Mit Simulationen von einfachen Zufallsexperimenten bis zur Inferenzstatistik

Größe: px
Ab Seite anzeigen:

Download "Mit Simulationen von einfachen Zufallsexperimenten bis zur Inferenzstatistik"

Transkript

1 Mit Simulationen von einfachen Zufallsexperimenten bis zur Inferenzstatistik

2 Eine Familie hat zwei Kinder. Mit welcher Wahrscheinlichkeit haben alle Kinder dasselbe Geschlecht (2 Mädchen oder 2 Jungen)? Vorgehensweisen: Empirisch: Anfrage bei Einwohnermeldeämtern, Statistische Landes- und Bundesämter Theoretische Berechnung, z.b. Baumdiagramm Modellannahmen: Wahrscheinlichkeit ½ Unabhängigkeit Experimentell (???): Beobachte Paare, die zwei Kinder haben wollen und notiere das Geschlecht der Kinder Simulation: Repräsentation des Vorgangs durch doppelten Münzwurf

3 Was ist eine Simulation? Wenn man die Realsituation durch ein passendes Modell ersetzt, anhand dessen Experimente durchgeführt werden, so spricht man von Simulation Ein konstitutives Moment der Simulation ist somit die Modellbildung. Das Modell selbst ist eine Abbildung der Realität, nicht die Realität selbst, es idealisiert durch Vereinfachungen und Hinzufügen, besitzt also auch subjektive Merkmale. Das darf man nie vergessen, stets ist man zur Reflexion aufgefordert. (Kütting 1994, S. 247) Erst die Modellierung macht das Durchführen eines Experiments zu einer Simulation. All das bisher gesagte gilt auch für Simulationen außerhalb der Stochastik, z.b. Flugsimulator Simulation im Crash-Test Simulation im Windkanal Simulationen in der Stochastik sind Simulationen, bei denen Zufallsexperimente durchgeführt werden

4 Was ist eine Simulation? Unter Simulation versteht man in der Stochastik Verfahren, mit Hilfe von geeigneten Zufallsgeneratoren eine stochastische Situation nachzuspielen, um so ein Modell für diese Situation zu erhalten, das dann zur weiteren Analyse und zur Prognose eingesetzt werden kann. (Tietze u. a. 2002, 129).

5 Simulationen in der Stochastik Simulation als Werkzeug, um stochastische Probleme zu lösen Simulation zur Visualisierung von zufälligen Vorgängen, um Lernenden zufallsabhängige Vorgänge erfahrbar zu machen, um die darauf bezogene Begriffsbildung durch aktive Auseinandersetzung mit den zufallsabhängigen Situationen zu fördern.

6 Simulationen in der Stochastik Jede Frage der Stochastik kann im Prinzip auf zweierlei Weise beantwortet werden Analytisch (mit den Methoden der Wahrscheinlichkeitstheorie) Simulativ (als Annäherung) Beispiel: Wahrscheinlichkeit, dass in Familien mit zwei Kindern alle Kinder Mädchen sind

7 Marko und seine Krawatten Marko hat zehn Krawatten im Schrank und wählt an jedem Arbeitstag (Mo-Fr) zufällig einen Schlips, den er am Abend wieder in den Schrank legt. Wie groß ist die Wahrscheinlichkeit, das Marko an jedem Tag der Woche eine unterschiedliche Krawatte trägt?

8 Simulation im MU Simulationsmodell als Repräsentation eines komplexen Phänomens Experimenteller, handlungsorientierter Zugang Konkrete Erfahrungen mit Phänomen Zufall Wechselspiel: Realproblem Modell Simulation Mathematischer Formalismus sekundär

9 Jetzt ran an die Maschinen Multiple-Choice-Test bestehend aus 10 Fragen mit jeweils 2 Auswahlantworten: Kann ich die zum Bestehen erforderlichen 70% korrekter Antworten erreichen? Dreifacher Würfelwurf: Verteilung der Augensummen Sammelbild: Wann ist die Serie von 22 Bildern komplett?

10 Zentraler Grenzwertsatz Unter sehr allgemeinen Voraussetzungen kann der Mittelwert unabhängiger und identisch verteilter Zufallsvariabler als annähernd normalverteil angenommen werden Simulationen als Illustration Rolle des Stichprobenumfangs Symmetrie/ Schiefe der Ausgangsverteilung Simulation und Zufallsexperimente

