Unterrichtskonzept Das Verfahren der kleinen Schritte

Größe: px
Ab Seite anzeigen:

Download "Unterrichtskonzept Das Verfahren der kleinen Schritte"

Transkript

1 Link-Ebene Physik Lehrplananbindung: 10. Die Mechanik Newtons Die Methode der kleinen Schritte Unterrichtskonzept Das Verfahren der kleinen Schritte Anhand eines typischen Beispiels aus der Erfahrungswelt der Schülerinnen und Schüler wird die Methode der kleinen Schritte entwickelt, die sich nicht nur auf echanische Problee, sondern beispielsweise auch auf den Strofluss durch eine Induktivität (Physik 11), das Lade- und Entladeverhalten von Kondensatoren (Lehrplan Biophysik) und viele weitere Problee anwenden lässt, die in der Physik durch gewöhnliche Differentialgleichungen beschrieben werden. Der freie Fall it Luftwiderstand als Anwendungsbeispiel Aus Ihrer eigenen Erfahrung wissen die Schülerinnen und Schüler, dass der freie Fall unter Vernachlässigung des Luftwiderstands eine Idealisierung darstellt und beispielsweise bei Fall einer Daunenfeder zu völlig falschen Ergebnissen führt. Möchte an diese Bewegung exakt beschreiben, ist es notwendig vo Modell einer konstanten Kraft abzurücken, der Luftwiderstand uss berücksichtigt werden. Es ist naheliegend, dass der Luftwiderstand it steigender Geschwindigkeit zunit (der Fahrtwind brest bei geringen Geschwindigkeiten kau, bei hohen stellt er die doinierende Breswirkung dar). Dass der Zusaenhang zwischen Kraft und Geschwindigkeit quadratisch ist, uss den Schülerinnen und Schülern itgeteilt werden. Eine besonders anschauliche Bewegung, die vielen Schülerinnen und Schülern geläufig ist, ist die Bewegung eines Fallschirspringers i freien Fall, wobei angenoen wird, dass dieser senkrecht, beispielsweise aus eine Hubschrauber springt. In diese Fall wirken auf den Fallschirspringer die konstante Gewichtskraft und die durch den Luftwiderstand geschwindigkeitsabhängige Kraft F g = g Fr = k v it k = 0,3 N s = 0,3 kg 1 Diese Werte liefern bei einer Masse von 90 kg eine Maxialgeschwindigkeit von etwa 00 k / h; ein der Realität entsprechender Wert. Erste Übungen Als erste Übung bietet es sich an, die auf den Fallschirspringer wirkenden Kräfte und die zugehörige Geschwindigkeit it Pfeilen darzustellen. Gewichtskraft rot Luftwiderstandskraft grün Geschwindigkeit blau Aus den Skizzen wird klar, dass für die auf den Fallschirspringer wirkende Gesatkraft gilt: F = F g F r = g k v². Mithilfe des. newtonschen Gesetzes können die Schülerinnen und Schüler den Ausdruck für die Beschleunigung bestien:

2 a = g - k v it v( t = 0) = 0 und ( ) a t = 0 = g Dabei ist die beschleunigende Kraft für große Zeiten praktisch 0, da die Geschwindigkeit des Fallschirspringers sich nicht ehr ändert. Entsprechend gilt für große Zeiten F g = F r, zu Zeitpunkt t = 0 ist F = F g. In eine qualitativen Diagra kann dann das t-a bzw. das t-v-diagra skizziert werden (dass die Beschleunigung bei t = 0 zunächst quadratisch abnit, uss nicht berücksichtigt werden). g v(t) a(t) Die Bestiung der Geschwindigkeitsfunktion v(t) Zwar ist die Beschleunigung nun keine Konstante ehr, doch ändern sich Geschwindigkeit und Beschleunigung nicht sprunghaft. Für sehr kurze Zeiträue kann also die Kurve, die qualitativ bereits das richtige Beschleunigungsverhalten wiedergibt, durch Bereiche konstanter Beschleunigungen angenähert werden, wenn an nur die Zeitintervalle klein genug wählt (Stufen i Diagra). I Verlauf eines solchen Intervalls ändert sich die Geschwindigkeit geäß der Beschleunigungsdefinition: Δv k (Ia) a = bzw. vneu valt = a Δt bzw. vneu = a Δ t+ valt = g valt t valt Δt Δ + bzw. aus den Bewegungsfunktionen für eine konstante Beschleunigung: k (Ib) v() t = a t+ v0 bzw. v( t+δ t) = vneu = a ( t+δ t) + v0 = a Δ t+ valt = g valt Δ t+ valt Zur Berechnung der Geschwindigkeiten aus den alten Werten ist es offensichtlich unerheblich, ob von der Beschleunigungsdefinition oder der Bewegungsfunktion ausgegangen wird. Mit den Gleichungen (Ia) bzw. (Ib) hat an nun die Möglichkeit, aus de bekannten Geschwindigkeitswert zu Zeitpunkt t die Geschwindigkeit zu Zeitpunkt t + Δt zu bestien, was a sinnvollsten in einer Tabelle geschieht und die zunächst ithilfe des Taschenrechners vollzogen werden kann. Wählt an den Startwert v 0 = 0, führt dies zur folgenden Tabelle Schritt Zeit / s Beschleunigung a / s Geschwindigkeit v / s , ,50 9,9 5,00 1,00 9,67 9,96 3 1,50 9,7 14,80 4,00 8,74 19,44 5,50 8,11 3,81 6 3,00 7,41 7,87 7 3,50 6,68 31,56 8 4,00 5,94 34,90 9 4,50 5, 37,87 = 90 kg, k = 0,3 kg 1, Δt = 0,5 s, g = 10,00 s

3 Die Bestiung der Ortsfunktion x(t) Völlig analoge Betrachtungen führen zu zurückgelegten Weg. Innerhalb eines sehr kurzen Zeitintervalls ändert sich die Geschwindigkeit nur geringfügig, sodass sich aus der Definition für die Geschwindigkeit der folgende Ausdruck ergibt. Δx (IIa) v = bzw. xneu xalt = v Δ t bzw. xneu = v Δ t + xalt Δt bzw. aus den Bewegungsfunktionen a a a xt= x = t + v t+ x bzw.xt+δ t= x = t+δ t + v t+δ t+ x = Δ t + v Δ t+ x alt 0 0 neu 0 0 alt alt (IIb) () ( ) ( ) ( ) ( ) Während bei Gleichung (IIa) keine Aussage darüber geacht wird, welches v zu verwenden ist, hat an bei Gleichung (IIb) einen quadratischen Ter it zu berücksichtigen. Da letztendlich alles in eine Tabellenkalkulationsprogra errechnet werden soll, bei de die Schrittweite Δt beliebig klein geacht werden kann, wird durch Gleichung (IIb) plausibel, dass bei Geschwindigkeiten v alt > 0 der Ter a ( t) Δ gegenüber de Ter valt Δt vernachlässigt werden kann. Ebenso kann an wenige Schritte zur Berechnung der Orte durchführen, wobei einal zur Berechnung v alt und einal v neu zugrunde gelegt wird. Wählt an Δt = 0,01 s erhält an die folgende Tabelle, die bereits nahelegt, dass der Ortsfehler dann axial 1 beträgt. Schritt t / s a / s v / s 1 x / (Rechn.. v neu ) x / (Rechn.. v alt ) ,00 0, ,01 9, , , ,0 9, , , , Tatsächlich gilt stets x x ( v v ) t g ( t) neu alt = Δ Δ = 1, da die Beschleunigung nie größer als die Erdbeschleunigung ist. Für ausreichend kleines Δt ist es denach legiti zu schreiben (II) xneu = valt Δ t+ xalt Selbstverständlich ist es öglich, die ursprüngliche For der Gleichungen (IIa) bzw. (IIb) beizubehalten, was zu etwas geringeren nuerischen Fehlern führt. Bei Gleichung (IIa) liegt es dann nahe den Mittelwert für die Geschwindigkeit zu wählen, was zu sogenannten Halbschrittverfahren bei der Tabellenkalkulation führt. Gleichung (IIb) kann direkt so übernoen und in eine Tabellenkalkulation eingearbeitet werden, allerdings ist bei der Berechnung der quadratische Ter zu berücksichtigen. Beide Verfahren sind etwas anspruchsvoller und sperriger als das hier vorgestellte, sodass die Gefahr besteht, dass die Schülerinnen und Schüler zu eine erheblichen Teil it der Bewältigung von Coputerprobleen beschäftigt sind. Aus diese Grund wird an dieser Stelle epfohlen die it eine größeren nuerischen Fehler behaftete Gleichung (II) zu verwenden. Wenn die Gleichungen (Ia) bzw. (Ib) und (II) verstanden sind, können die Schülerinnen und Schüler die Bewegung des Fallschirspringers in einer Tabellenkalkulation odellieren und bei einer Schrittweite (z. B. 0,1 s) Ort und Geschwindigkeit bestien. In der wissenschaftlich-technischen Praxis sind Siulationsrechnungen von allergrößter Bedeutung. Die Schülerinnen und Schüler sollen deshalb an dieser Stelle ein einfaches nuerisches Verfahren kennenlernen und dabei Sein und Ziel einer Siulationsrechnung durchschauen.

