Rabea Haas, Kai Born DACH September 2010

Größe: px
Ab Seite anzeigen:

Download "Rabea Haas, Kai Born DACH September 2010"

Transkript

1 Rabea Haas, Kai Born DACH September 2010

2 Motivation Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko Starke Gradienten des Niederschlags und der Höhe Komplexe Topographie und schiefe Verteilung des Niederschlags Hohe Auflösung der Daten ist von Bedeutung für das bessere Verständnis von lokalen Klimabedingungen für viele Anwendungen in der Meteorologie und Hydrologie Statistische Regionalisierung: Verbindung von punktuelle Klimabeobachtungen, Modelldaten und hochauflösende Oberflächendaten.

3 Motivation Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko Starke Gradienten des Niederschlags und der Höhe Komplexe Topographie und schiefe Verteilung des Niederschlags Hohe Auflösung der Daten ist von Bedeutung für das bessere Verständnis von lokalen Klimabedingungen für viele Anwendungen in der Meteorologie und Hydrologie Statistische Regionalisierung: Verbindung von punktuelle Klimabeobachtungen, Modelldaten und hochauflösende Oberflächendaten.

4 DACH2010 Rabea Haas

5 DACH2010 Rabea Haas

6 DACH2010 Rabea Haas

7 Validierung 5 Anwendung DACH Rabea Haas

8 Daten und Gebiet Beobachtungen Niederschlagsdaten gesammelt von O. Schulz innerhalb des GLOWA Projektes IMPETUS West Afrika (s. auch Schulz and Judex, 2008, Kapitel 3), schneekorrigiert Messstationen im Einzugsgebiet des Wadi Drâa in SO Marokko Atlas Gebirge im Norden und aride Saharahausläufer im Süden Höhen von 445m (Lac Iriki) bis 3850m (M Goun) Messungen vom 16.November 2000 bis zum 1.November TZT TIC MGN IMS TRB TAO BSK ARG ASR IRK JHB 354 EMY

9 Daten und Gebiet Modell-/Reanalysedaten ERA-Interim Daten Täglich akkumulierter Niederschlag Auflösung: Oberflächendaten Digitales Geländemodell (DEM) der Space Shuttle Radar Topography Mission (SRTM) Auflösung: 1km 1km TZT TIC MGN IMS TRB TAO BSK ARG ASR EMY IRK JHB

10 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm):

11 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm): Transformierte Verteilung:

12 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm): Transformierte Verteilung: Lineare Regression mit, und führt zur geschätzten kumulativen ( Verteilungsfunktion ) (CDF): F (x) =1 exp exp ( b x m)

13 DACH2010 Rabea Haas

14 Gesucht: Transferfunktion zwischen den Verteilungen der interpolierten ERA-Interim Reanalysen und der lokalen Niederschlagsverteilungen. Ziel: E E E E E E E Abschätzung der lokalen Niederschlagsverteilung unter zukünftigen Klimabedingungen. Methode: E E E E CDF-Transformation durch Vergleich der Wahrscheinlichkeiten (probability mapping)

15 CDF-Transformation Bekannte Verteilungen: Zwei für die interpolierten Modelldaten (historisch und zukünftig / Trainings- und Validierungszeitraum): F Mh, F Mf Eine für die Beobachtungen (gleicher historischer Zeitraum / Trainingszeitraum): F Sh

16 CDF-Transformation Bekannte Verteilungen: Zwei für die interpolierten Modelldaten (historisch und zukünftig / Trainings- und Validierungszeitraum): F Mh, F Mf Eine für die Beobachtungen (gleicher historischer Zeitraum / Trainingszeitraum): F Sh Schätzung eines neuen Datensatzes von zukünftigen täglichen Niederschlagsmengen unter Annahme einer stationären Transferfunktion:

17 DACH2010 Rabea Haas

18 Gesucht: Ziel: Transferfunktion zwischen Verteilungsparameter an den Stationen und Variablen des DEMs (z.b. Höhe, Länge, Breite und Gradienten der Höhe in O-W- und N-S- Richtung). Erhöhung der Datenauflösung durch Interpolation der Weibull Verteilungsparameter. Methode: Multiple Lineare Regression

19 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion

20 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion Regressionsmodell: y i = c 0 + c 1 x i c k x ik + ɛ i mit i = Nummer der Beobachtung, k = Nummer des Prädiktors und c = Regressionskoeffizienten

21 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion Regressionsmodell: y i = c 0 + c 1 x i c k x ik + ɛ i mit i = Nummer der Beobachtung, k = Nummer des Prädiktors und c = Regressionskoeffizienten Schätzfunktion: mit (Kleinste Quadrate)

22 DACH2010 Rabea Haas

23 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

24 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Quantile geschätzt durch Multiple Lineare Regression. Ausgelassen einer Station (Bootstrapping). Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

25 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Quantile geschätzt durch Multiple Lineare Regression. Ausgelassen einer Station (Bootstrapping). Quantile geschätzt durch Kombination von CDF- Transformation und Multiple Lineare Regression. Auslassen einer Station und Aufteilung in zwei Zeiträume. Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

26 Anwendung Zeitreihe aufgeteilt nach ungeraden und geraden Eintragsnummern

27 Tage ohne Niederschlag Geschätzte Wahrscheinlichkeiten für Tage ohne Niederschlag. CDF-Transformation ersetzt durch Korrekturfaktor. Aufteilung in zwei Zeiträume nach gerader (oben: Punkte, unten: h) und ungerader (oben: Kreise, unten: f) Eintragsnummer. Blau: Erst Interpolation, dann Berechnung von p 0. Grün und unten: Berechnung von p0 an den Gitterpunkten, dann Interpolation.

28 Zusammenfassung Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko ERA-Interim Reanalysedaten Digitales Geländemodell CDF-Transformation Abschätzung der lokalen Niederschlagsverteilung unter zukünftigen Klimabedingungen. Multiple Lineare Regression Vergrößerung der Datenauflösung durch Interpolation der Weibull Verteilungsparameter.

29 Fazit Durch den kombinierten Ansatz kann an jedem Gitterpunkt des Geländemodells eine zukünftige Niederschlagsverteilung geschätzt werden. Q-Q-Plots zeigen zufriedenstellende Ergebnisse der beiden Methoden und des zweiteiligen Ansatzes. Das räumliche Verhalten der Verteilungsparameter ist stark durch die Wahl der Prädiktoren geprägt. Die Schätzung der Wahrscheinlichkeit für 0mm Tagesniederschlag ist an den tiefer gelegen Stationen besser als an den höher gelegenen Stationen. Es folgt: Auswertung von Klimaszenarien (REMO).

30

Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung

Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft High-Tech-Offensive Zukunft Bayern Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung 9. Workshop zur großskaligen Modellierung

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz Auswirkungen auf den Wasserhaushalt in Deutschland Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz 2. REKLIM Konferenz Klimawandel in den Regionen Leipzig 08.09.2011 Motivation

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA-

Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA- RIMAX- Statusseminar 14. 16. März 2007 Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA- Nadine Jatho, Nadja Petrenz

Mehr

Bias-Korrektur von CLM-Niederschlagsdaten. in dynaklim. Markus Quirmbach, Elke Freistühler dr. papadakis GmbH

Bias-Korrektur von CLM-Niederschlagsdaten. in dynaklim. Markus Quirmbach, Elke Freistühler dr. papadakis GmbH Bias-Korrektur von CLM-Niederschlagsdaten für die Impactmodelle in dynaklim Markus Quirmbach, Elke Freistühler dr. papadakis GmbH Zusammenfassung bisheriger Erkenntnisse Bias in den Jahresniederschlagssummen

Mehr

2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick

2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick 2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick Das Hauptziel dieser Arbeit ist einen hochaufgelösten Niederschlagsdatensatz für Deutschland, getrennt nach konvektivem und stratiformem

Mehr

Klimadaten und Klimaprognosen für Hessen

Klimadaten und Klimaprognosen für Hessen Klimadaten und Klimaprognosen für Hessen Douglas Maraun Institut für Geographie Justus-Liebig-Universität Gießen 14. September 2009, Gießen Douglas Maraun Klimadaten und Klimaprognosen für Hessen 14 Sep

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam

GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam Klima Simulationsergebnisse des regionalen Klimamodells STAR Friedrich-Wilhelm Gerstengarbe, Peter C. Werner Potsdam-Institut für Klimafolgenforschung

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21)

Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21) Köln, 05.10.20111 Workshop und Präsentation von Zwischenergebnissen Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21) Starkniederschlagsereignisse in der Stadt Köln

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Thomas Kneib & Ludwig Fahrmeir Institut für Statistik, Ludwig-Maximilians-Universität München 1. Regressionsmodelle für geoadditive Daten

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Moderne Methodik bei der Analyse von Mietspiegeln

Moderne Methodik bei der Analyse von Mietspiegeln Moderne Methodik bei der Analyse von Mietspiegeln Dr. Susanne Meßler, omnistat gmbh 13. Oktober 2010 Inhalt Definition und Bedeutung eines Mietspiegels Datengrundlage Deskriptiver Überblick Einfachregression

Mehr

Fachbereich Geowissenschaften. Layoutbeispiel einer Bachelorarbeit

Fachbereich Geowissenschaften. Layoutbeispiel einer Bachelorarbeit Fachbereich Geowissenschaften Institut für Meteorologie Layoutbeispiel einer Bachelorarbeit Bachelorarbeit von Max Mustermann Gutachter: Prof. Dr. Ulrich Cubasch Prof. Dr. Uwe Ulbrich 14. Januar 2011 Zusammenfassung

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Hochaufgelöste regionale Reanalysen für Europa und Deutschland

Hochaufgelöste regionale Reanalysen für Europa und Deutschland Hans-Ertel-Zentrum für We2erforschung Themenbereich Klimamonitoring und Diagnos=k Hochaufgelöste regionale Reanalysen für Europa und Deutschland Christian Ohlwein 1,3, Jan Keller 1,2 Christoph Bollmeyer

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung

REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung Abteilung Hydrometeorologie REGNIE_Beschreibung_20131030 Seite 1/9 1. Einleitung... 2 2. Produktpalette... 3 3. Datengrundlage...

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Deutscher Wetterdienst

Deutscher Wetterdienst Deutscher Wetterdienst Klimarisiko im Griff? Dessau, 11. Oktober 2012 Extremwetterereignisse in Deutschland Entwicklung und Zukunft Tobias Fuchs Leiter der Abteilung Klima- und Umweltberatung des Deutschen

Mehr

Das Projekt Starkregen DWD/GDV

Das Projekt Starkregen DWD/GDV Deutscher Wetterdienst Das Projekt Starkregen DWD/GDV Dr. Paul Becker Vizepräsident des Deutschen Wetterdienstes NATURGEFAHR +++ Hochwasser +++ 2 NATURGEFAHR +++ Sturmflut +++ 3 NATURGEFAHR +++ Sturm Tornado

Mehr

Wind Speed Simulation and Insurance Products for Wind Farm Investors

Wind Speed Simulation and Insurance Products for Wind Farm Investors Wind Speed Simulation and Insurance Products for Wind Farm Investors Zusammenfassung der Masterarbeit an der Technischen Universität München in Kooperation mit der Allianz SE Reinsurance Annika Gauß Motivation

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Welchen Einfluss hat der Frost auf den Feinstaub in Graz?

Welchen Einfluss hat der Frost auf den Feinstaub in Graz? 1 Welchen Einfluss hat der Frost auf den Feinstaub in Graz? Ernst Stadlober Brigitte Pfeiler Luzia Burger-Ringer Institut für Statistik www.statistics.tugraz.at Technische Universität Graz 3 Was ist Feinstaub?

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe

Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe Dipl. Ing. Corinna Hornemann Umweltbundesamt Abteilung II Wasser und Boden Fachgebiet Übergreifende Angelegenheiten

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Klimawandel in Deutschland

Klimawandel in Deutschland Klimawandel in Deutschland Prof. Dr. Manfred Stock, Potsdam Institut für Klimafolgenforschung Dialoge zur Klimaanpassung Berufliche Aus- & Weiterbildung BMU Berlin, 23. November 2011 Themen Vom Globalen

Mehr

Kapitel 7. Crossvalidation

Kapitel 7. Crossvalidation Kapitel 7 Crossvalidation Wie im Kapitel 5 erwähnt wurde, ist die Crossvalidation die beste Technik, womit man die Genauigkeit der verschiedenen Interpolationsmethoden überprüft. In diesem Kapitel wurde

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Multivariate Statistische Methoden

Multivariate Statistische Methoden Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg v..v.-'... ':,. -X V R.Oldenbourg

Mehr

Die Wettervorhersage und ihre Tücken

Die Wettervorhersage und ihre Tücken Lehrerfortbildung 11. Juni 2008 Die Wettervorhersage und ihre Tücken M. Kunz Institut für Meteorologie und Klimaforschung Universität / Forschungszentrum Karlsruhe die Realität Orkantief Lothar am 26.12.1999

Mehr

Detek%on der phänologischen Entwicklung natürlicher Vegeta%on in der Negev (Israel) mi?els RapidEye- Daten

Detek%on der phänologischen Entwicklung natürlicher Vegeta%on in der Negev (Israel) mi?els RapidEye- Daten Detek%on der phänologischen Entwicklung natürlicher Vegeta%on in der Negev (Israel) mi?els RapidEye- Daten Stefanie Elste /Chris%an Götze/Cornelia Gläßer Mar%n- Luther- Universität Halle- Wi?enberg Ins%tut

Mehr

Gekoppelte Meteorologie-Hydrologie-Simulation Von der technischen Strategie hin zum Frühwarnsystem

Gekoppelte Meteorologie-Hydrologie-Simulation Von der technischen Strategie hin zum Frühwarnsystem Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Institut für Meteorologie & Klimaforschung IMK-IFU, Garmisch-Partenkirchen High-Tech-Offensive Zukunft Bayern Gekoppelte Meteorologie-Hydrologie-Simulation

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Seite 1 von 8 Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Ziel dieser Lektion: Du weißt, wie Du die einzelnen Voraussetzungen für die Signifikanztests und komplexeren Modelle prüfen

Mehr

Multivariate Statistische Methoden und ihre Anwendung

Multivariate Statistische Methoden und ihre Anwendung Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg R. Oldenbourg Verlag München Wien

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Debayeringverfahren. 19. Mai Thomas Noack, Nikolai Kosjar. SE Computational Photography - Debayeringverfahren

Debayeringverfahren. 19. Mai Thomas Noack, Nikolai Kosjar. SE Computational Photography - Debayeringverfahren Debayeringverfahren Thomas Noack, Nikolai Kosjar 19. Mai 2010 Was bisher geschah... Reduktion der Herstellungskosten durch Einsatz von nur noch einem CCD-Sensor mit Bayer-Filter Problem: Bayer Image Full

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Korrektur: Lineare Regression in Excel

Korrektur: Lineare Regression in Excel Korrektur: Lineare Regression in Excel Doppelsummenkurve 1 8 kum. Abfluss 6 4 2 Juni 1987 5 1 15 2 kum. Niederschlag 1 PDFA Abfluss Lange Bramke 4 kum. Stabw. 3 2 1 Feb. 1981 1.8 1.82 1.84 1.86 1.88 1.9

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen

Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Wärmebedarfsprognose für Einfamilienhaushalte auf Basis von Künstlichen Neuronalen Netzen Internationale Energiewirtschaftstagung Wien - 12.02.2015 Maike Hasselmann, Simon Döing Einführung Wärmeversorgungsanlagen

Mehr

Bild Nummer 1: Bild Nummer 2: Seite B 1

Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 3: Bild Nummer 4: Seite B 2 Bild Nummer 5: Bild Nummer 6: Seite B 3 Bild Nummer 7: Bild Nummer 8: Seite B 4 Bild Nummer 9: Bild Nummer 10: Seite B 5

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Regionale Klimaprojektionen für das Einzugsgebiet des Westlichen Bug (Ukraine/Polen/Weißrussland)

Regionale Klimaprojektionen für das Einzugsgebiet des Westlichen Bug (Ukraine/Polen/Weißrussland) Forst-, Geo- und Hydrowissenschaften, Institut für Hydrologie und Meteorologie, Professur für Meteorologie Regionale Klimaprojektionen für das Einzugsgebiet des Westlichen Bug (Ukraine/Polen/Weißrussland)

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Anpassungsmaßnahmen: Welche Hinweise geben klimatologische Auswertungen den Akteuren des Bevölkerungsschutzes

Anpassungsmaßnahmen: Welche Hinweise geben klimatologische Auswertungen den Akteuren des Bevölkerungsschutzes Anpassungsmaßnahmen: Welche Hinweise geben klimatologische Auswertungen den Akteuren des Bevölkerungsschutzes Dialogveranstaltung "Klimawandel - Bevölkerungsschutz" Dipl.-Met. Joachim Namyslo Deutscher

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Dipl.-Math. oec. D. Engel Ergänzungsmaterial zur Vorlesung Statistik 2 Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Mehr

Radio Coverage Prediction for a Wireless IP-based Network in Central Europe. Dipl.-Ing. Ralf Wilke, DH3WR 60. UKW Tagung Weinheim 12.

Radio Coverage Prediction for a Wireless IP-based Network in Central Europe. Dipl.-Ing. Ralf Wilke, DH3WR 60. UKW Tagung Weinheim 12. Radio Coverage Prediction for a Wireless IP-based Network in Central Europe Dipl.-Ing. Ralf Wilke, DH3WR 12. September 2015 Inhalt ) Zielsetzung Kurzübersicht von Hamnet und hamnetdb.net Anwendbare Ausbreitungsmodelle

Mehr

Interdisziplinäres Seminar. Multivariate Statistik bei psychologischen Fragestellungen. Markus Bühner und Helmut Küchenhoff WS 2008/09

Interdisziplinäres Seminar. Multivariate Statistik bei psychologischen Fragestellungen. Markus Bühner und Helmut Küchenhoff WS 2008/09 Interdisziplinäres Seminar Multivariate Statistik bei psychologischen Fragestellungen Markus Bühner und Helmut Küchenhoff WS 2008/09, Homepage: http://www.stat.uni-muenchen.de/~helmut/seminar_0809.html

Mehr

Statistik II: Regressions- und Varianzanalyse

Statistik II: Regressions- und Varianzanalyse Statistik II: Regressions- und Varianzanalyse Eine Einführung für Studierende der Psychologie Helge Toutenburg und Christian Heumann mit Beiträgen von Michael Schomaker überarbeitet von Hans-Georg Sonnenberg

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Grundlagen der Probabilistik

Grundlagen der Probabilistik Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen

Mehr