11 Inferenz Bei der kommenden Kommunalwahl in Mainz soll auch über ein Gesetzentwurf abgestimmt werden (haha!), der es legalisiert, Wasserschweine (Capybaras) als Haustiere zu halten. Als Vorsitzender des örtlichen Tierschutzvereins hoffen Sie, dass die Initiative nicht durchkommt. In einer Umfrage unter 50 Wählern geben nur 19 an, dass sie mit JA votieren. Was sagt Ihnen das? Überlegungen: 19 von 50 = 38% => Erleichterung? Sie rechnen P-Wert 9% Sie korrigieren sich: Einseitiges Testen H 0 : p=0,5 versus H A : p<0,5 => P-Wert 4,5% Oder mittels Binomialverteilung: X~B(50;0,5), P(X 19)=5,56% Was lernen die Schüler hieraus über das Hypothesentesten? Simulation und Zufallsexperimente

12 Inferenz Bei der kommenden Kommunalwahl in Mainz soll auch über ein Gesetzentwurf abgestimmt werden, der es legalisiert, Wasserschweine (Capybaras) als Haustiere zu halten. Als Vorsitzender des örtlichen Tierschutzvereins hoffen Sie, dass die Initiative nicht durchkommt. In einer Umfrage unter 50 Wählern geben nur 19 an, dass sie mit JA votieren. Was sagt Ihnen das? Per Simulation Wirf 50mal ein Münze, Zahl= Ja, Wappen= Nein Vielfache Wiederholung am PC Simulation und Zufallsexperimente

13 Inferenz MUFFIN-Studie zu Medien- und Freizeitnutzen von Jugendlichen (Biehler, Kombrink, Schweynoch, 2003 Stichprobe Elftklässlern, n= 538, 233 Jungen, 305 Mädchen Helfen Mädchen im Haushalt mehr als Jungen? Simulation und Zufallsexperimente

14 Randomisierungstest als anschauliche und intuitive Alternative zu klassischen Verfahren wie z.b. t-test Theoriearm Referenzverteilung wird sukzessive aufgebaut Unterstützt die dem Hypothesentesten zugrunde liegende Idee ohne Notwendigkeit von viel formaler Mathematik Simulation und Zufallsexperimente

15 Inferenz MUFFIN-Studie zu Medien- und Freizeitnutzen von Jugendlichen (Biehler, Kombrink, Schweynoch, 2003 Stichprobe Elftklässlern, n= 538, 233 Jungen, 305 Mädchen Schauen Jugendliche mit eigenem TV im Zimmer mehr Fernsehen? Randomisierungstest als anschuliche und intuitive Alternative zu klassischem t-test Simulation und Zufallsexperimente

16 Didaktische Prinzipien beim Einsatz von Simulationen Das konzeptuelle Verständnis kann verbessert werden, wenn Lernende Prognosen zu den stochastischen Situationen abgeben und diese dann selbst überprüfen (Inter-)aktives Arbeiten mit Simulationen ist effektiver als das bloße Vorführen von Simulationen Das Lernen wird unterstützt, wenn sich Lernende ihrer Fehlvorstellungen bewusst sind, mit diesen konfrontiert werden und durch strukturierte Aktivitäten ihre eigenen Vorstellungen mit den simulierten Ergebnissen in Zusammenhang bringen Allerdings: Simulationen alleine haben per se keine explanative Kraft

17 Literatur Zu Simulationen R. Biehler, C. Maxara (2007): Integration von stochastischer Simulation in den Stochastikunterricht mit Hilfe von Werkzeugsoftware. Der Mathematikunterricht, 3,45-62 Maxara, C. (2009). Stochastische Simulation von Zufallsexperimenten mit Fathom Eine theoretische Werkzeuganalyse und explorative Fallstudie. Kasseler Online-Schriften zur Didaktik der Stochastik (KaDiSto) Bd. 7. Kassel: Universität Kassel [Online: J., R. Grübel (2008): Bootstrap oder die Kunst, sich selbst aus dem Sumpf zu ziehen. Mathematische Semesterberichte, 55, Leuders, T. (2005): Darf das denn wahr sein? Eine schüleraktive Entdeckung der Grundidee des Hypothesentestens durch Simulation und Tabellenkalkulation. Praxis der Mathematik in der Schule, 8(4), 8-16 P. Sedlmeier, D. Köhlers (2001): Wahrscheinlichkeiten im Alltag. Statistik ohne Formeln. Braunschweig: Westermann Schulmaterial R. Biehler, T. Hofmann, C. Maxara, A. Prömmel (2011): Daten und Zufall mit FATHOM. Unterrichtsideen für die S1 mit Software- Einführung. Schroedel-Verlag M. Gnanadesikan, R. Scheaffer, J. Swift (1987): The Art and Techniques of Simulation. Palo Alto: Dale Seymour Zur Software FATHOM R. Biehler, T. Hofmann, C. Maxara, A. Prömmel (2006): FATHOM2. Eine Einführung. Heidelberg: Springer E-Fathom

18 Weitere Materialien, zahlreiche Links unter Stochastik in der Schule

Didaktik der Stochastik

Didaktik der Stochastik Didaktik der Stochastik. Didaktik der Stochastik Didaktik der Stochastik. Inhaltsverzeichnis Didaktik der Stochastik Ziele und Inhalte Beschreibende Statistik Wahrscheinlichkeitsrechnung Beurteilende Statistik

Mehr

Im Leben ist nichts gewiss - außer dem Tod und den Steuern

Im Leben ist nichts gewiss - außer dem Tod und den Steuern Stochastik für Klasse - Joachim engel@ph-ludwigsburg.de www.joachimengel.eu Jahrestagung Mathematik der GHS-Seminare,. Oktober 00 Im Leben ist nichts gewiss - außer dem Tod und den Steuern SERJ - Statistics

Mehr

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik Beurteilende Statistik im Mathematikunterricht Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 20.11.2014 Gliederung Anliegen der beurteilenden

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 28.10.2014 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Stochastik im Wechselspiel von Intuitionen und Mathematik

Stochastik im Wechselspiel von Intuitionen und Mathematik Stochastik im Wechselspiel von Intuitionen und Mathematik von Univ. Doz. Dr. Manfred Borovcnik Universität Klagenfurt Wissenschaftsverlag Mannheim/Leipzig/Wien/Zürich Inhaltsverzeichnis Intuitionen und

Mehr

Didaktik der Stochastik. PM-Heft 48, 2012: Fit für die Zukunft Stochastik

Didaktik der Stochastik. PM-Heft 48, 2012: Fit für die Zukunft Stochastik Didaktik der Stochastik 1.1 Didaktik der Stochastik PM-Heft 48, 2012: Fit für die Zukunft Stochastik Didaktik der Stochastik 1.2 Inhaltsverzeichnis Didaktik der Stochastik 1 Ziele und Inhalte 2 Beschreibende

Mehr

Einführung in die Stochastik mit dem GTR. Gliederung. Zufallsexperiment??? Wie geht man vor???

Einführung in die Stochastik mit dem GTR. Gliederung. Zufallsexperiment??? Wie geht man vor??? Einführung in die Stochastik mit dem GTR Referenten: Annika Lux und Tatjana Robert Gliederung Wichtige Definitionen: - Zufallsexperiment - Relative Häufigkeit - Absolute Häufigkeit - Simulation Beispiel:

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Wahrscheinlichkeitsrechnung und Stochastik

Wahrscheinlichkeitsrechnung und Stochastik Wahrscheinlichkeitsrechnung und Stochastik 2-stündige Vorlesung für den Bachelor-Studiengang Angewandte Informatik Vorläufige Version Gerhard Freiling und Hans-Bernd Knoop Inhalt Inhalt..........................................................................

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

MATHEMATISCHE STATISTIK

MATHEMATISCHE STATISTIK EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK UND IHRE ANWENDUNG VON MARTIN HENGST a. o. Professor an der PH Berlin BIBLIOGRAPHISCHES INSTITUT MANNHEIM HOCHSCHULTASCHENBÜCHER-VERLAG INHALTSVERZEICHNIS Vorwort

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Testen von Hypothesen

Testen von Hypothesen Elke Warmuth Humboldt-Universität zu Berlin Sommersemster 2010 1 / 46 2 / 46 1 Testen von Hypothesen 3 / 46 Signifikant, signifikant, signifikant,... 4 / 46 Signifikant, signifikant, signifikant,... 5

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe

Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe Übersicht Wahl des Fachdidaktischen Schwerpunkts in der Primarstufe Raum und Form Daten und Zufall Zahlen und Operationen Muster und Strukturen Messen und Größen Jgst. 3 und 4 Jgst. 1 und 2 1 Thema 1:

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Stochastik zur Abiturvorbereitung. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Stochastik zur Abiturvorbereitung. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Stochastik zur Abiturvorbereitung Das komplette Material finden Sie hier: School-Scout.de S 1 Dem Zufall auf der Spur Stochastik zur

Mehr

4 Modellieren und Rechnen mit Wahrscheinlichkeiten

4 Modellieren und Rechnen mit Wahrscheinlichkeiten 4 Modellieren und Rechnen mit Wahrscheinlichkeiten 1 4 Modellieren und Rechnen mit Wahrscheinlichkeiten 4.1 Hinführung: klassische und statistische Wahrscheinlichkeit Die Wahrscheinlichkeitsrechnung entstand

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

Handlungsorientierter Mathematikunterricht. PROST Problemorientierte Stochastik für realistische und relevante Handlungssituationen.

Handlungsorientierter Mathematikunterricht. PROST Problemorientierte Stochastik für realistische und relevante Handlungssituationen. M U E D Handlungsorientierter Mathematikunterricht PROST Problemorientierte Stochastik für realistische und relevante Handlungssituationen Heinz Böer Heikle Fragen und andere bedingte Wahrscheinlichkeiten

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1 Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Mathematikunterricht in der Grundschule Allgemeine mathematische Kompetenzen

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie

Mehr

Lehramtsausbildung Gymnasium. Konzept für die gymnasiale Lehramtsausbildung

Lehramtsausbildung Gymnasium. Konzept für die gymnasiale Lehramtsausbildung Konzept für die gymnasiale Lehramtsausbildung Quizfrage: Wer sagt so etwas? man [trieb] an den Universitäten ausschließlich hohe Wissenschaft, ohne Rücksicht darauf zu nehmen, was der Schule nottat, und

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

antiproportionale Zuordnungen mit Anwendungen

antiproportionale Zuordnungen mit Anwendungen Chemie: Graphen zu -Versuchsreihen Thema: Proportionale und antiproportionale Zuordnungen mit Anwendungen Umfang: 12 Wochen Jahrgangsstufe 7 Proportionale und antiproportionale Zuordnungen Darstellen Zuordnungen

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Relative Häufigkeiten als Schätzwerte für Wahrscheinlichkeiten - Simulationen mit dem GTR Das komplette Material finden Sie hier:

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Statistik Übungen SS 2017

Statistik Übungen SS 2017 Statistik Übungen SS 2017 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner biturvorbereitung Mathematik Stochastik Copyright 2013 Ralph Werner Zufallsexperiment in Zufallsexperiment ist ein Vorgang, dessen usgang ungewiss ist das beliebig oft wiederholt werden kann dessen Wiederholungen

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart )

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart ) Herder-Gymnasium Köln-Buchheim: Schulinterner Lehrplan Mathematik Leistungskurs Q1/Q2 (Stand: März 2013) Schulinterner Lehrplan M LK Q1/Q2 (Abi 2014 und 2015) ANALYSIS (1) (in Klammern: Abschnitte aus

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Begriffsbildung Wahrscheinlichkeit

Begriffsbildung Wahrscheinlichkeit Gymnasium Neureut Dienstag, 15.05.2012 Arbeitskreis Anwendungsorientierter Mathematikunterricht Rolf Reimer, Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe Begriffsbildung Wahrscheinlichkeit

Mehr

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen Kapitel VII Punkt- und Intervallschätzung bei Bernoulli-Versuchen Einführungsbeispiel: Jemand wirft einen korrekten Würfel 60 mal. Wie oft etwa wird er die 6 würfeln? Klar: etwa 10 mal, es kann aber auch

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Didaktik der Stochastik (Leitidee: Daten und Zufall)

Didaktik der Stochastik (Leitidee: Daten und Zufall) Didaktik der Geometrie und Stochastik WS 09 / 10 15. 1. 2010 Didaktik der Stochastik (Leitidee: Daten und Zufall) 7. Beschreibende Statistik 7.1 Zum Begriff Stochastik : Seit den Fünfziger Jahren werden

Mehr

Einführung in die Statistik mit R

Einführung in die Statistik mit R Einführung in die Statistik mit R Bernd Weiler syntegris information solutions GmbH Neu Isenburg Schlüsselworte Statistik, R Einleitung Es ist seit längerer Zeit möglich statistische Berechnungen mit der

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007

Resampling. in»statistische Methoden in der Physik« Referent: Alex Ortner. Studenten-Seminar Sommersemester 2007 Resampling in»statistische Methoden in der Physik«Referent: Studenten-Seminar Sommersemester 2007 Gliederung 1 Resampling Prinzip Einleitung Resampling Methoden 2 3 4 Einleitung intuitv Resampling Prinzip

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

KaDiSto. Bd.2. Thorsten Meyfarth. Kassel, September KaDiSto: Kasseler Online-Schriften zur Didaktik der Stochastik, Band 2

KaDiSto. Bd.2. Thorsten Meyfarth. Kassel, September KaDiSto: Kasseler Online-Schriften zur Didaktik der Stochastik, Band 2 KaDiSto Bd.2 Ein computergestütztes Kurskonzept für den Stochastik-Leistungskurs mit kontinuierlicher Verwendung der Software Fathom - Didaktisch kommentierte Unterrichtsmaterialien Thorsten Meyfarth Kassel,

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6 Themenbereich: (1) Kreise Winkel - Symmetrie Buch: Mathe heute 6 (neu) Seiten: 6-43 Zeitrahmen:8 Wochen - Winkel, Punktsymmetrie, Kreis - Kreise Erfassen - Winkel - Messen und Zeichnen -Winkel, Kreise

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr