Übungen zu Experimentalphysik II Blatt 4. Spezielle Relativitätstheorie

Größe: px
Ab Seite anzeigen:

Download "Übungen zu Experimentalphysik II Blatt 4. Spezielle Relativitätstheorie"

Transkript

1 Institut für Angewandte Physik und Messtechnik Dr. Werner Egger Übungen zu Experimentalphysik II Blatt 4 Spezielle Relativitätstherie 1) Ein Prschefahrer wird vn der Plizei mit dem Vrwurf, er habe eine Kreuzung bei Rtlicht überfahren, gestppt. Der Fahrer behauptet, er habe bei seiner relativ hhen Geschwindigkeit inflge der relativistischen Dpplerverschiebung das Rtlicht grün gesehen. a) Wie schnell war der Fahrer unterwegs? Die Wellenlängen für grünes und rtes Licht betragen 500 nm und 645 nm. b) Die Ruhemasse des Sprtwagens samt Fahrer beträgt 1500 kg. Welche Masse hatte er bei der Geschwindigkeit unter a)? c) Welche Energie musste zugeführt werden um die Geschwindigkeit unter a) zu erreichen? Welcher Masse entspricht die verbrauchte Energie? d) Bei der Verbrennung vn Methanl zu Khlendixid und Wasser wird eine Energie vn etwa 720 kj / ml frei. Welche Masse Methanl hat der Prsche verbraucht, um auf die Geschwindigkeit unter a) zu kmmen? Die Mlare Masse vn Methanl beträgt 32 g / ml. 2) Elektrnen werden durch eine Ptentialdifferenz U = 200 kv auf eine kinetische Energie E beschleunigt. Die Ruhemasse des Elektrns beträgt m 0 c 2 = 511 kev. a) Wie lautet der Zusammenhang zwischen Energie E, Ruhemasse m 0 c 2 und Geschwindigkeit v der Elektrnen? b) Zeigen Sie, dass für kleine (vác) Geschwindigkeiten die unter a) gefundene Beziehung durch E = 2 1 mv 2 angenähert werden kann c) Wie grß ist die Energie der Elektrnen (in kev) nach dem Durchlaufen der Ptentialstrecke? d) Welche Geschwindigkeit haben die beschleunigten Elektrnen? e) Die Elektrnen werden nun in einem Raumschiff, das sich mit einer Geschwindigkeit u = 0.6c relativ zur Erde bewegt, in Flugrichtung beschleunigt. Wie schnell bewegen sich die Elektrnen relativ zur Erde?

2

3

4

5 13. Ist d!ie Trägheit eines, Körpers vn seilnem BnergieiinhaU abhänf/ig'l vn A. Einstein. Die Resultal.!l einer jüngst in diesen Annalen vn mir publizierten elektrdynamischen Untersuchung') führen zn einer sehr interessanten Flgerung, die hier abgeleitet werden sll. Ich legte drt die Maxwell-Hertzschen Gleichnngen für den leeren Raum 'nebst dem 'Maxwe)lshen Ausdruck für die elektrmagnetische Energie des Raumes zugrunde und außerdem das Prinzip: Die Gesetze, nach denen sich die ZustAnde der physikalischen Systeme äudern, sind unabhängig davn, auf. welches vn zwei relativ zueinander in gleichförmiger Parallel-Translatinsbewegnng befindlichen Krdinatensystemen diese ZustandSänderungen' bezgen werden (RelativitätsprinZip). Gestützt auf diese Grun~en ') leitete ich unter anderem das nachflgende Resultat ab (1. c. 8): E;in System vn ebenen Lichtwellen besitze, auf das Krdinatensystem ('1', y, z) bezgen, die Energie I; die Strahlrich~ng (Wellennrmale) bilde den Winkel 'P mit der r-achse des Systems. Führt man ein neues, gegen dae System (r, y, z) in gleichförmiger Paralleltranslatin begriffenes Krdinatensystem (S, fi,~) ein, dessen Ursprung eich mit der Geschwindigkeit v längs der r-achse bewegt, s besitzt die genannte Lichtmenge - im System (s,,1/, g gemessen - die Energie:. I--COSCP Y 1* = I----, Vl- (~r Vn diesem Re wbei Y die Lichtgeschwindigkeit bedeutet. sultat machen wir in! flgenden Gebrauch. 1) A..Einstein, Alm.. d. Phys. 17. p ()5. 2) Das drt benutzte Primöp der KDBIanz du Lichtgeschwindigkeit ist natilrlich in den MaxweUschen G1eidlungen enthalteil- ' ~. ew rull~.lluöl'.tis bebnde Slen nun 1m OYStelll lx, y,. Z) Körper, dessen Energie,- auf das System (r, y, z) bezgen - E sei. Relativ zu dem wie ben mit der Geschwindigkeit v bewegten System (S, 1/, i;) sei die Energie des Körpers n;,. Dieser Körper sende in. einer mit der ",-Achse den Winkel 'P bildenden Richtung ebene Lichtwellen vn der Euergie LI2 (relativ zu (x, y, x) gemessen) und gleichzeitig eine gleich grße Lichtmenge nach der entgegengesetzten Richtung. Hierbei bleibt der Körper in Ruhe in bezug auf das System (r,y. z). Für diesen Vrgang muß das Energieprinzip gelten und zwar (nach dem Prinzip der Relativität) in bezug auf heide Krdinatensysteme_ Nennen wir E, bez. n; die Energie des Körpers nach der Lichtaussendung relativ zum System (r, y, x) bez. (S, fi, g gemessen, s erhalten wir mit Benutznng der ben angegebenen Relatin: B = E, + [~ + ~ 1' L 1- ~CS'l' L' I++CO''I' ] H = H, + [T VI _(;)' + 2" VI -(~ r L = H, + VI - (~r ' Durch Subtraktin erhält man aus diesen Gleichungen: ( H. - E) - (9, - E,) = L l fv 1(. r-i}. 1- V Die beiden in diesem Ausdruck auftretenden Differenzen vn der Frm H -.E haben einfache physikalische Bedeutungen. H und E sind Energiewerte, desselben Körpers, bezgen auf zwei relativ zuei.ij.ander bewegte Krdinatensysteme, wbei der Körper in dem einen System (System (z, y, z)) ruht. Es ist als klar, daß die Differenz H-JiJ sich vn der kinetischen Energie K des Körpers in bezug auf das andere System (System (s, fi, g) ndr durch eine additive Knstante C unterscheiden kann, ' welche vn der Wahl der willkürlichen IIddi Träghtit eines Kiirpers von seinem Energieinhalt ahhängi!1~ 641 tiven Knstanten der Energien H nnd E abhängt. als setzen ; H - E= K+ C, H, - E,. = K, + C, da C sich während der Lichtaussendung nicht ändert. erhaiten. als; K-K,=L{Vl_1(~),, -I}. Wir können Wir Die kinetische Energie des Körpers in bezug auf (S, 1/, g nimmt inflge der Lichtaussendung ab, und zwar um einen vn den Qualitäten des Körpers unabhängigen Betrag. Die Differenz K K, hängt ferner vn der Geschwindig~eit ebens ab wie die kinetische Energie des Elektrns (I. c. 10). Unter Vernachlässigung vn Größen vierter nnd höherer Ordnung können wir setzen:.,. L fit K - ](, = V'2' Aus dieser Gleichnng flgt unmittelba,r; Gibt ein Körper die Energie L in Frm vn Strahlung ab, s verkleinert sich seine Masse um LIP. Hierbei ist es ffenbar ~wesentlich, daß die dem Körper entz.gene 'Energie gerade in Energie der Strahhrng übergeht, s daß wir zu der allgeme~eren Flgerung gefilhrt' werden:. Die Masse,eines Körpers ist ein Ma& für dessen Energieinhalt; i!.ndert sich die EtWrgie um L, s ändert sich die Masse in demselben Sinne um LI9.10", wenn we. Energie in Erg und die Masse in Grammen gemessen wird. Es ist nicht ausgeschlssen,daß beik~pern, deren Energieinhalt in hhem Maße -veri!.nderlich ist (~. B.. bei den Radiumsalzen), eine P.rII!'ung "der Therie gelingen wird,. Wenn die Therie d«\n,tlltsl'chen entspricht, s iiherti:ä.gt die Strahlnng ~ägheit zwischen den emittierenclen und absrbierenden Körpern. Bern, September (Eingegangen,~7. Septemher 1905.)

IST DIE TRÄGHEIT EINES KÖRPERS VON SEINEM ENERGIEINHALT ABHÄNGIG?

IST DIE TRÄGHEIT EINES KÖRPERS VON SEINEM ENERGIEINHALT ABHÄNGIG? IST DIE TRÄGHEIT EINES KÖRPERS ON SEINEM ENERGIEINHALT ABHÄNGIG? Albert Einsteins zweite eröffentlichung zur Speziellen Relatiitätstheorie (Annalen der Physik und Chemie, Jg. 8, 905, S. 639-64) Kommentiert

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

ω = π, x auflösen: = mol o o o 1

ω = π, x auflösen: = mol o o o 1 Lösungen Phsik:. Rtatin (Punkte:.5--.5) a) tan F F ZF α =, G Z = ZF = ω, f F F mr ω = π, tan α g tan 4 9,8 f = = Hz = 0,6 Hz π r π 4,0 Matura 007 b) Das Karussell wird durch den Mtr aus dem Stillstand

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Ein alternativer Zugang zur Speziellen Relativitätstheorie

Ein alternativer Zugang zur Speziellen Relativitätstheorie Ein alternativer Zugang zur Speziellen Relativitätstheorie pohlig@kit.edu 09.03.2012 1 09.03.2012 2 E = m. c 2 Steht für: Einstein Genie Ehrfurchtsgebietende, unverständliche, moderne Physik Horror eines

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Gemetrie Geraden Teil Schnittwinkel vn Geraden Innenwinkel im Dreieck Länge vn Strecken, Abstände Ltgeraden Dreiecksinhalt Nvember 005 Datei Nr. 005 Friedrich Buckel INTERNETBIBLIOTHEK FÜR

Mehr

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm 2. Kinematik Physikalische Grundlagen Vorlesung 2.1. Mechanische Bewegung Zusammenfassung 1. Semester / 2. Thema /

Mehr

Zweisprachiger Wettbewerb Physik 1. Schuljahr

Zweisprachiger Wettbewerb Physik 1. Schuljahr Zweisprachiger Wettbewerb Physik 1. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

Minkowski-Geometrie in der Schule. Michael Bürker

Minkowski-Geometrie in der Schule. Michael Bürker Minkowski-Geometrie in der Schule Michael Bürker buerker@online.de Gliederung Weg-Zeit-Diagramme Grundprinzipien der speziellen Relativitätstheorie Drei Symmetrieprinzipien Der relativistische Faktor Lorentz-Kontraktion

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 1.10.10 Fachbereich Elektrtechnik und Infrmatik, Fachbereich Mechatrnik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vrlesung Physik 1 ab WS

Mehr

Beispiel 1: Bestimme zu den gegebenen reellen Funktionen jeweils den. f 2 : x x f 3 : x ln x f4

Beispiel 1: Bestimme zu den gegebenen reellen Funktionen jeweils den. f 2 : x x f 3 : x ln x f4 Übungen für die. Schularbeit Übungsblatt Beispiel : Bestimme zu den gegebenen reellen jeweils den größtmöglichen Definitinsbereich. Definitinsbereich a) b) c) d) f : f : f 3 : ln f4 : Beispiel : Gegeben:

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

E in einfacher Beweis für die T rägheit der E nergie.

E in einfacher Beweis für die T rägheit der E nergie. download unter www.biologiezentrum.at E in einfacher Beweis für die T rägheit der E nergie. Von Philipp Frank. (Vortrag, gehalten am 6. Dezember 1922 in der physikalischen Fachgruppe des,,lotos.) Die Aussage

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Experimentalphysik 1. Aufgabenblatt 2

Experimentalphysik 1. Aufgabenblatt 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2017/18 Aufgabenblatt 2 Annika Altwein Maximilian Ries Inhaltsverzeichnis 1 Aufgabe 1(zentraler Stoß elastisch, unelastisch)

Mehr

Bewegungsgleichung im Gravitationsfeld mit dem 2. Axiom von Newton und mit Gravitationsladungen ausgedrückt. Gyula I. Szász*

Bewegungsgleichung im Gravitationsfeld mit dem 2. Axiom von Newton und mit Gravitationsladungen ausgedrückt. Gyula I. Szász* Bewegungsgleichung im Gravitationsfeld mit dem 2. Axiom von Newton und mit Gravitationsladungen ausgedrückt Gyula I. Szász* Die Sache ist einfach. Newtons zweites Axiom (die Dynamik) besagt Kraft = Masse

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Lösungen Aufgabenblatt 6

Lösungen Aufgabenblatt 6 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Relativitätstheorie, Quanten-, Atom- und Kernphysik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 13. 01. 2006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/21 Relativistische Beschleunigung

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

7.4 Einige Konsequenzen aus der Lorentz Transformation

7.4 Einige Konsequenzen aus der Lorentz Transformation 7.4. EINIGE KONSEQUENZEN AUS DER LORENTZ TRANSFORMATION 265 7.4 Einige Konsequenzen aus der Lorentz Transformation Um zu sehen welche Konsequenzen sich aus der Lorentz Transformation und damit ja eigentlich

Mehr

Kosmologie: Die Expansion des Universums

Kosmologie: Die Expansion des Universums Kosmologie: Die Expansion des Universums Didaktik der Astronomie SS 2008 Franz Embacher Fakultät für Physik Universität Wien 13 Aufgaben Kosmologisches Prinzip, Skalenfaktor, Rotverschiebung Kosmologisches

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 09. Juli 2009 12 Relativitätstheorie Fortsetzung 12.5 Die Geschwindigkeitstransformation

Mehr

Mrd. Figure 2: b. Annäherungsgeschwindigkeit bei 250 GeV Es ist zu erwarten, dass die beiden Teilchen, die sich jeweils fast mit Lichtgeschwindigkeit aufeinander zu bewegen eine Relativgeschwindigkeit

Mehr

F = Betrag (Stärke) der Kraft

F = Betrag (Stärke) der Kraft Kraftkonzept 1 4. Kraftkonzept 4.1. Allgemeine Eigenschaften einer Kraft Im Alltag wird der Kraftbegriff in unterschiedlichen Zusammenhängen gebraucht. Jemand hat Kraft, verliert Kraft und ermüdet, schreitet

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 19. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 07. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2

Übungen zur Einführung in die Astrophysik I. Musterlösung Blatt 2 Übungen zur Einführung in die Astrophysik I Musterlösung Blatt 2 Aufgabe 1(a) Das Gravitationspotential der Erde ist ein Zentralpotential. Es gilt somit: γ Mm r 2 = m v2 r wobei γ die Gravitationskonstante,

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 09. 12. 2005 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/30 Weihnachtsvorlesung (c) Ulm

Mehr

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz Mechanik Erhaltungssätze (0 h) Physik Leistungskurs ENERGIE Was ist Energie? Wozu dient sie? Probleme? 1 Historische Entwicklung des Energiebegriffs "Energie" = "Enérgeia (griechisch), deutsch: "Wirksamkeit".

Mehr

Ann. Phys. (Leipzig) 14, Supplement, (2005)

Ann. Phys. (Leipzig) 14, Supplement, (2005) Ann. Phys. (Leipzig) 14, Supplement, 517 571 (2005) 518 A. Einstein, Annalen der Physik, Band 49, 1916 Ann. Phys. (Leipzig) 14, Supplement (2005) / www.ann-phys.org 519 520 A. Einstein, Annalen der Physik,

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 16. Nov. Spezielle Relativitätstheorie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Newtonsche Mechanik ist invariant unter Gallilei-

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Der Mensch

Mehr

Die grundlegenden Aussagen der Relativitätstheorie

Die grundlegenden Aussagen der Relativitätstheorie Die grundlegenden Aussagen der Relativitätstheorie ausgearbeitet von: Dipl. Ing. Matthias Krause, Kirchzarten, den 29..2008 letzte Änderung: 2.2.2009 Copyright: Alle Rechte bleiben allein dem Verfasser

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

13. Relativitätstheorie

13. Relativitätstheorie Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie

Mehr

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor:

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor: Prof. Dr. O. Dopfer Prof. Dr. A. Hese Priv. Doz. Dr. S. Kröger Cand.-Phys. A. Kochan Technische Universität Berlin A. Erhaltungsgrößen (17 Punkte) 1. Unter welcher Bedingung bleiben a) der Impuls b) der

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Messung der Astronomischen Einheit durch Spektroskopie der Sonne

Messung der Astronomischen Einheit durch Spektroskopie der Sonne Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Was haben Sie zum Unterrichtsinhalt Translation gelernt?

Was haben Sie zum Unterrichtsinhalt Translation gelernt? Was haben Sie zum Unterrichtsinhalt Translation gelernt? Bewegung Veränderung des Ortes mit der Zeit relativ zu einem Bezugssystem Veränderung in Raum und Zeit von einem Standpunkt aus Mensch bewegt sich

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr

Über drei Ecken zu Einstein

Über drei Ecken zu Einstein Raumzeit, Weltlinien, Lichtkegel Über drei Ecken zu Einstein Norbert Dragon Hannover 6. Februar 2015 Relativitätsprinzip Gleichzeitig und Gleichortig Dopplereffekt, Schiedsrichter Satz des Minkowski (Pythagoras)

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Karl-Heinz Lotze und Stefan Völker, Jena 21.07.15 Einsteins Postulate Einstein stellte die folgenden beiden Prinzipien an die Spitze seiner

Mehr

Wärmegefühl 303K. Data- Studio. Wärmegefühl...1 Überblick...2. Experiment...2. Schülerantwortblatt Wärmegefühl...3 weitere Ideen...4. Lernziele...

Wärmegefühl 303K. Data- Studio. Wärmegefühl...1 Überblick...2. Experiment...2. Schülerantwortblatt Wärmegefühl...3 weitere Ideen...4. Lernziele... FK048 Wärmegefühl.dc Wärmegefühl Wärmegefühl...1 Überblick...2 Lernziele... 2 Experiment...2 Vraussagen... 2 Geräteausstattung... 2 Arbeitsauftrag... 2 Schülerantwrtblatt Wärmegefühl...3 weitere Ideen...4

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

Lösungen der Klausur CSB/Mathe/Info. vom

Lösungen der Klausur CSB/Mathe/Info. vom Lösungen der Klausur CSB/Mathe/Info vom 07.08.09 1. Aufgabe: Lichtgeschwindigkeit im Vakuum: c = v = 3 10 8 m s a) s = 1, 5 10 8 km s c = t = 500 s b) t = 1 a = 31557600 s t c = s = 9, 47 10 15 m c) Ausbreitungsgeschwindigkeit

Mehr

Orientierungshilfen für die Zugangsprüfung Physik

Orientierungshilfen für die Zugangsprüfung Physik Orientierungshilfen für die Zugangsprüfung Physik Anliegen der Prüfung Die Zugangsprüfung dient dem Herausstellen der Fähigkeiten des Prüflings, physikalische Zusammenhänge zu erkennen. Das physikalische

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Energie zeigt sich in Arbeit

Energie zeigt sich in Arbeit Energie zeigt sich in Arbeit Versuchsbeschreibung Wir machen den folgenden Versuch mit der Holzbahn: Wir lassen einen Wagen mit der Masse m = 42 g von einer Schanze beschleunigen und in die Ebene fahren.

Mehr

1. Aristoteles (384 bis 322 v. Chr.)

1. Aristoteles (384 bis 322 v. Chr.) Unterrichtsinhalte zu den philosophischen Aspekten der Relativiätstheorie 1. Aristoteles (384 bis 322 v. Chr.) Aristoteles' Physik, Buch IV, Kapitel 4 und 5 sowie Kapitel 11 bis 14 Aristoteles Postulate

Mehr

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie

Mehr

Grund- und Angleichungsvorlesung Kinematik, Dynamik.

Grund- und Angleichungsvorlesung Kinematik, Dynamik. 2 Grund- und Angleichungsvorlesung Physik. Kinematik, Dynamik. WS 18/19 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar.

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar. Atwood sche Fallmaschine Die kann zum Bestimmen der Erdbeschleunigung und zum Darstellen der Zusammenhänge zwischen Weg, Geschwindigkeit und Beschleunigung verwendet werden. 1) Aufgaben a) Stellen Sie

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Raum, Zeit, Materie - Elemente der Relativitätstheorie

Raum, Zeit, Materie - Elemente der Relativitätstheorie Raum, Zeit, Materie - Elemente der Relativitätstheorie Ziel: Erarbeitung einer wissenschaftlichen Lernkartei die wesentliche Inhalte und mathematische Beschreibungen der entsprechenden physikalischen Phänomene

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr