachaufgaben? Viele Problemstellungen aus dem täglichen Leben sowie aus den unterschiedlichsten Wissenschaftsdisziplinen

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Lineare Gleichungen (Klasse 8)

Lineare Gleichungen (Klasse 8) Lineare Gleichungen (Klasse 8) Aufgabe 1 Eine Seite eines Rechtecks hat die fünffache Länge der anderen Seite, der Umfang des Rechtecks ist 30 cm. Stelle den Sachverhalt in Form einer Gleichung dar und

Mehr

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch

MATHE - CHECKER 6. Klasse L Ö S U N G E N. by W. Rasch MATHE - CHECKER 6. Klasse L Ö S U N G E N by W. Rasch 1. Aufgabe Ein Auto verbraucht 8 Liter Benzin auf 100 km. Wie viele Liter braucht es für 350 km? A: 32 Liter B: 24 Liter C: 28 Liter D: 36 Liter 2.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

Mathematik Serie 1 (60 Min.)

Mathematik Serie 1 (60 Min.) Aufnahmeprüfung 011 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! - Die

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

31 = 8 g) 4 3x 7 = 13 2x x 1 x = 6x3 4x x. x x 5. + = x + 3 = 9 5

31 = 8 g) 4 3x 7 = 13 2x x 1 x = 6x3 4x x. x x 5. + = x + 3 = 9 5 Lineare Gleichungen und Ungleichungen mit einer Variablen 1. Bestimmen Sie die Lösungsmenge! a) (3x+5)(3x 5) (3x 1) 2 = 10 b) (5y+2) 2 = (3y+1) 2 +(4y 1) 2 c) (x 1) 3 (x 2) 3 = 3x 2 11 d) (x 1)(x 2)(x

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 BRP Mathematik VHS Floridsdorf 5.10.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 Notenschlüssel:

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 11.0.013 SEK I Lösungen zur Dreisatzrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Dreisatzrechnung I Dreisatz, proportional, antiproportional

Mehr

AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK

AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten

Mehr

Übertrittsprüfung 2015

Übertrittsprüfung 2015 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Übertrittsprüfung 2009

Übertrittsprüfung 2009 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2009 Aufgaben Prüfung an die 3. Klasse Sekundarschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Mathematik PM Proportionen

Mathematik PM Proportionen 20 Proportionen 20.1 Einführung Gleichbenannte Grössen können auf zwei Arten miteinander verglichen werden. 1. Man untersucht, um wieviel die eine Grösse grösser oder kleiner ist als die andere. Man bildet

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/9 Quadratische Gleichungen

Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/9 Quadratische Gleichungen Vorbereitungskurs Mathematik für die FHNW-Aufnahmeprüfung Seite 1/9 Vorgehen bei der Lösung 1. Gleichung durch Umformungen auf allgemeine Form a x² + b x + c = 0 bringen b. Die beiden Zahlen A = b 4 a

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Aufgabe 1 (Fundamentum)

Aufgabe 1 (Fundamentum) Aufgabe 1 (Fundamentum) a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast. 80.000.000 8.000.000 800.000 80.000 8.000 b) Bei einer Durchschnittsgeschwindigkeit von 80 km / h benötigt

Mehr

Mathematik. Aufnahmeprüfung vom 15. Juni

Mathematik. Aufnahmeprüfung vom 15. Juni Berufsmaturität 1 Mathematik Aufnahmeprüfung vom 15. Juni 2016 Kandidaten-Nr.: Name: Vorname:......... Allgemeine Hinweise: Die Prüfungszeit beträgt 60 Minuten. Erlaubte Hilfsmittel: Netzunabhängiger Taschenrechner

Mehr

5. Lineare Funktionen

5. Lineare Funktionen 5. Lineare Funktionen Lernziele: -Eine lineare Funktion grafisch darstellen -Geradengleichung (Funktionsgleichung einer linearen Funktion) -Deutung von k- und d-wert -Grafische Lösung von Gleichungssystemen

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

1) Für 2,5 kg Birnen hat David 9,50 Fr. bezahlt. Wie viel muss er für 3,5 k9 zahlen?

1) Für 2,5 kg Birnen hat David 9,50 Fr. bezahlt. Wie viel muss er für 3,5 k9 zahlen? Wenn man von einem möglichen Rabatt bei grösseren Stückzahlen absieht, ist das Verhältnis von Anzahl und Preis ein Verhältnis der direkten Proportionalität: Kauft man doppelt so viel, so muss man doppelt

Mehr

Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen)

Lösungen. Aufnahmeprüfung 2014 Mathematik Name: Berufsfachschulen Graubünden. Note: Vorname: Ergebnis (bitte leer lassen) Berufsfachschulen Graubünden Aufnahmeprüfung 2014 Mathematik Name: Vorname: - Teil A und B dauern je 45 Minuten. - Teil A ist ohne Taschenrechner zu lösen. - Teil B darf mit Taschenrechner gelöst werden.

Mehr

Mathematik Serie 2 (60 Min.)

Mathematik Serie 2 (60 Min.) Aufnahmeprüfung 2008 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -

Mehr

Übungsserie für den Eignungstest

Übungsserie für den Eignungstest Übungsserie für den Eignungstest 13.02.2008 / ud, cm, az Rechnen schriftlich (Zeit 20 min) 1) 1345 + 2824 + 4789 = 2) 745 283 12 = 3) 435.92 36.7 0.58 = 4) (8.6 5.9) (9 + 3.4) = 5) 25³ = 6) 1225 ⅜ = 7)

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Terme und Formeln Umgang mit Termen

Terme und Formeln Umgang mit Termen Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch

Mehr

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Probeunterricht 2005 Termin: Mai 2005 an Wirtschaftsschulen in Bayern M a t h e m a t i k (Zahlenrechnen)

Probeunterricht 2005 Termin: Mai 2005 an Wirtschaftsschulen in Bayern M a t h e m a t i k (Zahlenrechnen) Probeunterricht 00 Termin: Mai 00 M a t h e m a t i k (Zahlenrechnen) Aufgaben für die 7. Jahrgangsstufe Arbeitszeit 4 Minuten Hilfsmittel: nicht programmierbarer elektronischer Taschenrechner. Rechne

Mehr

Übungen: Lineare Funktionen

Übungen: Lineare Funktionen Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7

Aufgaben zu Linearen Gleichungssystemen. Gleichsetz-, Einsetz-, Additionsverfahren. 1. y = x + 5 y = -x - 5. 2. x = -4y + 7 x = -6y + 7 Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Linearen Gleichungssystemen Gleichsetz-,

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 0 sind.. Schreib als Zahl: Deutschland hat 8 Millionen Einwohner. China hat Milliarde

Mehr

Einkäufe Dreisatz...18 Marmelade, verputzte Häuser und Geschwindigkeit auf dem Schulweg...19 Wer geht mir shoppen?...20 Prospekte und Wolle...

Einkäufe Dreisatz...18 Marmelade, verputzte Häuser und Geschwindigkeit auf dem Schulweg...19 Wer geht mir shoppen?...20 Prospekte und Wolle... Inhaltsverzeichnis: Einfaches Rechnen bei Familie Baumann mit Zeit, Geld und Gewichten Von der Uhrzeiten und vom Einkaufen...6 Vom Komponieren und französischen Vokabeln...7 Schwere Gewichte...8 Von Flugreisen

Mehr

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra Sek B 2016

Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra Sek B 2016 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra Sek B 2016 Totalzeit: 90 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug (Geo-Dreieck, Zirkel,

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2014/2015 Datum der Durchführung 4. September 2014 ORIENTIERUNGSARBEIT Primarschule Mathematik Lösungen und

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Schlußrechnungen (Dreisatz)

Schlußrechnungen (Dreisatz) Hauptschule Schlußrechnungen (Dreisatz) Einfache Schlussrechnungen (Dreisatz) 1. Frau Huber zahlt für 5 Dosen Büchsenmilch 3,25. Wie viel kosten 9 Dosen? 2. Bei einem täglichen Verbrauch von 12 Litern

Mehr

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel

Inhalt. Lösungsstrategien. Zuordnungen und lineare Funktionen. Prozent- und Zinsrechnung. Text- und Sachaufgaben, Zahlenrätsel Inhalt A Lösungsstrategien 1 Lösungsstrategien für Text- und Sachaufgaben 6 2 Lösungsstrategie für geometrische Sachaufgaben 11 3 Lösungsstrategie für einfache Gleichungen, lineare Gleichungssysteme und

Mehr

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.

Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen. 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die Zahl.

Mehr

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer

Mischungsrechnen. 2006 Berufskolleg Werther Brücke Wuppertal Autor: Hedwig Bäumer Seite 1 Beim gibt es zwei Aufgabengruppen. Die erste umfasst Aufgaben, die mit Hilfe der wirksamen Substanz ( = 100 % ) innerhalb einer Lösung oder mit der Mischungsformel errechnet werden können. Bei

Mehr

Startklar! Das Gelernte kontrollieren und Schulstoff auffrischen: Hier können Sie sich für Ihre Eignungsabklärung bei Roche vorbereiten.

Startklar! Das Gelernte kontrollieren und Schulstoff auffrischen: Hier können Sie sich für Ihre Eignungsabklärung bei Roche vorbereiten. Startklar! Das Gelernte kontrollieren und Schulstoff auffrischen: Hier können Sie sich für Ihre Eignungsaklärung ei Roche vorereiten. Vielen Dank für Ihre Bewerung um eine Ausildung ei Roche und für Ihr

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt!

(1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: c) Löse die Ungleichung durch Fallunterscheidung mit der Hand Schritt für Schritt! 1. Semesterschularbeit 10.12.1999 (50 Minuten) (1) Bestimme die Lösungsmenge der folgenden Bruchungleichung in Z: 1 1 x 4 2 a) Schreibe mit Hilfe deines TI-89/92 die Lösungsmenge an. b) Rechne mit der

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

Übungszirkel für den Mittleren Schulabschluss in Mathematik Station 1 Graphiken Lösung

Übungszirkel für den Mittleren Schulabschluss in Mathematik Station 1 Graphiken Lösung Station 1 Graphiken Lösung Was sagt das Diagramm aus? Das Diagramm gibt die Abhängigkeit der erreichten Sprunghöhe von Moritz von der Länge des Anlaufs an. Zum Verlauf der Kurve Anlauf 0m 5m: Je länger

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Mathematik I. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Datum der Durchführung: 15. Januar Lösungen und Korrekturanweisungen

Mathematik I. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Datum der Durchführung: 15. Januar Lösungen und Korrekturanweisungen Volksschulamt Kantonale Vergleichsarbeit 2012/2013 6. Klasse Primarschule Mathematik I Datum der Durchführung: 15. Januar 2013 Lösungen und Korrekturanweisungen Es gibt keine Punktabzüge für fehlende Sorten!

Mehr

Anwendungen in Sachzusammenhängen

Anwendungen in Sachzusammenhängen Anwendungen in Sachzusammenhängen 1. Vor drei Jahren war Hans viermal so alt als Eva vor drei Jahren alt war. In fünf Jahren ist Hans doppelt so alt als Eva in fünf Jahren alt sein wird. Wie alt sind die

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 011 im Fach Mathematik 18. Mai

Mehr

Repetitorium Gleichungssysteme, Textaufgaben

Repetitorium Gleichungssysteme, Textaufgaben zusatzueb.gls.textaufg.nb Repetitorium Gleichungssysteme, Textaufgaben.. x + y + = x - 2 2. ÅÅÅ x - y - x + y + = ÅÅ x + 0 x - y + x + + 2 2 x + - y + 2 =. Å y + 2 = 9 - x = y + ÅÅÅ y - 2 - x = ÅÅ y -

Mehr

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Maximale Punktzahl Erreichte Punktzahl 6 3 7 6 4 6 8 6 46 Note Die Prüfung Algebra 1 umfasst 8 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Römische Zahlen I V X L C D M 1 5 10 50 100 500 1000. Der kleinere Wert vor dem größeren wird subtrahiert. a) DCCXIX b) CCXC c) CCCXCIV d) DCXCI

Römische Zahlen I V X L C D M 1 5 10 50 100 500 1000. Der kleinere Wert vor dem größeren wird subtrahiert. a) DCCXIX b) CCXC c) CCCXCIV d) DCXCI Römische Zahlen Römische Zahlzeichen I V X L C D M 1 5 10 50 100 500 1000 L erinnert an ein halbes C. XVIII = 10 + 5 + 3 = 18 LIX = 50+10 1 = 59 Dasselbe Zeichen steht höchstens dreimal hintereinander.

Mehr

Seite 4. Lösungen Mathematik 2 Dossier 9 In Bewegung 3.6 :3.6. Umrechnen von Geschwindigkeit und Zeitangaben

Seite 4. Lösungen Mathematik 2 Dossier 9 In Bewegung 3.6 :3.6. Umrechnen von Geschwindigkeit und Zeitangaben 1 km h 36 9 158 83 60 30.96 50 120 54 140.4 m s 10 2.5 43.89 23.06 16.67 8.6 13.89 33.33 15 39 3.6 :3.6 Seite 4 Umrechnen von Geschwindigkeit und Zeitangaben 2 a) 4:33:56.16 = 4 h 33min 56.16s = 4h + 33

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

GLEICHUNGEN. Mathematik PM Übersicht Gleichungen. 19. Textgleichungen.doc FP Seite 1 von 5. Gleichungen 2. Grades mit zwei Unbekannten

GLEICHUNGEN. Mathematik PM Übersicht Gleichungen. 19. Textgleichungen.doc FP Seite 1 von 5. Gleichungen 2. Grades mit zwei Unbekannten Mathematik PM Übersicht en en. Grades mit zwei Unbekannten en. Grades mit einer Unbekannten 3x 4y 91 x y 7 Exponentialgleichungen ax bx c 0 a nx b c en 1. Grades mit zwei Unbekannten 7x 8y 3 5x 4y 16 GLEICUNGEN

Mehr

Übungsaufgaben. Nichtlineare Gleichungen und Ungleichungen. Dr. Karl, Hubert. Copyright : Hubert Karl

Übungsaufgaben. Nichtlineare Gleichungen und Ungleichungen. Dr. Karl, Hubert. Copyright : Hubert Karl Übungsaufgaben zu Nichtlineare Gleichungen und Ungleichungen Dr. Karl, Hubert Copyright : Hubert Karl Alle Rechte vorbehalten. Diese Publikation darf ohne die ausdrückliche schriftliche Genehmigung des

Mehr

Mathematik 01 Masseinheiten 01 Name: Vorname: Datum:

Mathematik 01 Masseinheiten 01 Name: Vorname: Datum: Mathematik 01 Masseinheiten 01 Name: Vorname: Datum: Zusatzplatz zu Buch 701 / A. 1 Notiere so viele Masseinheiten und Zusammenhänge wie möglich: - Längenmasse (wie Meter) - Gewichtsmasse (wie Gramm) -

Mehr

Quadratische Gleichungen

Quadratische Gleichungen 1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2

Mehr

Gewichte. Gewichte Grundoperationen ,390t + 340kg g =

Gewichte. Gewichte Grundoperationen ,390t + 340kg g = Gewichte 9150 g = kg 67 kg = t 8490 kg = t 690 g = kg 7 kg = g 9700 kg = t 98 t = kg 900 g = kg 678 kg = g Ordne der Grösse nach: 75,430t ; 75t 43 kg ; 7543 kg ; 75,30 t ; 75t 40 kg Gewichte Grundoperationen

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2012 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

mathbuch 1 LU 15 Arbeitsheft weitere Aufgaben «Grundanforderungen» Zeit [h] 1 h 12 h 20 h 36 h Zeit [h] 0,25 0,5 0,75 1 1,5 2 x

mathbuch 1 LU 15 Arbeitsheft weitere Aufgaben «Grundanforderungen» Zeit [h] 1 h 12 h 20 h 36 h Zeit [h] 0,25 0,5 0,75 1 1,5 2 x Wertetabellen 0 A Höhe von Blattstapeln Anzahl Blätter 00 2 000 2 00 7 000 000 30 000 Höhe [cm] 7, 30 87, 2 40 0,0 B Stundenlohn Zeit [h] h 2 h h 36 h Lohn [CHF] 3.0 62 270 486 40 0 40 2700 3, C In 8 min

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner.

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Wiederholung aus der 3. Klasse Seite 1 1. Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Setze ein: >,

Mehr

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + +

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + + 1 3. Anwendungen 3.1. Chemische Reaktionen Aufgabe: Die Gleichung + + beschreibt die Verbrennung von Ammoniak zu Stickstoffoxid und Wasser Für welche möglichst kleine natürliche Zahlen x1, x2, x3 und x4

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Aufnahmeprüfung 2014 LÖSUNGEN Mathematik Serie 5 (60 Min.)

Aufnahmeprüfung 2014 LÖSUNGEN Mathematik Serie 5 (60 Min.) Aufnahmeprüfung 014 LÖSUNGEN Mathematik Serie 5 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!

Mehr

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7.

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu quadratischen Gleichungen 1. x² =

Mehr

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2008 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

M4/I Mischungsaufgaben Name:

M4/I Mischungsaufgaben Name: 1)Mische 6%ige und 18%ige NaCl-Lösung im Verhältnis 3 : 5. Wieviel % NaCl enthält die Mischung? 2)Berechne den Prozentgehalt einer Mischung aus 12 kg 15%iger Salzlösung mit 8 kg einer 10%igen Salzlösung.

Mehr

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:

Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse: Hauptschulabschlussprüfung 2007 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du darfst in

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung

Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Aufnahmeprüfung 5. Mai 2007 Name: Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Frageblättern gelöst

Mehr

Aufnahmeprüfung 2012 LÖSUNGEN Mathematik Serie 1 (60 Min.)

Aufnahmeprüfung 2012 LÖSUNGEN Mathematik Serie 1 (60 Min.) Aufnahmeprüfung 01 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!

Mehr