4 Realisierung in Tabellenkalkulationsprograen Das Progra Vivitab (einen freien Download findet an auf der Hoepage des Gynasius Berchtesgaden ) ist für die physikalische Modellrechnung besonders geeignet; es wurde extra zu diese Zweck erstellt und weist deshalb gegenüber anderen Tabellenkalkulationsprograen bei dieser Art der Verwendung einige Vorteile auf. Es benötigt nälich lediglich eine Syntaxvereinbarung, die auf die Vorgängerzelle verweist: v = v + a Δ t wird syntaktisch zu = #v+ a Δ t neu alt Das Modell des Falls it Reibung erhält an einfach durch die Hinzufügung der Reibungskraft zur Gewichtskraft. In Vivitab kann an dazu sehr einfach durch Nennung eines Naens in den Konstantenvereinbarungen eine globale Variable, hier R genannt, festlegen. a = (Fg R #v^)/ Das t-v-diagra zeigt die nuerisch genäherte Funktion v(t). Zur Erprobung eignet sich die rechnerische Bestiung von v nach de Ende der Beschleunigungsphase i Kräftegleichgewicht. Es gilt dann in bester Übereinstiung it de Siulationsergebnis g= R v g 0,5kg 9,81 v s = = = kg R,5 1,4s 1

5 Die Schülerinnen und Schüler haben in der Regel Erfahrung it eine Tabellenkalkulationsprogra (i. d. R. Excel oder open-office-produkte), sodass an auf dieses Wissen aufbauen kann. Aus diese Grund kann es zeitsparend und sinnvoll sein, it diesen Tabellenkalkulationsprograen zu arbeiten, sofern die Schülerinnen und Schüler entsprechende Vorkenntnisse besitzen. I Unterricht können bei Bedarf noch weitere Fälle von Bewegungen it nicht konstanter Kraft oder nicht konstanter Masse besprochen werden, z. B. Bewegung von Körpern bei Reibung durch lainare Uströung F r = k v (langsa fallende Kugel in einer Flüssigkeit) Körper it variabler Masse (Raketengleichung it und ohne Luftreibung, it und ohne ges höhenabhängig Luftdichte) a F = t start λ Die Behandlung dieser Bewegungen kann in For von Schülerreferaten erfolgen. Durch Variation der Paraeter können die Schülerinnen und Schüler anhand der entstehenden t-x- Diagrae und t-v-diagrae diskutieren, wie sich Änderungen von Paraetern auf die Bewegung auswirken. Weitere Verwendung der Methode der kleinen Schritte Die Methode der kleinen Schritte kann äußerst gewinnbringend bei den echanischen Schwingungen eingesetzt werden. Setzt an für das Kraftgesetz durch F = - Dx und entsprechend die Zeile für die Beschleunigung durch a = x, so ergibt sich die Siulationsrech- D nung einer haronischen Schwingung in völlig analoger Weise. Weitere Ausführungen dazu finden sich bei Link-Ebenen-Beitrag zu den Schwingungen.

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010 Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

2. Kinematik. 2.1 Modell Punktmasse

2. Kinematik. 2.1 Modell Punktmasse 2. Kinematik 2.1 Modell Punktmasse 2.22 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung in 3 Dimensionen

Mehr

Berufliche Oberschulen Bayern Physik 12. Klasse Fachabiturprüfung 2016 Aufgabe I

Berufliche Oberschulen Bayern Physik 12. Klasse Fachabiturprüfung 2016 Aufgabe I Berufliche Oberschulen Bayern Physik 12. Klasse Fachabiturprüfung 2016 Aufgabe I 1.0 In eine Experient soll der Betrag der Fallbeschleunigung bestit werden. Dazu lässt an zu Zeitnullpunkt eine kleine Eisenkugel

Mehr

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur - 1 - Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur I ersten Teil der Vorlesung wurde zunächst ein Überblick über Typen von Differentialgleichungen gegeben. Anschließend wurden hauptsächlich

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Newtonsche Gesetze. Lösung: a = F m =

Newtonsche Gesetze. Lösung: a = F m = Newtonsche Gesetze 1. Der ICE 3 hat laut Hersteller eine axiale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für die Masse eines Passagiers eine Masse

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Kraft - Grundbegriffe

Kraft - Grundbegriffe Grundwissen Kraft - Grundbegriffe Theorie: a) Erkennungsmerkmal von Kräften: Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Unter Änderung des Bewegungszustandes

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

Kinematik. Roland Heynkes. 10.10.2005, Aachen

Kinematik. Roland Heynkes. 10.10.2005, Aachen Kinematik Roland Heynkes 0.0.005, Aachen Dieser Artikel führt Annas Kinematik-Kapitel fort, weil die für mathematische Texte erforderlichen Erweiterungen von HTML von den gängigen Browsern immer noch nicht

Mehr

Rechnungen zu Kraft und Beschleunigung der ICE

Rechnungen zu Kraft und Beschleunigung der ICE Illustrierende Aufgaben zu LehrplanPLUS Gynasiu, Physik, Jahrgangsstufe 8 Rechnungen zu Kraft und Beschleunigung der ICE Stand: 6.08.015 Jahrgangsstufen 8 Fach/Fächer Physik Kopetenzerwartungen Die Schülerinnen

Mehr

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik-

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Ergänzungsübungen zur Vorlesung Technische Mechanik Teil -Kineatik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Aufgabe 1: Ein KFZ wird konstant

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Zweisprachiger Wettbewerb 2007 / 2008 Physik Jahrgang 1 2. Runde

Zweisprachiger Wettbewerb 2007 / 2008 Physik Jahrgang 1 2. Runde Zweisprachiger Wettbewerb 2007 / 2008 Physik Jahrgang 1 2. Runde Liebe Schülerin, lieber Schüler, diese Runde des Wettbewerbs hat 20 Fragen, Sie sollen von den vorgegebenen Lösungsmöglichkeiten immer die

Mehr

Aufgabensammlung. Kurzbeschreibung. Aufgabe. x ) ax 4 + b und a,b IR beschrieben werden, die Form der Oberseite durch eine quadratische Funktion g.

Aufgabensammlung. Kurzbeschreibung. Aufgabe. x ) ax 4 + b und a,b IR beschrieben werden, die Form der Oberseite durch eine quadratische Funktion g. Geeinsae Abituraufgabenpools der Länder Aufgabensalung Aufgabe für das Fach Matheatik Die Aufgabe zeigt exeplarisch die Anforderungen einer Aufgabe in einer eigenständigen Abiturprüfung zur Fachrichtung

Mehr

A n a l y s i s Differentialgleichungen

A n a l y s i s Differentialgleichungen A n a l y s i s Differentialgleichungen Edward Lorenz (*97 in West Haven, Connecticut) der Meteorologe. Er studierte Wettermodelle auf dem Computer. Dabei stellte er fest, dass sehr kleine Änderungen in

Mehr

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler Lineare Gleichungen Lineare Gleichungssysteme Lineare Algebra Ein Trainingsheft für Schüler Manuelle Lösungen ohne Rechnerhilfen und (hier) ohne Determinanten Datei Nr. 600 Stand 8. September 04 FRIEDRICH

Mehr

Näherungsmethoden zum Lösen von Gleichungen

Näherungsmethoden zum Lösen von Gleichungen Mag. Gabriele Bleier Näherungsmethoden zum Lösen von Gleichungen Themenbereich Gleichungen, Differentialrechnung Inhalte Näherungsweises Lösen von Gleichungen Untersuchen von Funktionen, insbesondere Ermitteln

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

Die Raketengleichung (eine Anwendungzum Impulssatz)

Die Raketengleichung (eine Anwendungzum Impulssatz) Die Raketengleichung (eine Anwendungzu Ipulssatz) Ipuls vor de Ausstoß: p Ipuls nach de Ausstoß: p R v R + Δ v R Ipulserhaltungssatz: p p Ipulse einsetzen ergibt: R v R + Δ + v R Für die Massenänderung

Mehr

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels?

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels? 1.1.5.1 Weche Größen beeinflussen die S In diese Versuch wird ein Federpendel betrachtet, welches aus einer Schraubenfeder it der Federkonstanten D und einer daran angehängten Masse besteht. Wird das Pendel

Mehr

d = 1, 5cm ) liegt eine Spannung von

d = 1, 5cm ) liegt eine Spannung von Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,

Mehr

BUNGEE JUMPING. Beteiligte Fächer: Physik, Biologie, Sport,...

BUNGEE JUMPING. Beteiligte Fächer: Physik, Biologie, Sport,... BUNGEE JUMPING Die heute bekannte Variante des Bungee Juping stat aus Neuseeland und den USA. Dort begann an zunächst von Brücken zu springen und entwickelte schließlich die Technik des Kransprungs. Dieses

Mehr

Bremsung einer Lokomotive

Bremsung einer Lokomotive bernhard.nietrost@htl-steyr.ac.at Seite 1 von 13 Bremsung einer Lokomotive Mathematische / Fachliche Inhalte in Stichworten: Modellierung von Einflussgrößen (Kräften) stückweise stetige Funktionen Regression

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion s(t) beschreiben, die zu jedem Zeitpunkt t (Stunden oder Sekunden)

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung 1. Trapolinspringer I Diagra unten siehst du in Abhängigkeit von der Höhe die Energieforen eines Trapolinspringers, der sich in unterschiedlichen

Mehr

Federpendel. Einführung. Das Federpendel. Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS

Federpendel. Einführung. Das Federpendel.  Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS www.schullv.de Basiswissen > Mechanische Schwingungen > Federpendel Federpendel Skript PLUS Einführung Wärst du utig genug für einen Bungee-Sprung? Oder hast du gar schon einen geacht? Wenn ja, hast du

Mehr

Zusammenfassung: Dynamik

Zusammenfassung: Dynamik LÖ Ks Ph 10 Schuljahr 016/017 Zusaenfassung: Dynaik Wiederholung: Kraft, Masse und Ortsfaktor 1 Kraft Eine Kraft kann verschiedene Wirkungen auf einen Körper haben: Verforung Änderung des Bewegungszustands

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Die zum Heben aufzubringende Kraft kann noch weiter verringert werden, indem der Körper von noch mehr Seilstücken getragen wird.

Die zum Heben aufzubringende Kraft kann noch weiter verringert werden, indem der Körper von noch mehr Seilstücken getragen wird. Seite 1 Sachinformation ROLLEN UND LASCHENZÜGE Ein laschenzug ist eine einfache Maschine, die den Betrag der aufzubringenden Kraft zum Bewegen oder Heben von Lasten verringert. Der laschenzug besteht aus

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Gesucht wird F M : Masse m = 1000 kg Beschleunigung a = 7,9 m/s 2 2. 3. Gewichtskraft Eine spezielle Kraft ist die Gewichtskraft (F G ), diese bezeichnet die Kraft, mit der ein

Mehr

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau)

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Vorbemerkung Die nachfolgenden Darstellungen dienen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

Trigonometrie Sachaufgaben Vektor. Kräfte sind Vektoren

Trigonometrie Sachaufgaben Vektor. Kräfte sind Vektoren Trigonometrie Sachaufgaben Vektor Man kann die trigonometrischen Beziehungen direkt für die Vektorrechnung heranziehen, indem man die Katheten eines rechtwinkligen Dreiecks als Komponenten eines Vektors

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer Eine allumfassende, No!iistische Formelsammlung Ferdinand Ihringer 2. Juni 2004 Inhaltsverzeichnis I Physik 3 1 Mechanik des Massenpunktes 4 1.1 Grundlagen............................................ 4

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen Abiturtraining Physik Mechanik 1 Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thea G 1: Analyse von Stoßvorgängen 1. Stöße auf der Luftkissenbahn Auf einer Luftkissenbahn werden ehrere Experiente

Mehr

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 Bsp. Name:... 1 2 Matr. Nr.... SKZ:... 3 4 Bitte verwenden Sie nur ausgeteilte Blätter! Σ Maximal : 20 Punkte (5 Punkte/Aufgabe) Punkte Kinematik

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse Blatt 0 09.0.2008 Physik Departent E8 Seite Aufgabe : Plasaanalyse Nebenstehende Skizze zeigt eine Anordnung zur Plasaanalyse. Ein Zähler Z erzeugt bei Durchgang eines ionisierenden Teilchens (Masse, Ladung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 4 Lösung Übungsblatt 4 Lösung Aufgabe 1 Bungee-Jump revisited. Weil es einigen Menschen so gut gefällt von der Europabrücke

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

Technische Mechanik III

Technische Mechanik III INSTITUT FÜR MECHANIK Technische Universität Darstadt Prüfung Technische Mechanik III Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Prof. R. Markert Jun. Prof. R. Müller a 27. Februar 2006 (Nae) (Vornae)

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

VORANSICHT I/B. Die Grundgleichung der Mechanik. Die Grundgleichung der Mechanik mit dem Computer erfasst! Der Beitrag im Überblick

VORANSICHT I/B. Die Grundgleichung der Mechanik. Die Grundgleichung der Mechanik mit dem Computer erfasst! Der Beitrag im Überblick 7. Die Grundgleichung der Mechanik von 4 Die Grundgleichung der Mechanik Xenia Rendtel, Haburg Versuchsaufbau Die Grundgleichung der Mechanik F = a ist eine der wichtigsten Foreln der klassischen Mechanik.

