Laplace-Formel. Übungsaufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Laplace-Formel. Übungsaufgaben"

Transkript

1 Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal geworfen. Berechne. (a) P(eine 5 zu würfeln) (b) P(eine ungerade Zahl zu würfeln) (c) P(eine oder eine 4 zu würfeln) (d) P(eine Primzahl zu würfeln) (e) P(eine ohne Rest durch teilbare Zahl zu würfeln) (f) P(eine ohne Rest durch 7 teilbare Zahl zu würfeln) (g) P(eine gerade und durch teilbare Zahl zu würfeln) (h) P(eine Zahl > 1 zu würfeln) (i) P(keine Zahl > zu würfeln) (j) P(eine Zahl < 10 zu würfeln) (k) P(eine 1 oder eine oder eine gerade Zahl zu würfeln). Ein idealer Würfel wird zweimal nacheinander geworfen (zweistufiges Zufallsexperiment). Berechne (a) P(zuerst eine 5 und dann eine zu würfeln) (b) P(unter den gewürfelten Zahlen ist eine 5 und eine ) (c) P(mindestens eine der gewürfelten Zahlen ist eine ) (d) P(die zuerst gewürfelte Zahl ist eine ) (e) P(unter den beiden gewürfelten Zahlen ist genau eine 4) 1

2 (f) P(zwei Sechsen zu würfeln) (g) P(beide gewürfelten Zahlen sind identisch [Zweierpasch]) (h) P(beide gewürfelten Zahlen sind verschieden) (i) P(zuerst eine gerade und dann eine ungerade Zahl zu würfeln) (j) P(die zuerst gewürfelte Zahl ist um 5 kleiner als die zweite.) (k) P(die zuerst gewürfelte Zahl ist um 4 kleiner als die zweite.) (l) P(die Summe der Augenzahlen beträgt ) (m) P(die Summe der Augenzahlen beträgt 1) (n) P(das Produkt der Augenzahlen beträgt 4) (o) P(das Produkt der Augenzahlen beträgt 7) (p) P(die Summe der Augenzahlen ist kleiner oder gleich ) (q) P(die Summe der Augenzahlen ist = 11) (r) P(die Summe der Augenzahlen ist > 11) (s) P(Summe und Produkt der Augenzahlen ist 4). Ein Spielwürfel wird zweimal nacheinander geworfen und die Augenzahlen in der Reihenfolge ihres Auftretens notiert. Berechne diesmal mit Hilfe eines Baumdiagrammes. (a) P(zuerst eine 1 und dann eine 4 zu würfeln) (b) P(zuerst eine 1 und dann eine gerade Zahl zu würfeln) (c) P(zuerst keine und dann eine Zahl > 4 zu würfeln) (d) P(die Zahlen 5 und oder die Zahlen und 6 zu würfeln) (e) P(mindestens eine der gewürfelten Zahlen ist eine 6)

3 (f) P(genau eine der gewürfelten Zahlen ist eine 6) 4. Wie viele Elementarereignisse gibt es, wenn... (a) Mal nacheinander gewürfelt wird? (b) 4 Mal nacheinander gewürfelt wird? (c) mit 7 verschiedenfarbigen Würfeln gleichzeitig gewürfelt wird? 5. Ein Spielwürfel wird dreimal nacheinander geworfen und die Augenzahlen in der Reihenfolge ihres Auftretens notiert. Berechne mit Hilfe eines Baumdiagrammes. (a) P(drei Sechsen zu würfeln) (b) P(genau zwei Sechsen zu würfeln) (c) P(genau eine Sechs zu würfeln) (d) P(nur gerade Zahlen zu würfeln) (e) P(ein wachsende arithmetische Folge mit d = zu würfeln) (f) P(die Augensumme 4 zu würfeln) (g) P(zuerst eine oder ein 4, dann eine und dann eine Primzahl zu würfeln) 6. Eine Münze wird zweimal nacheinander geworfen. Berechne die Wahrscheinlichkeit (a) P(zuerst Zahl, dann Kopf zu werfen) (b) P(immer Zahl zu werfen) (c) P(genau einmal Kopf zu werfen) (d) P(zweimal Kopf oder zweimal Zahl zu werfen) (e) P(mindestens einmal Kopf zu werfen) (f) P(nie Zahl zu werfen)

4 (g) P(höchstens einmal Kopf zu werfen) 7. Eine Münze wird dreimal nacheinander geworfen. Berechne die Wahrscheinlichkeit (a) P(dreimal Zahl zu werfen) (b) P(zuerst zweimal Zahl und dann Kopf zu werfen) (c) P(genau zweimal Zahl zu werfen) (d) P(immer Kopf zu werfen) (e) P(höchstens zweimal Kopf zu werfen) (f) P(höchstens einmal Kopf zu werfen) (g) P(nie Kopf zu werfen) (h) P(genau einmal Zahl zu werfen) 8. Eine Münze wird viermal nach einander geworfen. Berechne die Wahrscheinlichkeit (a) P(niemals Zahl zu werfen) (b) P(genau einmal Zahl zu werfen) (c) P(genau zweimal Zahl zu werfen) (d) P(genau dreimal Zahl zu werfen) (e) P(genau viermal Zahl zu werfen) 9. Eine Münze wird fünfmal nacheinander geworfen. Berechne die Wahrscheinlichhkeit (a) P(nie Zahl zu werfen) (b) P(genau einmal Zahl zu werfen) (c) P(genau zweimal Zahl zu werfen) 4

5 (d) P(genau dreimal Zahl zu werfen) (e) P(mindestens viermal Zahl zu werfen) (f) P(mindestens zweimal Zahl zu werfen) 10. Aus einem gut gemischten Kartenspiel (vier Farben: Kreuz, Pik, Herz, Karo, neun Kartenwerte: As (11), König (4), Dame (), Bube (), 10, 9, 8, 7, 6) wird eine Karte gezogen. Berechne die Wahrscheinlichkeit. (a) P(einen Pik-Buben zu ziehen) (b) P(eine Herz-Karte zu ziehen) (c) P(ein As oder einen König zu ziehen) (d) P(ein As oder eine Kreuz-Karte zu ziehen) (!) (e) P(eine Karte mit einer Zahl zu ziehen) (f) P(höchstens den Kartenwert 7 zu ziehen) (g) P(mindestens den Kartenwert 5 zu ziehen) 11. Aus einem gut gemischten Kartenspiel (vier Farben: Kreuz Pik, Herz, Karo; neun Kartenwerte: As (11), König (4), Dame (), Bube (), 10, 9, 8, 7, 6) wird eine Karte gezogen und deren Wert und Farbe notiert. Dann wird die Karte wieder auf den Stapel gelegt und der Stapel gut gemischt. Dann wird eine zweite Karte gezogen und wieder deren Wert und Farbe notiert. Berechne die Wahrscheinlichkeit (a) P(zuerst einen König und dann eine Dame zu ziehen) (b) P(einen König und eine Dame zu ziehen) (c) P(dass mindestens ein Bube gezogen wird) (d) P(dass eine der Karten eine Karo-Karte und die andere eine 10 ist) (e) P(dass zwei verschiedene Karten gezogen werden) 5

6 1. Aus einem gut gemischten Kartenspiel wird eine Karte gezogen und deren Wert und Farbe notiert. Dann wird ohne die erste Karte zurückzulegen eine zweite Karte gezogen und deren Wert und Farbe notiert. Diese Variante eines Zufallsexperimentes wird Ziehen ohne Zurücklegen genannt. Berechne die Wahrscheinlichkeit (a) P(Zwei Asse zu ziehen) (b) P(zuerst einen König und dann eine Dame zu ziehen) (c) P(einen König und eine Dame zu ziehen) (d) P(dass mindestens ein Bube gezogen wird) (e) P(dass zwei verschiedene Karten gezogen werden) (f) P(dass die Summe der Kartenwerte 5 beträgt) 1. In einer Schachtel befinden sich 5 rote, blaue und weisse Kugeln. Aus dieser Schachtel werden nacheinander blind zwei Kugeln gezogen, wobei nach jeder Ziehung die Farbe der Kugel notiert und die Kugel wieder in die Schachtel zurückgelegt wird. Berechne die Wahrscheinlichkeit (a) P(zuerst eine weisse und dann eine rote Kugel zu ziehen) (b) P(dass eine weisse und eine rote Kugel unter den gezogenen ist) (c) P(zwei blaue Kugeln zu ziehen) (d) P(zwei verschiedenfarbige Kugeln zu ziehen) (e) P(zwei gleichfarbige Kugeln zu ziehen) (f) P(keine blaue Kugel zu ziehen) 14. In einer Schachtel befinden sich 5 rote, blaue und weisse Kugeln. Aus dieser Schachtel werden nacheinander blind und ohne Zurücklegen drei Kugeln gezogen, wobei nach jeder Ziehung die Farbe der Kugel notiert wird. Berechne die Wahrscheinlichkeit (a) P(nur blaue Kugeln zu ziehen) (b) P(nur rote Kugeln zu ziehen) 6

7 (c) P(mindestens blaue Kugeln zu ziehen) (d) P(drei verschiedenfarbige Kugeln zu ziehen) (e) P(drei gleichfarbige Kugeln zu ziehen) (f) P(keine weisse Kugel zu ziehen) 15. Zwei Spieler A und B werfen abwechslungsweise eine Münze. Diejenige Person, welche zuerst Kopf wirft, gewinnt das Spiel. A beginnt. Mit welcher Wahrscheinlichkeit gewinnt A das Spiel? 16. In einer Schachtel liegen insgesamt 100 Kugeln. Von diesen Kugeln sind n rot, die übrigen schwarz. Die Wahrscheinlichkeit, ohne Zurücklegen zwei rote Kugeln zu ziehen, beträgt p = 8. Berechne die Anzahl der schwarzen Kugeln In einer Schachtel liegen blaue und rote Kugeln. Zwei Spieler ziehen abwechslungsweise eine Kugel, ohne sie wieder zurückzulegen. Sieger ist, wer als erster eine rote Kugel zieht. Wie gross ist die Wahrscheinklichkeit, dass der mit dem Ziehen beginnende Spieler gewinnt? 18. Ein Kleinbus mit 9 Insassen fährt über eine Grenze. Vier der Insassen sind Schmuggler. Ein Zollbeamter wählt zufällig drei Personen zur Kontrolle aus. Wie gross ist die Wahrscheinlichkeit, dass (a) alle Kontrollierten Schmuggler sind? (b) keiner der Kontrollierten ein Schmuggler ist? (c) genau einer der Kontrollierten ein Schmuggler ist? 7

8 19. In einer Urne befinden sich 7 rote, 8 grüne und 5 blaue Kugeln. In einer anderen Urne befinden sich 10 rote, 8 grüne und blaue Kugeln. Aus jeder der Urnen wird gleichzeitig eine Kugel gezogen. Wie gross ist die Wahrscheinlichkeit, dass (a) beide Kugeln rot sind? (b) beide Kugeln gleichfarbig sind? (c) mindestens eine Kugel grün, aber keine rot ist? 0. In einer Urne sind 5 schwarze, 4 weisse und rote Kugeln Es wird zweimal ohne Zurücklegen gezogen. Wie gross ist die Wahrscheinlichkeit, (a) zwei schwarze Kugeln (b) mindestens eine rote Kugel zu ziehen? 1. Im einem Korb liegen 6 schwarze, 4 blaue und graue Socken. Jemand nimmt blind zwei Socken heraus. Wie gross ist die Wahrscheinlichkeit, dass beide die gleiche Farbe haben?. Ein Student darf bei einer Prüfung von 0 Prüfungsfragen ziehen. Er hat 5 Fragen gelernt. Wie gross ist die Wahrscheinlichkeit, dass er (a) beide Fragen richtig beantworten kann? (b) mindestens eine Frage richtig beantworten kann? 8

9 Laplace-Formel Lösungen+ Übungsaufgaben 1. (a) 1/6 (b) 1/ (c) 1/ (d) 1/ (e) 1/ (f) 0 (g) 1/6 (h) 5/6 (i) 1/ (j) 1 (k) 5/6. (a) 1/6 (b) 1/18 (c) 11/6 (d) 1/6 (e) 5/18 (f) 1/6 (g) 1/6 (h) 5/6 (i) 1/4 (j) 1/6 (k) 1/18 (l) 1/6 (m) 1/6 (n) 1/1 (o) 0 (p) 1/1 (q) 1/18 (r) 1/6 (s) 1/6. (a) 1/6 (b) 1/1 (c) 5/18 (d) 1/9 (e) 11/6 (f) 5/18 4. (a) 6 = 16 (b) 6 4 = 196 (c) 6 7 = (a) 1/16 (b) 5/7 (c) 5/7 (d) P(g,g,g)= = 1 8 ) + ( ) 1 = 1 6 (e) P(1,,5)+P(,4,6) = ( 1 6 (f) P(,1,1)+P(1,,1)+P(1,1,) = (1 (g) P( 4,, 5) = = ) = (a) P(Z,K) = 1 1 = 1 4 (b) P(Z,Z) = 1 1 = 1 4 (c) P(K,Z)+P(Z,K) = = = 1 4 (d) P(K,K)+P(Z,Z) = = = 1 4 (e) P(K,Z)+P(Z,K)+P(K,K) = = 4 oder indirekt: 1 P(nie Kopf werfen) = 1 P(Z,Z) = = 4 (f) P(K,K) = 1 1 = 1 4 (g) P(K,Z)+P(Z,K)+P(Z,Z) = = 4 oder indirekt: 1 P(genau zweimal Kopf) = 1 P(K,K) = = 4 7. (a) P(Z,Z,Z) = = 1 8 (b) P(Z,Z,K) = = 1 8 (c) P(Z,Z,K)+P(Z,K,Z)+P(K,Z,Z) = ( 1 ) + ( ) 1 + ( 1 ) = 8 (d) P(K,K,K) = ( 1 ) = 1 8 (e) P(0 Mal Kopf)+P(1 Mal Kopf)++P( Mal Kopf) = P(Z,Z,Z)+P(K,Z,Z)+ ) P(Z,K,Z)+P(Z,Z,K)+P(Z,K,K)+P(K,Z,K)+P(K,K,Z)= 7 (1 = 7 8 oder indirekt: 1 P(genau Mal Kopf) = 1 P(K,K,K) = 1 ( 1 ) = 1 1 = (f) P(0 Mal Kopf) + P(1 Mal Kopf) = P(Z,Z,Z) + P(K,Z,Z) + P(Z,K,Z) + P(Z,Z,K) = 4 (1 ) = 1 1

10 (g) P(Z,Z,Z) = = 1 8 ) (h) P(Z,K,K)+P(K,Z,K)+P(K,K,Z) = (1 = 8 8. (a) P(K,K,K,K) = 1 16 (b) P(Z,K,K,K)+P(K,Z,K,K)+P(K,K,Z,K)+P(K,K,K,Z) = 4 16 = 1 4 (c) P(Z,Z,K,K)+P(Z,K,Z,K)+P(Z,K,K,Z)+P(K,Z,Z,K)+P(K,Z,K,Z)+ P(K,K,Z,Z) = 6 16 = 8 (d) P(Z,Z,Z,K)+P(Z,Z,K,Z)+P(Z,K,Z,Z)+P(K,Z,Z,Z) = 4 16 = 1 4 (e) P(Z,Z,Z,Z)= (a) p = ( 5 1 ) 5 0) ( = 1 (b) p = ( 5 1 ) 5 1) ( = 5 (c) p = ( 5 1 ) 5 ) ( = 10 (d) p = ( 5 1 ) 5 ) ( = 10 (e) p = [( 5 4) + ( 5 5)] ( 1 = 5 16 = 5 16 ) 5 = 6 = 16 (f) p = [( 5 ) + ( 5 ) + ( 5 4) + ( 5 5)] ( (a) P( B) = 1 6 ) 5 = 6 = 1 16 (b) P( ) = 9 6 = 1 4 (c) P(A)+P(K) = = 8 6 = 9 (d) P(A)+P( ) P( A) = = 1 (e) P(10)+P(9)+P(8)+P(7)+P(6) = = 5 9 (f) P(Wert 7) = P(B)+P(D)+P(K)+P(6)+P(7) = = 5 9 (g) P(Wert 5) = P(6)+P(7)+P(8)+P(9)+P(10)+P(11) = = 11. (a) P(K,D) = = 1 81 (b) P(K,D)+P(D,K) = = 81 (c) P(B,B)+P(B,B)+P(B,B) = = oder indirekt: 1 P(B,B) = 1 = (d) P(,10)+P(10, ) = = (e) P(x, x) = 6 5 = (a) P(A,A) = 4 = (b) P(K,D) = 4 4 = (c) P(K,D)+P(D,K) = = (d) P(B,B)+P(B,B)+P(B,B) = = oder indirekt: 1 P(B,B) = 1 1 = (e) P(x, x) = 6 5 = (f) P(D, B)+P(B, D) = =

11 1. In dieser Aufgabe gilt: P(r) = 5 10, P(b) = 10, P(w) = 10 (a) P(w,r) = 5 = (b) P(w,r)+P(r,w) = = (c) P(b,b) = = (d) P(w,w)+P(r,r)+P(b,b) = = (e) P(r,r)+P(b,b)+P(w,w) = = (f) P(b,b) = 7 7 = (a) P(b,b,b) = 1 = (b) P(r,r,r) = 5 4 = (c) P(b,b,b)+P(b,b,b)+P(b,b,b)+P(b,b,b) = = (d) P(r,b,w)+P(r,w,b)+P(b,w,r)+P(b,r,w)+P(w,b,r)+P(w,r,b) = = (e) P(r,r,r)+P(b,b,b)+P(w,w,w) = = (f) P(w,w,w) = = P(A) = 1 P(ABA) = ( 1 ) = 1 8 P(ABABA) = ( ) 1 5 = 1 usw. Die Wahrscheinlichkeiten, dass A beim k-ten Versuch das Spiel gewinnt, bilden einen geometrische Folge mit p 1 = 1 und q = 1 4 P(A gewinnt das Spiel) = = P(r,r) = n 100 n 1 99 = 8 75 = n n = 1056 n n 1056 = 0 n 1 =, n = n = rote und 100 n = 67 schwarze Kugeln 17. Spätestens nach dem. Zug ist das Spiel entschieden. Der erste Spieler gewinnt in foldenden Situationen P(r) = 5 P(b,b,r) = 5 4 Zusammen ergibt dies eine Wahrscheinlichkeit von p = (a) P(S,S,S) = 4 = (b) P(S,S,S) = 5 4 = (c) P(S,S,S)+P(S,S,S)+P(S,S,S) = = = (a) P(r,r) = 7 10 = (b) P(r,r)+P(g,g)+P(b,b) = = = (c) P(g,b)+P(b,g)+P(g,g) = = =

12 0. (a) P(s,s) = 5 4 = (b) P(r,r)+P(r,r)+P(r,r) = = oder die Wahrscheinlichkeit des Gegenereignisses (keine rote Kugel) berechnen: P(r,r) = 9 8 = und von der Wahrscheinlichkeit des sicheren Ereignisses (1) subtrahieren: 1 6 = Ziehen ohne Zurücklegen: P(s,s)+P(b,b)+P(g,g) = = 1. b: Kandidat kann die Frage beantworten b: Kandidat kann die Frage nicht beantworten (a) P(b,b) = = 0 9 (b) P(b,b)+P(b,b)+P(b,b) == = oder kürzer: 1 P(b,b) = = 1 =

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

rot blau rot blau

rot blau rot blau LS-9- Eine Schale enthält vier rote und drei e Kugeln. Es werden blind zwei Kugeln mit Zurücklegen gezogen. 7 rot 6 6 rot 7 9 9 0,26506 2 2 7 9 9 0,2898 7 2 2 rot 7 9 9 0,2898 9 9 7 9 9 0,8675 a) P(zwei

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Klausur: Stochastik Stochastik

Klausur: Stochastik Stochastik Stochastik Klausur zu Pfadregeln, bedingte Wahrscheinlichkeit, Erwartungswert einer Zufallsvariablen Vierfeldertafel berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 0 Aufgabe

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Anzahl möglicher Anordnungen bei 3 Elementen

Anzahl möglicher Anordnungen bei 3 Elementen Anzahl möglicher Anordnungen bei 3 Elementen Man kann die Anzahl möglicher Anordnungen der drei Buchstaben A, B und C mit einem Baumdiagramm bestimmen. 3 2 6 verschiedene Anordnungen Permutationen Die

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten .. Aufgaben zu mehrstufigen Zufallsexperimenten Aufgabe : Baumdiagramm mit Erwartungswert beim zweimaligen Würfeln Ein ungezinkter sechsseitiger Würfel wird zweimal geworfen. a) Zeichne einen repräsentativen

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden.

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden. Buchstabensalat In einem dunklen Gefäß liegen 5 rote Kugeln mit dem Buchstaben U, 5 gelbe mit dem Buchstaben S und 5 grüne mit dem Buchstaben N. Am Nachmittag spielt Pia wieder einmal mit dem geheimnisvollen

Mehr

5. KLASSENARBEIT MATHEMATIK G9A

5. KLASSENARBEIT MATHEMATIK G9A 5. KLASSENARBEIT MATHEMATIK G9A 11.04.2014 Aufgabe 1 2 3 4 5 6 Punkte (max) 2 4 4 8 4 2 Punkte (1) Eine Münze wird dreimal geworfen. Gib zu jedem der folgenden Ereignisse das Gegenereignis an! (a) Man

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

3.6 Wahrscheinlichkeitsrechnung I

3.6 Wahrscheinlichkeitsrechnung I 3.6 Wahrscheinlichkeitsrechnung I Inhaltsverzeichnis 1 Einführung 2 2 Zufallsversuche 2 3 Der Wahrscheinlichkeitsbegriff 5 4 Der Laplace-Zufallsversuch (oder Laplace-Experiment) 8 5 Die Komplementärregel

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Lehrerfortbildung: Stochastik

Lehrerfortbildung: Stochastik Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Das Wahrscheinlichkeitsrechnen

Das Wahrscheinlichkeitsrechnen Das Wahrscheinlichkeitsrechnen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Grundbegriffe zur Wahrscheinlichkeitstheorie Aufgabe:

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit

Vier-Felder-Tafel und bedingte Wahrscheinlichkeit Vier-Felder-Tafel und bedingte Wahrscheinlichkeit erkrankt nicht erkrankt geimpft 47 125 nicht geimpft 21 Summe 201 Ergänze die Vier-Felder-Tafel und stelle die Zusammenhänge in einem Pfaddiagramm dar,

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de Blatt 26: Pfadregeln

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X: Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Problemlösen Kombinationen - Wahrscheinlichkeit

Problemlösen Kombinationen - Wahrscheinlichkeit Problemlösen Kombinationen - Wahrscheinlichkeit Zusammengestellt aus dem Mathebuch der Bezirksschule Brugg Anzahl möglicher Anordnungen bei 3 Elementen Wie viele mögliche Anordnungen lassen sich aus drei

Mehr

matheskript A STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHT- und WAHLBEREICH GRUNDLAGEN Klasse ABI 2015 Jens Möller

matheskript A STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHT- und WAHLBEREICH GRUNDLAGEN Klasse ABI 2015 Jens Möller matheskript A STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHT- und WAHLBEREICH GRUNDLAGEN 2. 3. Klasse ABI 205 Jens Möller Autor: Jens Möller 88 696 Owingen Tel. 0755-68289 jmoellerowingen@aol.com

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.

Mehr

20.3 Wahrscheinlichkeit bei Laplace- Versuchen

20.3 Wahrscheinlichkeit bei Laplace- Versuchen Zufalls experimente und Ereignisse Geben Sie jeweils eine sinnvolle Ergebnismenge Q für die folgenden Zufallsexperimente an: I) Eine Münze wird dreimal geworfen (benutzen Sie w für Wappen und z für Zahl).

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2010 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

60 Einführende Aufgaben in die Stochastik. S.Frank

60 Einführende Aufgaben in die Stochastik. S.Frank 60 Einführende Aufgaben in die Stochastik S.Frank Juli 2007 60 Einführende Aufgaben in die Stochastik Von Sascha Frank (2007) Alle Rechte vorbehalten. Diese Werk ist einschließlich aller seiner Teile urheberrechtlich

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Daten und Zufall in der Jahrgangsstufe 8 Seite 1

Daten und Zufall in der Jahrgangsstufe 8 Seite 1 Daten und ufall in der Jahrgangsstufe Seite Bei vielen Experimenten, wie z. B. Experimenten der Physik, kann das Ergebnis mit Sicherheit vorhergesagt werden. Solche Experimente heißen kausale Experimente.

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Objectifs visés : Ce que dit le programme : Comprendre et utiliser des notions élémentaires de probabilité Calculer des probabilités dans des contextes familiers Ce que propose

Mehr

Rahmenbedingungen und Hinweise

Rahmenbedingungen und Hinweise Gymnasium Muttenz Mathematik Matur 2013 Kandidatin/ Kandidat Name:................................................................ Klasse:................ Die Prüfung dauert 4 Stunden. Es werden alle Aufgaben

Mehr

Doppelwurf mit idealen Würfeln. Beobachtet wird, ob die Augensumme eine Primzahl ist. (Die Reihenfolge interessiert uns nicht.)

Doppelwurf mit idealen Würfeln. Beobachtet wird, ob die Augensumme eine Primzahl ist. (Die Reihenfolge interessiert uns nicht.) Lösungen zu den Aufgaben Teil 3 Doppelurf mit idealen Würfeln. Beobachtet ird, ob die Augensumme eine Primzahl ist. (Die Reihenfolge interessiert uns nicht.) Hier gibt es mehrere passende Augenkombinationen:

Mehr

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU Erster Teil: Überlegen Sie mal... Zur Lösung dieser sechs Aufgaben reichen einfache Kenntnisse der Wahrscheinlichkeitstheorie und einige logische

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr