Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kurs 2 Stochastik EBBR Vollzeit (1 von 2)"

Transkript

1 Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich So schätze ich meinen Lernzuwachs ein. weiß, was die Begriffe Prozentsatz, Prozentwert und Grundwert bedeuten. kann den Prozentsatz berechnen (mit Formel oder Dreisatz). kann den (normalen, erhöhten, verminderten) Grundwert berechnen (mit Formel oder Dreisatz). kann den Prozentwert berechnen (mit Formel oder Dreisatz). weiß, was ein Kreis-, Säulen- und Streifendiagramm ist. kann mit den Angaben aus einer vorgegebenen Tabelle ein Kreis-, Säulen- und Streifendiagramm zeichnen. kann aus einem Kreis-, Säulen- und Streifendiagramm die einzelnen Wertangaben ablesen und diese in eine Tabelle passend eintragen. Kapitel im Buch,,, kann ich sicher muss ich lernen Datum weiß, was die Begriffe Zinsen, Zinssatz und Kapital bedeuten. kann mindestens die Jahreszinsen berechnen (mit Formel oder Dreisatz). kann den Zinssatz berechnen (mit Formel oder Dreisatz). kann das Kapital berechnen (mit Formel oder Dreisatz) kann durch Vergleichsrechnungen aus mehreren Kreditangeboten das beste Angebot herausfinden kann aus einer Urliste eine Häufigkeitstabelle erstellen. weiß, was eine absolute Häufigkeit ist. weiß, was eine relative Häufigkeit ist und kann sie berechnen.

2 Kurs 2 Stochastik EBBR Vollzeit (2 von 2) Name: Ich So schätze ich meinen Lernzuwachs ein. Kapitel im Buch kann ich sicher muss ich lernen Datum weiß, was ein Mittelwert (arithmetisches Mittel) ist und kann ihn berechnen. weiß, was ein Zentralwert (Median) ist und kann ihn anhand einer Rangliste bestimmen. kenne Maximal- und Minimalwert und kann die Spannweite berechnen. kann zufällige und nicht zufällige Ereignisse erkennen. kann ein Zufallsexperiment durchführen und eine Strichliste aufstellen. weiß, was die Ergebnismenge eines Zufallsexperiments ist und kann diese angeben. kann die Anzahl aller möglichen Ergebnisse eines Zufallsexperiments bestimmen. kann die Anzahl aller günstigen Ergebnisse eines Zufallsexperiments bestimmen. kenne den Unterschied von Ergebnis zu Ereignis. R 10.1 H, kann die Wahrscheinlichkeit eines Merkmals (Ereignisses) berechnen. weiß, ob es sich bei dem Versuch um eine Laplace-Wahrscheinlichkeit handelt. kann die Laplace-Wahrscheinlichkeit eines Experiments bestimmen. kenne mehrstufige Zufallsexperimente (mit und ohne Zurücknehmen) und kann deren Wahrscheinlichkeiten ermitteln. kann ein Baumdiagramm zu einem Zufallsexperiment erstellen. kann in einem Baumdiagramm die beiden Pfadregeln anwenden (für Zufallsexperimente mit und ohne Beachtung der Reihenfolge) kann Zufallsexperimente beurteilen. R 10.3 R 10. R 10. R 10. R 10.

3 2.01 Schreiben Sie die Abkürzungen der Grundbegriffe der Prozentrechnung in die Klammern: 2 Hundertstel ( ) von 400 Stück ( ) sind 8 Stück ( ) Von 30 Produkten wurden 140 verkauft. Wie viel Prozent sind das? Tiere haben sich innerhalb eines Jahres um 30% vermehrt. Im nächsten Jahr hat sich der neue Bestand um 30% vermindert ,% von dem Immobilienpreis $ bekommt der Makler. 2.0 Bei welchem Diagramm handelt es sich um ein Säulendiagramm? Zeile 4 Zeile 3 Zeile 2 Zeile Zeile 1 Zeile 2 Zeile 3 Zeile Schreiben Sie die Abkürzungen der Grundbegriffe der Prozentrechnung in die Klammern: 2 Hundertstel ( p% ) von 400 Stück ( G ) sind 8 Stück ( P ) Von 30 Produkten wurden 140 verkauft. Wie viel Prozent sind das? 140 : = 40% Tiere haben sich innerhalb eines Jahres um 30% vermehrt. Im nächsten Jahr hat sich der neue Bestand um 30% vermindert : : 100 = 81 Tiere ,% von dem Immobilienpreis $ bekommt der Makler. 1, : 100 = 187 $ 2.0 Bei welchem Diagramm handelt es sich um ein Säulendiagramm? Zeile 4 Zeile 3 Zeile 2 Zeile Zeile 1 Zeile 2 Zeile 3 Zeile 4 Balken Waagerecht Säulen Senkrecht

4 2.06 Zeichnen Sie ein Kreisdiagramm zu der Tabelle. BLAU ORANGE GELB 30% 0% 20% Tipp: 100% = Übertragen Sie die Werte aus dem Diagramm in die Tabelle: BLAU ORANGE GELB Zeichnen Sie ein Kreisdiagramm zu der Tabelle. BLAU ORANGE GELB 30% 0% 20% 2.07 Übertragen Sie die Werte aus dem Diagramm in die Tabelle: BLAU ORANGE GELB 10 % 60 % 30 %

5 2.08 Schreiben Sie die Abkürzungen der Grundbegriffe der Zinsrechnung in die Klammern: 1 Hundertstel ( ) Zinsen von 200 Guthaben ( ) sind 2 ( ). 2.0 Wie viel Zinsen erhält man nach einem Jahr bei 1,% pa auf ein Kapital von 0.000? 2.10 Wie viel Zinsen erhält man für 4 Monate bei 2 % pa auf ein Kapital von ? 2.11 Die Zinsen betragen 2. Wie hoch war das Kapital, wenn die Zinsen mit 1,2% berechnet wurden? 2.12 Welches Angebot ist besser? A: für ein Jahr mit 2% verzinst oder B:.000 und 12 Monate lang je Monat Schreiben Sie die Abkürzungen der Grundbegriffe der Zinsrechnung in die Klammern: 1 Hundertstel ( p% ) Zinsen von 200 Guthaben ( K ) sind 2 ( Z ). 2.0 Wie viel Zinsen erhält man nach einem Jahr bei 1,% pa auf ein Kapital von 0.000? 1, : = Wie viel Zinsen erhält man für 4 Monate bei 2 % pa auf ein Kapital von ? 2: : 12 = 33, Die Zinsen betragen 2. Wie hoch war das Kapital, wenn die Zinsen mit 1,2% berechnet wurden? 2 : 1,2 100 = Welches Angebot ist besser? A: für ein Jahr mit 2% verzinst oder B:.000 und 12 Monate lang je Monat :100= = =10.200

6 2.13/14 Erstellen Sie eine Tabelle mit einer Zuordnung von Farben und absoluter Häufigkeit: Farben der vorbeifahrenden Autos: rot, grün, blau, grün, grün, blau, rot, rot, rot, blau, grün, blau, blau, schwarz, rot, blau, grün, rot, rot. 2.1 Bestimmen Sie die relative Häufigkeit für die Farben Rot (r), Blau (b), Grün (g) und Schwarz (s) aus der vorherigen Aufgabe. r b g s 2.16 Bestimmen Sie das arithmetische Mittel: Note 1 Note 2 Note 3 Note 4 Note Note 6 3 Schüler Schüler Schüler 7 Schüler 2 Schüler 1 Schüler 2.17 Bestimmen Sie den Zentralwert aus der vorherigen Aufgabe. 2.13/14 Erstellen Sie eine Tabelle mit einer Zuordnung von Farben und absoluter Häufigkeit: Farben der vorbeifahrenden Autos: rot, grün, blau, grün, grün, blau, rot, rot, rot, blau, grün, blau, blau, schwarz, rot, blau, grün, rot, rot. rot blau grün schwarz Bestimmen Sie die relative Häufigkeit für die Farben Rot (r), Blau (b), Grün (g) und Schwarz (s) aus der vorherigen Aufgabe: Ergebnis als Dezimalzahl, Bruch oder in Prozent möglich. r = 7: (7+6++1) = 7/1 b = 6/1 g = /1 s = 1/ Bestimmen Sie das arithmetische Mittel: Note 1 Note 2 Note 3 Note 4 Note Note 6 3 Schüler Schüler Schüler 7 Schüler 2 Schüler 1 Schüler ( ) : ( ) = 84 : 27 3, Bestimmen Sie den Zentralwert aus der vorherigen Aufgabe. Mitte 1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,,,6

7 2.18 Bestimmen Sie die Spannweite der Noten: Note 1 Note 2 Note 3 Note 4 Note Note 6 0 Schüler Schüler Schüler 0 Schüler 2 Schüler 0 Schüler 2.1 Markieren Sie die Begriffe, die vom Zufall abhängen: - die Gehaltsabrechnung - die Ziehung der Lottozahlen - die Ampelschaltung - die Notenverteilung - ein Pokerspiel Werfen Sie 10 mal eine Münze und notieren Sie Ereignisse mit einer Strichliste: 2.18 Bestimmen Sie die Spannweite der Noten: Note 1 Note 2 Note 3 Note 4 Note Note 6 0 Schüler Schüler Schüler 0 Schüler 2 Schüler 0 Schüler Max := Min: = 2 w = - 2 = Markieren Sie die Begriffe, die vom Zufall abhängen: - die Gehaltsabrechnung - die Ziehung der Lottozahlen - die Ampelschaltung - die Notenverteilung - ein Pokerspiel Werfen Sie 10 mal eine Münze und notieren Sie Ereignisse mit einer Strichliste. INDIVIDUELLE LÖSUNG! z.b.: Kopf IIII Zahl IIII I

8 2.21 Geben Sie die Ergebnismenge Ω eines sechsseitigen Würfels an Geben Sie die Anzahl der möglichen Ergebnisse, bezogen auf die Augensumme zweier sechsseitigen Würfel, an. 2.23/24 Geben Sie die Anzahl der Ergebnisse des günstigen Ereignisses ungerade Augen mit einem Wurf eines sechsseitigen Würfels an. 2.2 Geben Sie die Wahrscheinlichkeit für die Augensumme 3 mit einem Wurf eines sechsseitigen Würfels an Wenn man zufällig auf eine Ampel trifft, unterliegen dann die Farben Rot, Grün und Gelb einer Laplace-Verteilung? 2.27 Wie hoch ist die Wahrscheinlichkeit für eine Herz 10 im Skatblatt? 2.21 Geben Sie die Ergebnismenge Ω eines sechsseitigen Würfels an. Ω = {1,2,3,4,,6} 2.22 Geben Sie die Anzahl der möglichen Ergebnisse, bezogen auf die Augensumme zweier sechsseitigen Würfel, an. {11,12,13,14,1,16, } 6 6 =36 Möglichkeiten 2.23/24 Geben Sie die Anzahl der Ergebnisse des günstigen Ereignisses ungerade Augen mit einem Wurf eines sechsseitigen Würfels an. E:=(1,3,) oder (ungerade) 3 Möglichkeiten 2.2 Geben Sie die Wahrscheinlichkeit für die Augensumme 3 mit einem Wurf eines sechsseitigen Würfels an. P (3) = 1/ Wenn man zufällig auf eine Ampel trifft, unterliegen dann die Farben Rot, Grün und Gelb einer Laplace-Verteilung? Nein, bei einer Laplace-Verteilung sind alle Möglichkeiten gleich wahrscheinlich. Die Gelbphase ist kürzer als die anderen Phasen, daher sind Rot und Grün wahrscheinlicher Wie hoch ist die Wahrscheinlichkeit für eine Herz 10 im Skatblatt? 1/32 (Alle Karten sind verschieden und es gibt 32 Karten.)

9 2.28 Aus einer Urne mit 2 blauen und 3 roten Kugeln wird dreimal eine Kugel gezogen: Wie hoch ist die Wahrscheinlichkeit für A:=(2xblau und 1xrot) mit und ohne Zurücklegen? 2.2 Zeichnen Sie zu der vorherigen Aufgabe ein Baumdiagramm Erklären Sie anhand des Baumdiagramms aus der vorherigen Aufgabe den Unterschied zwischen A:=(2xblau und 1xrot) und B:= (blau - blau rot) Was ist günstiger, einmal würfeln um eine 1 zu werfen oder zweimal würfeln um eine Augensumme von mindestens 10 zu werfen? 2.28 Aus einer Urne mit 2 blauen und 3 roten Kugeln wird dreimal eine Kugel gezogen: Wie hoch ist die Wahrscheinlichkeit für A:=(2xblau und 1xrot) mit und ohne Zurücklegen? OZ: P (2xblau und 1xrot) = (2/ 1/4 3/3)+(2/ 3/4 1/3)+(3/ 2/4 1/3) = 2/20 + 2/20 + 2/20 = 6/20 = 3/10 = 0,3 MZ: P (2xblau und 1xrot) = (2/ 2/ 3/)+(2/ 3/ 2/)+(3/ 2/ 2/) = 12/ / /12 = 36/12 = 0, Zeichnen Sie zu der vorherigen Aufgabe ein Baumdiagramm. R B R B R B R B R B R B R ( B bei OZ ist P =0) 2.30 Erklären Sie anhand des Baumdiagramms aus der vorherigen Aufgabe den Unterschied zwischen A:=(2xblau und 1xrot) und B:= (blau - blau rot): A hat 3 Pfade und B hat nur einen Pfad R B R B R B R B R B R B R B 2.31 Was ist günstiger, A: einmal würfeln um eine 1 zu werfen oder B: zweimal würfeln um eine Augensumme von mindestens 10 zu werfen? P(A) = 1/6 = 0,167 = P(B) = 1/36+2/36+3/36 = 6/36 =1/6 =0,167

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Lehrerfortbildung: Stochastik

Lehrerfortbildung: Stochastik Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1 Seite 1 1 W ü r f e l e x p e r i m e n t 1 (Partnerarbeit) a) Würfele mehrmals mit einigen Spielwürfeln und notiere in einer Strichliste, welche Augenzahl wie oft gefallen ist. Wie oft wurde welche Augenzahl

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

Mathematik heute (ISBN ) Sachsen Klasse 7 Realschulbildungsgang. Lernbereiche (Stunden) Inhalt Seite Inhalt Seite

Mathematik heute (ISBN ) Sachsen Klasse 7 Realschulbildungsgang. Lernbereiche (Stunden) Inhalt Seite Inhalt Seite Lehrplan Mittelschule Im Blickpunkt: Tabellenkalkulation 6 Lernbereich 1: Prozent- und Zinsrechnung (28) Kapitel 1: Prozent- und Zinsrechnung 10 Kapitel 1: Prozent- und Zinsrechnung 2 Übertragen des Dreisatzes

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Stunden/ Seiten 10 Stunden

Stunden/ Seiten 10 Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 8 Der Stoffverteilungsplan geht

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Schulinterner Plan Mathematik Klasse 7

Schulinterner Plan Mathematik Klasse 7 PA-Partnerarbeit UG- Unterrichtsgespräch - Sozialkompetenz - Sachkompetenz SV-Schülervortrag -Schülerarbeit - Lesekompetenz Schulinterner Plan Mathematik Klasse 7 Wiederholung 11 Std. Rechnen mit natürlichen

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer:

Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe. Band Lehrer: Synopse zum neuen Kernlehrplan für die Hauptschule Schule: Schnittpunkt Plus Mathematik Differenzierende Ausgabe Band 6 978-3-12-742421-8 Lehrer: - eine Sachsituation mit Blick auf eine konkrete Fragestellung

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Prüfungsaufgaben Wahrscheinlichkeit und Statistik

Prüfungsaufgaben Wahrscheinlichkeit und Statistik Aufgabe P8: 2008 Aufgabe 1 von 17 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie eine

Mehr

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013 Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und

Mehr

Lerneinheit Statistik

Lerneinheit Statistik Lerneinheit Statistik In dieser Lerneinheit findest du zu verschiedenen statistischen Themen jeweils ein durchgerechnetes Musterbeispiel und anschließend ähnliche Beispiele zum eigenständigen Arbeiten.

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Bereiche der Stochastik

Bereiche der Stochastik Statistik Wahrscheinlichkeit Kombinatorik Bereiche der Stochastik Kombinatorik Hans Freudenthal: Einfache Kombinatorik ist das Rückgrat elementarer Wahrscheinlichkeitsrechnung. Die Lehrkraft bereitet sich

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

SCHULINTERNES CURRICULUM MATHEMATIK SEKUNDARSTUFE I. RHEIN-SIEG-GYMNASIUM ST. AUGUSTIN Hubert-Minz-Str St. Augustin

SCHULINTERNES CURRICULUM MATHEMATIK SEKUNDARSTUFE I. RHEIN-SIEG-GYMNASIUM ST. AUGUSTIN Hubert-Minz-Str St. Augustin SCHULINTERNES CURRICULUM MATHEMATIK SEKUNDARSTUFE I RHEIN-SIEG-GYMNASIUM ST. AUGUSTIN Hubert-Minz-Str. 0 77 St. Augustin Die Zahlen in den rechten Spalten beziehen sich auf die jeweiligen Kapitel des Lehrbuches

Mehr

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen:

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: http://www.serlo.org/ 1. In einer Schulklasse ergaben sich bei einer Mathematikschulaufgabe folgende Noten: Note 1

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: 30.12.2014 Lehrbuch: Sekundo 5, Schroedel Inhalt / inhaltsbezogene Kompetenzen UE: Zahlen und Daten Strichlisten und Diagramme

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen 7 8 Wochen Begründen der Lösungsschritte Bewerten alternativer Lösungswege Untersuchen von Texten auf Äquivalenz von Termen in den Formulierungen so groß wie. Verstehen von Termen als Rechenvorschrift

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Kurs 1 Grundlagen EBBR Vollzeit (1 von 2)

Kurs 1 Grundlagen EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 72 A 2895 Bremen Kurs Grundlagen EBBR Vollzeit ( von 2) Name: Ich So schätze ich meinen Lernzuwachs ein. Kapitel im Buch kann ich

Mehr

Mehrstufige Vorgänge Pfadregeln

Mehrstufige Vorgänge Pfadregeln Mehrstufige Vorgänge Pfadregeln Elke Warmuth Humboldt-Universität Berlin Sommersemester 2010 1 / 53 Pfadregeln 1 Pfadregeln Was ist neu? Einfaches Beispiel Hintergrund 2 / 53 Pfadregeln Was ist neu? Einfaches

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

Daten und Zufall in der Jahrgangstufe 6

Daten und Zufall in der Jahrgangstufe 6 Daten und Zufall in der Jahrgangstufe 6 Durchführung und Auswertung von Zufallsexperimenten; Baumdiagramm und relative In Partnerarbeit wird ein Zufallsexperiment Zweimaliges Werfen eines Würfels durchgeführt.

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Daten und Zufall Beitrag 4 mehrstufige Zufallsversuche kennenlernen 1 von 28

Daten und Zufall Beitrag 4 mehrstufige Zufallsversuche kennenlernen 1 von 28 IV Daten und Zufall Beitrag mehrstufige Zufallsversuche kennenlernen 1 von 8 Von Siedlern, Räubern und Orakeln mehrstufige Zufallsversuche kennenlernen Von Dominik Kesenheimer, Stuttgart Zufallsversuche

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Vorbereitung für die Arbeit

Vorbereitung für die Arbeit Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.

Mehr

Daten und Zufall in der Grundschule. Daten Titel und Zufall in der

Daten und Zufall in der Grundschule. Daten Titel und Zufall in der Fortbildung zum Thema Daten und Zufall in der Grundschule Daten Titel und Zufall in der Sabine Kern / Erhard ltendorf 1 Schwerpunkte Zufall Schwerpunkte des Workshops - Standards der Grundschule und wie

Mehr

Rechnungswesen. für Sozialversicherungsfachangestellte. Ш^. Bildungsverlag EINS. Susanne Blanz, Ralf Courvoisier, Arthur Kalwis, Dietmar Kolloch

Rechnungswesen. für Sozialversicherungsfachangestellte. Ш^. Bildungsverlag EINS. Susanne Blanz, Ralf Courvoisier, Arthur Kalwis, Dietmar Kolloch Susanne Blanz, Ralf Courvoisier, Arthur Kalwis, Dietmar Kolloch Rechnungswesen für Sozialversicherungsfachangestellte 5. Auflage Beste nummer 5903 Ш^. Bildungsverlag EINS Inhalt Teil I Dreisatz, Prozent-

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds16/ 1. Februar 2017 Vorlesung 21 Quasiendliche Wahrscheinlichkeitsräume Definition quasiendlicher Wahrscheinlichkeitsraum

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

Kapitel 4: Stochastik in der Grundschule

Kapitel 4: Stochastik in der Grundschule Kapitel 4: Stochastik in der Grundschule 0. Warum Stochastik in der Schule? Gründe ergeben sich aus dem Auftrag zur Allgemeinbildung: Das Lernen von Stochastik kann wesentlich zum besseren Verständnis

Mehr

1. Semester 2. Semester 3. Semester 4. Semester

1. Semester 2. Semester 3. Semester 4. Semester Überblick zu den Lerninhalten 1. Semester 2. Semester 3. Semester 4. Semester Grundrechenarten / Klammerregeln (Auffrischung) Kurzwiederholung von Bruchrechnung, Dezimalzahlen, Prozentzahlen, Zuordnungen,

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

02 Vergleichen von Anteilen der Prozentbegriff

02 Vergleichen von Anteilen der Prozentbegriff Prozente 3 02 Vergleichen von Anteilen der Prozentbegriff A2 Stationenlauf Vergleichen von Anteilen Tragt die jeweiligen Ergebnisse in die nachfolgende Tabelle ein und vergleicht eure Vorgehensweisen beim

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr