Rabea Haas, Kai Born DACH September 2010

Größe: px
Ab Seite anzeigen:

Download "Rabea Haas, Kai Born DACH September 2010"

Transkript

1 Rabea Haas, Kai Born DACH September 2010

2 Motivation Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko Starke Gradienten des Niederschlags und der Höhe Komplexe Topographie und schiefe Verteilung des Niederschlags Hohe Auflösung der Daten ist von Bedeutung für das bessere Verständnis von lokalen Klimabedingungen für viele Anwendungen in der Meteorologie und Hydrologie Statistische Regionalisierung: Verbindung von punktuelle Klimabeobachtungen, Modelldaten und hochauflösende Oberflächendaten.

3 Motivation Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko Starke Gradienten des Niederschlags und der Höhe Komplexe Topographie und schiefe Verteilung des Niederschlags Hohe Auflösung der Daten ist von Bedeutung für das bessere Verständnis von lokalen Klimabedingungen für viele Anwendungen in der Meteorologie und Hydrologie Statistische Regionalisierung: Verbindung von punktuelle Klimabeobachtungen, Modelldaten und hochauflösende Oberflächendaten.

4 DACH2010 Rabea Haas

5 DACH2010 Rabea Haas

6 DACH2010 Rabea Haas

7 Validierung 5 Anwendung DACH Rabea Haas

8 Daten und Gebiet Beobachtungen Niederschlagsdaten gesammelt von O. Schulz innerhalb des GLOWA Projektes IMPETUS West Afrika (s. auch Schulz and Judex, 2008, Kapitel 3), schneekorrigiert Messstationen im Einzugsgebiet des Wadi Drâa in SO Marokko Atlas Gebirge im Norden und aride Saharahausläufer im Süden Höhen von 445m (Lac Iriki) bis 3850m (M Goun) Messungen vom 16.November 2000 bis zum 1.November TZT TIC MGN IMS TRB TAO BSK ARG ASR IRK JHB 354 EMY

9 Daten und Gebiet Modell-/Reanalysedaten ERA-Interim Daten Täglich akkumulierter Niederschlag Auflösung: Oberflächendaten Digitales Geländemodell (DEM) der Space Shuttle Radar Topography Mission (SRTM) Auflösung: 1km 1km TZT TIC MGN IMS TRB TAO BSK ARG ASR EMY IRK JHB

10 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm):

11 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm): Transformierte Verteilung:

12 Schätzung der Parameter Anpassung der kumulativen Weibull Verteilung an die empirische Niederschlagsverteilung (tägliche Mengen > 0mm): Transformierte Verteilung: Lineare Regression mit, und führt zur geschätzten kumulativen ( Verteilungsfunktion ) (CDF): F (x) =1 exp exp ( b x m)

13 DACH2010 Rabea Haas

14 Gesucht: Transferfunktion zwischen den Verteilungen der interpolierten ERA-Interim Reanalysen und der lokalen Niederschlagsverteilungen. Ziel: E E E E E E E Abschätzung der lokalen Niederschlagsverteilung unter zukünftigen Klimabedingungen. Methode: E E E E CDF-Transformation durch Vergleich der Wahrscheinlichkeiten (probability mapping)

15 CDF-Transformation Bekannte Verteilungen: Zwei für die interpolierten Modelldaten (historisch und zukünftig / Trainings- und Validierungszeitraum): F Mh, F Mf Eine für die Beobachtungen (gleicher historischer Zeitraum / Trainingszeitraum): F Sh

16 CDF-Transformation Bekannte Verteilungen: Zwei für die interpolierten Modelldaten (historisch und zukünftig / Trainings- und Validierungszeitraum): F Mh, F Mf Eine für die Beobachtungen (gleicher historischer Zeitraum / Trainingszeitraum): F Sh Schätzung eines neuen Datensatzes von zukünftigen täglichen Niederschlagsmengen unter Annahme einer stationären Transferfunktion:

17 DACH2010 Rabea Haas

18 Gesucht: Ziel: Transferfunktion zwischen Verteilungsparameter an den Stationen und Variablen des DEMs (z.b. Höhe, Länge, Breite und Gradienten der Höhe in O-W- und N-S- Richtung). Erhöhung der Datenauflösung durch Interpolation der Weibull Verteilungsparameter. Methode: Multiple Lineare Regression

19 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion

20 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion Regressionsmodell: y i = c 0 + c 1 x i c k x ik + ɛ i mit i = Nummer der Beobachtung, k = Nummer des Prädiktors und c = Regressionskoeffizienten

21 Multiple Lineare Regression Variablen: y = Weibull Verteilungsparameter (Prädiktanden) X = Oberflächendaten (Prädiktoren) ausgewählt durch Vorwärtsselektion Regressionsmodell: y i = c 0 + c 1 x i c k x ik + ɛ i mit i = Nummer der Beobachtung, k = Nummer des Prädiktors und c = Regressionskoeffizienten Schätzfunktion: mit (Kleinste Quadrate)

22 DACH2010 Rabea Haas

23 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

24 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Quantile geschätzt durch Multiple Lineare Regression. Ausgelassen einer Station (Bootstrapping). Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

25 Validierung Quantile geschätzt durch CDF- Transformation. Aufteilung in zwei Zeiträume. Quantile geschätzt durch Multiple Lineare Regression. Ausgelassen einer Station (Bootstrapping). Quantile geschätzt durch Kombination von CDF- Transformation und Multiple Lineare Regression. Auslassen einer Station und Aufteilung in zwei Zeiträume. Punkte: 1. Hälfte, gerade Eintragsnummer, Gesamte Zeitreihe. Kreise: 2. Hälfte, ungerade Eintragsnummer.

26 Anwendung Zeitreihe aufgeteilt nach ungeraden und geraden Eintragsnummern

27 Tage ohne Niederschlag Geschätzte Wahrscheinlichkeiten für Tage ohne Niederschlag. CDF-Transformation ersetzt durch Korrekturfaktor. Aufteilung in zwei Zeiträume nach gerader (oben: Punkte, unten: h) und ungerader (oben: Kreise, unten: f) Eintragsnummer. Blau: Erst Interpolation, dann Berechnung von p 0. Grün und unten: Berechnung von p0 an den Gitterpunkten, dann Interpolation.

28 Zusammenfassung Niederschlagsdaten aus dem Gebiet des Hohen Atlas in Marokko ERA-Interim Reanalysedaten Digitales Geländemodell CDF-Transformation Abschätzung der lokalen Niederschlagsverteilung unter zukünftigen Klimabedingungen. Multiple Lineare Regression Vergrößerung der Datenauflösung durch Interpolation der Weibull Verteilungsparameter.

29 Fazit Durch den kombinierten Ansatz kann an jedem Gitterpunkt des Geländemodells eine zukünftige Niederschlagsverteilung geschätzt werden. Q-Q-Plots zeigen zufriedenstellende Ergebnisse der beiden Methoden und des zweiteiligen Ansatzes. Das räumliche Verhalten der Verteilungsparameter ist stark durch die Wahl der Prädiktoren geprägt. Die Schätzung der Wahrscheinlichkeit für 0mm Tagesniederschlag ist an den tiefer gelegen Stationen besser als an den höher gelegenen Stationen. Es folgt: Auswertung von Klimaszenarien (REMO).

30

Regionalisierungsmethoden hydrometeorologischer Beobachtungsdatensätze zu hydrologisch relevanten Rasterdatensätzen (HYRAS) im ReKliEs-De Projekt

Regionalisierungsmethoden hydrometeorologischer Beobachtungsdatensätze zu hydrologisch relevanten Rasterdatensätzen (HYRAS) im ReKliEs-De Projekt Regionalisierungsmethoden hydrometeorologischer Beobachtungsdatensätze zu hydrologisch relevanten Rasterdatensätzen (HYRAS) im ReKliEs-De Projekt Simona Höpp Simona-Andrea.Hoepp@dwd.de M. Rauthe, T. Deutschländer

Mehr

Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung

Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft High-Tech-Offensive Zukunft Bayern Ableitung einer Z/R-Beziehung mittels inverser hydrologischer Modellierung 9. Workshop zur großskaligen Modellierung

Mehr

Naturgefahrenmodellierung in Österreich in der Praxis Sturm und Starkniederschlag. Alexander Beck

Naturgefahrenmodellierung in Österreich in der Praxis Sturm und Starkniederschlag. Alexander Beck in Österreich in der Praxis Sturm und Starkniederschlag Alexander Beck Übersicht Die Zentralanstalt für Meteorologie und Geodynamik Folie 2 : Meteorologischer Input Modellbasierte Windklimatologie Ansätze

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

11. Symposium Energieinnovation. Die Wasserkraftnutzung in Österreich bei Klimaänderungen

11. Symposium Energieinnovation. Die Wasserkraftnutzung in Österreich bei Klimaänderungen Wasserkraft bei Klimaänderung 1 11. Symposium Energieinnovation Die Wasserkraftnutzung in Österreich bei Klimaänderungen, P. Stanzel Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Deutscher Wetterdienst

Deutscher Wetterdienst Deutscher Wetterdienst Das Projekt Starkregen von GDV und DWD - Zwischenbericht - Dr. Paul Becker Vizepräsident des Deutschen Wetterdienstes 14. September 2016 Sommer 2016 Deutschland - Eine Bilanz Simbach

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz

Auswirkungen auf den Wasserhaushalt in Deutschland. Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz Auswirkungen auf den Wasserhaushalt in Deutschland Sabine Attinger, Luis Samaniego, Rohini Kumar, Matthias Zink, Matthias Cuntz 2. REKLIM Konferenz Klimawandel in den Regionen Leipzig 08.09.2011 Motivation

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Bias-Korrektur von CLM-Niederschlagsdaten. in dynaklim. Markus Quirmbach, Elke Freistühler dr. papadakis GmbH

Bias-Korrektur von CLM-Niederschlagsdaten. in dynaklim. Markus Quirmbach, Elke Freistühler dr. papadakis GmbH Bias-Korrektur von CLM-Niederschlagsdaten für die Impactmodelle in dynaklim Markus Quirmbach, Elke Freistühler dr. papadakis GmbH Zusammenfassung bisheriger Erkenntnisse Bias in den Jahresniederschlagssummen

Mehr

2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick

2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick 2 Die Niederschlagsverteilung für Deutschland im Jahr 2004 - Überblick Das Hauptziel dieser Arbeit ist einen hochaufgelösten Niederschlagsdatensatz für Deutschland, getrennt nach konvektivem und stratiformem

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

Klimadaten und Klimaprognosen für Hessen

Klimadaten und Klimaprognosen für Hessen Klimadaten und Klimaprognosen für Hessen Douglas Maraun Institut für Geographie Justus-Liebig-Universität Gießen 14. September 2009, Gießen Douglas Maraun Klimadaten und Klimaprognosen für Hessen 14 Sep

Mehr

Klimawandel Fakten aus der Vergangenheit und Prognosen für die Zukunft

Klimawandel Fakten aus der Vergangenheit und Prognosen für die Zukunft Klimawandel Fakten aus der Vergangenheit und Prognosen für die Zukunft Dipl.-Ing. Bernd Hausmann (LFI-RWTH) Inhalt Fakten zum Klimawandel Gründe für den Wandel Prognosen für die Zukunft - Wie ändert sich

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA-

Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA- RIMAX- Statusseminar 14. 16. März 2007 Bestimmung von Extremniederschlägen für kleine und mittlere Einzugsgebiete in Mittelgebirgen in Echtzeit mit erhöhter Redundanz -EXTRA- Nadine Jatho, Nadja Petrenz

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Klimaszenarien für Österreich womit müssen wir rechnen?

Klimaszenarien für Österreich womit müssen wir rechnen? Anpassung an den Klimawandel Herausforderung und Chance Klimaszenarien für Österreich womit müssen wir rechnen? Annemarie Lexer, Heimo Truhetz Anpassung an den Klimawandel Herausforderung und Chance 19.

Mehr

Lehr- und Übungsbuch der angewandten Statistik. Von Dr. Bärbel Elpelt und. O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund

Lehr- und Übungsbuch der angewandten Statistik. Von Dr. Bärbel Elpelt und. O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund Grundkurs Statistik Lehr- und Übungsbuch der angewandten Statistik Von Dr. Bärbel Elpelt und O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund Mit ausführlichen Übungs- und Klausurteilen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21)

Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21) Köln, 05.10.20111 Workshop und Präsentation von Zwischenergebnissen Klimawandelgerechte Metropole Köln Strategien zur Anpassung an den Klimawandel (KÖLN_21) Starkniederschlagsereignisse in der Stadt Köln

Mehr

Maximal möglicher Niederschlag verschiedener Wiederkehrzeiten und Klimawandel

Maximal möglicher Niederschlag verschiedener Wiederkehrzeiten und Klimawandel Maximal möglicher Niederschlag verschiedener Wiederkehrzeiten und Klimawandel A. Raabe, M. Barth, M. Wilsdorf Partner: LTV Sachsen, Pirna 1 Maximal möglicher Niederschlag verschiedener Wiederkehrzeiten

Mehr

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Thomas Kneib & Ludwig Fahrmeir Institut für Statistik, Ludwig-Maximilians-Universität München 1. Regressionsmodelle für geoadditive Daten

Mehr

Berechnung von verkehrsbedingten Immissionen und Ermittlung ihrer Auswirkung auf Baudenkmälern

Berechnung von verkehrsbedingten Immissionen und Ermittlung ihrer Auswirkung auf Baudenkmälern Berechnung von verkehrsbedingten Immissionen und Ermittlung ihrer Auswirkung auf Baudenkmälern Forschungsprojekt gefördert von der Deutschen Bundesstiftung Umwelt 2009 / 2011 Institut für Steinkonservierung

Mehr

5.6 Empirische Wirtschaftsforschung

5.6 Empirische Wirtschaftsforschung 5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,

Mehr

Analyse der EOP-Zeitreihen aus Daten des ITRF2008

Analyse der EOP-Zeitreihen aus Daten des ITRF2008 Mathis Bloßfeld, Manuela Seitz, Detlef Angermann Deutsches Geodätisches Forschungsinstitut Geodätische Woche 2009 Forschungsarbeiten im Rahmen der Forschergruppe Erdrotation und globale dynamische Prozesse

Mehr

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten

Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten . Analyse von zeitlichen Variationen bei unregelmäßig vorliegenden räumlichen Daten Geodätische Woche 2010 1 Andreas Ernst und Wolf-Dieter Schuh 7. Oktober 2010 Motivation Räumliche Daten entstehen inzwischen

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Klimawandel und Wasserkraft: Trends im 21. Jahrhundert

Klimawandel und Wasserkraft: Trends im 21. Jahrhundert Forschung zu Klima, Klimawandel, Auswirkungen und Anpassung in Österreich Wien, 21. 22.9.2011 Philipp Stanzel Hans Peter Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiven Wasserbau

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam

GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam GLOWA-ELBE Abschlusskonferenz 15./16. März 2004 in Potsdam Klima Simulationsergebnisse des regionalen Klimamodells STAR Friedrich-Wilhelm Gerstengarbe, Peter C. Werner Potsdam-Institut für Klimafolgenforschung

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

WIR MACHEN WETTER ZU WERTEN.

WIR MACHEN WETTER ZU WERTEN. MARKTWERTKATALOG WIR MACHEN WETTER ZU WERTEN. Energiewirtschaftliche Analysen. Basis für unternehmerisches Handeln. DER MARKTWERTATLAS: OPTIMIERUNGS- INSTRUMENT FÜR DIREKTVERMARKTER, BETREIBER UND HERSTELLER

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Deutscher Wetterdienst

Deutscher Wetterdienst Deutscher Wetterdienst Klimarisiko im Griff? Dessau, 11. Oktober 2012 Extremwetterereignisse in Deutschland Entwicklung und Zukunft Tobias Fuchs Leiter der Abteilung Klima- und Umweltberatung des Deutschen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Moderne Methodik bei der Analyse von Mietspiegeln

Moderne Methodik bei der Analyse von Mietspiegeln Moderne Methodik bei der Analyse von Mietspiegeln Dr. Susanne Meßler, omnistat gmbh 13. Oktober 2010 Inhalt Definition und Bedeutung eines Mietspiegels Datengrundlage Deskriptiver Überblick Einfachregression

Mehr

Fachbereich Geowissenschaften. Layoutbeispiel einer Bachelorarbeit

Fachbereich Geowissenschaften. Layoutbeispiel einer Bachelorarbeit Fachbereich Geowissenschaften Institut für Meteorologie Layoutbeispiel einer Bachelorarbeit Bachelorarbeit von Max Mustermann Gutachter: Prof. Dr. Ulrich Cubasch Prof. Dr. Uwe Ulbrich 14. Januar 2011 Zusammenfassung

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

8. Statistische Methoden in der Hydrologie 8.1 Begriffe der Statistik Menge aller möglichen Beobachtungswerte. Sie ist zahlenmäßig nicht begrenzt.

8. Statistische Methoden in der Hydrologie 8.1 Begriffe der Statistik Menge aller möglichen Beobachtungswerte. Sie ist zahlenmäßig nicht begrenzt. 8. Statistische Methoden in der Hydrologie 8.1 Begriffe der Statistik Grundgesamtheit: Menge aller möglichen Beobachtungswerte. Sie ist zahlenmäßig nicht begrenzt. Stichprobe: Zufällige Auswahl von N Beobachtungswerten

Mehr

F r a g e n k a t a l o g

F r a g e n k a t a l o g F r a g e n k a t a l o g 1. Was ist eine Konstante? 2. Was ist eine Variable? 3. Was ist ein Datum? 4. Welche Werte haben Variablen? 5. Was sind qualitative Variablen? 6. Was sind quantitative Variablen?

Mehr

Klimawandel in Deutschland

Klimawandel in Deutschland Klimawandel in Deutschland Prof. Dr. Manfred Stock, Potsdam Institut für Klimafolgenforschung Dialoge zur Klimaanpassung Berufliche Aus- & Weiterbildung BMU Berlin, 23. November 2011 Themen Vom Globalen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Multivariate Statistische Methoden

Multivariate Statistische Methoden Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg v..v.-'... ':,. -X V R.Oldenbourg

Mehr

Welche Feinstaubbelastung haben wir morgen in Graz?

Welche Feinstaubbelastung haben wir morgen in Graz? 1 Welche Feinstaubbelastung haben wir morgen in Graz? Ernst Stadlober Brigitte Pfeiler Institut für Statistik www.statistics.tugraz.at Technische Universität Graz Was ist Feinstaub? Sehr kleine Staubteilchen

Mehr

Die Wettervorhersage und ihre Tücken

Die Wettervorhersage und ihre Tücken Lehrerfortbildung 11. Juni 2008 Die Wettervorhersage und ihre Tücken M. Kunz Institut für Meteorologie und Klimaforschung Universität / Forschungszentrum Karlsruhe die Realität Orkantief Lothar am 26.12.1999

Mehr

Hochaufgelöste regionale Reanalysen für Europa und Deutschland

Hochaufgelöste regionale Reanalysen für Europa und Deutschland Hans-Ertel-Zentrum für We2erforschung Themenbereich Klimamonitoring und Diagnos=k Hochaufgelöste regionale Reanalysen für Europa und Deutschland Christian Ohlwein 1,3, Jan Keller 1,2 Christoph Bollmeyer

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Multivariate Statistische Methoden und ihre Anwendung

Multivariate Statistische Methoden und ihre Anwendung Multivariate Statistische Methoden und ihre Anwendung in den Wirtschafts- und Sozialwissenschaften Von Prof. Dr. Hans Peter Litz Carl von Ossietzky Universität Oldenburg R. Oldenbourg Verlag München Wien

Mehr

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19 Inhaltsverzeichnis Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten 19 1.2 Merkmale und Merkmalsausprägungen

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Statistische Methoden der VWL und BWL Theorie und Praxis ST?

Statistische Methoden der VWL und BWL Theorie und Praxis ST? Statistische Methoden der VWL und BWL Theorie und Praxis ST? Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten

Mehr

REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung

REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung REGNIE: Regionalisierte Niederschläge Verfahrensbeschreibung und Nutzeranleitung Abteilung Hydrometeorologie REGNIE_Beschreibung_20131030 Seite 1/9 1. Einleitung... 2 2. Produktpalette... 3 3. Datengrundlage...

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Korrektur: Lineare Regression in Excel

Korrektur: Lineare Regression in Excel Korrektur: Lineare Regression in Excel Doppelsummenkurve 1 8 kum. Abfluss 6 4 2 Juni 1987 5 1 15 2 kum. Niederschlag 1 PDFA Abfluss Lange Bramke 4 kum. Stabw. 3 2 1 Feb. 1981 1.8 1.82 1.84 1.86 1.88 1.9

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Welchen Einfluss hat der Frost auf den Feinstaub in Graz?

Welchen Einfluss hat der Frost auf den Feinstaub in Graz? 1 Welchen Einfluss hat der Frost auf den Feinstaub in Graz? Ernst Stadlober Brigitte Pfeiler Luzia Burger-Ringer Institut für Statistik www.statistics.tugraz.at Technische Universität Graz 3 Was ist Feinstaub?

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe

Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe Anpassung ist notwendig: Konsequenzen aus Klimawandel und Hochwasserrisiko für f r die Elbe Dipl. Ing. Corinna Hornemann Umweltbundesamt Abteilung II Wasser und Boden Fachgebiet Übergreifende Angelegenheiten

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Gekoppelte Meteorologie-Hydrologie-Simulation Von der technischen Strategie hin zum Frühwarnsystem

Gekoppelte Meteorologie-Hydrologie-Simulation Von der technischen Strategie hin zum Frühwarnsystem Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Institut für Meteorologie & Klimaforschung IMK-IFU, Garmisch-Partenkirchen High-Tech-Offensive Zukunft Bayern Gekoppelte Meteorologie-Hydrologie-Simulation

Mehr

Fachkarte Bemessungsniederschlag

Fachkarte Bemessungsniederschlag Fachkarte Bemessungsniederschlag Wofür braucht man Bemessungsniederschläge? Bemessungsniederschläge sind die Grundlage für viele siedlungs- und schutzwasserwirtschaftliche Planungen. Zum Beispiel sind

Mehr