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

7 Harmonischer Oszillator & Schwingungen

7 Harmonischer Oszillator & Schwingungen 7 Haronischer Oszillator & Schwingungen 7.1 Motivation Als haronischen Oszillator bezeichnet an in der Mechanik ein Syste, das ein Potentialiniu besitzt und bei einer Auslenkung x aus diese Miniu eine

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Demoseiten für

Demoseiten für Lineare Ungleichungen mit Variablen Anwendung (Vorübungen für das Thema Lineare Optimierung) Datei Nr. 90 bzw. 500 Stand 0. Dezember 009 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 90 / 500 Lineare Ungleichungen

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name : Name: Versuch-Nr: E3 Die Elementarladung (Millikan-Versuch) Gliederung: Seite Einleitung 1 Messeinrichtung 1 Grundlagen

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0 1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.4.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2.

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2. Prototypische Schularbeit 2 Klasse 8 Autor: Mag. Paul Schranz Begleittext Die vorliegende Schularbeit behandelt größtenteils Grundkompetenzen der Inhaltsbereiche Analysis und Wahrscheinlichkeitsrechnung

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Kapitel 18 Numerisches Differenzieren und Integrieren

Kapitel 18 Numerisches Differenzieren und Integrieren Kapitel 8 Numerisches Differenzieren und Integrieren 8 8 8 Numerisches Differenzieren und Integrieren.......... 43 8. Numerische Differenziation... 43 8.. Differenzenformeln für die erste Ableitung...

Mehr

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: HOOKEsches Gesetz

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: HOOKEsches Gesetz Übungsaufgaben Physik http://physik.lern-online.net http://www.lern-online.net THEMA: HOOKEsches Gesetz Vorgeschlagene Arbeitszeit: Vorgeschlagene Hilfsittel: Bewertung: 0 Minuten Taschenrechner (nicht

Mehr

Haifisch und Schwimmer A 12

Haifisch und Schwimmer A 12 Haifisch und Schwimmer A 12 Ein Hai erreicht eine Höchstgeschwindigkeit von 65 Kilometer pro Stunde. Im Juli 1978 schwamm Walter Poenisch von Kuba - einer Insel in der Karibik - nach Florida in den Vereinigten

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Klausurfragen. Mechanik II Studiengang Druck- und Medientechnologie Timo Raabe, M.Sc. Aufgabe 1

Klausurfragen. Mechanik II Studiengang Druck- und Medientechnologie Timo Raabe, M.Sc. Aufgabe 1 Klausurfragen Aufgabe 1 Von der Turmspitze wird ein Stein mit der Masse 2kg fallen gelassen. Nach 4 Sekunden schlägt er auf den Boden. Die Erdbeschleunigung beträgt 9,81m/s². Der Luftwiderstand sei zu

Mehr

Erste Schularbeit Mathematik Klasse 7D WIKU am

Erste Schularbeit Mathematik Klasse 7D WIKU am Erste Schularbeit Mathematik Klasse 7D WIKU am 12.11.2014 ANTWORTVORLAGE Achtung: Teil 2 war noch in einem anderen Modus, daher muss man die Punkte umrechnen P unkte wirkliche P unkte =. Kompensationspunkte

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Norman Wirsik Matrikelnr: 1829994 8. November 2004 Gruppe 5 Dienstag 13-16 Uhr Praktikumspartner: Jan Hendrik Kobarg 1 1. Ziel

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Modellierung der Bewegung einer Schneewalze. Dr.rer.nat. Dr.techn. Martin Tutz

Modellierung der Bewegung einer Schneewalze. Dr.rer.nat. Dr.techn. Martin Tutz Modellierung der Bewegung einer Schneewalze Dr.rer.nat. Dr.techn. Martin Tutz November 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Zylinder auf der schiefen Ebene 2 2.1 Herleitung der Bewegungsgleichung.......................

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr