Medizinische Biometrie (L5)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Medizinische Biometrie (L5)"

Transkript

1 Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie IBE, Med. Biom. (L5) 1

2 Lernziele Normalverteilung: Warum sind Mittelwert und Standardabweichung so wichtig? QQ-Plot: Wann liegt die Normalverteilung vor? Datentransformation: Wie man Daten normalverteilt macht Binomialverteilung: Das Auftreten von Erfolgen Poissonverteilung: Die Beschreibung seltener Ereignisse IBE, Med. Biom. (L5) 2

3 Beobachtung -> Abstraktion -> Modell Frequency Histogramm Frequency Histogramm und Modell Albuminwerte von 216 Patienten mit Leberzirrhose Christensen et al. (1985) Gastroenterology 89: Serum Albumin [g/l] Serum Albumin [g/l] Modell Dichte Beobachtung ist zu komplex um direkt kommuniziert zu werden. Gibt es ein Modell, das in wenigen Worten, das Beobachtete angemessen beschreibt? Medizinerstrategie: Angabe von Mittelwert und Standardabweichung Serum Albumin [g/l] IBE, Med. Biom. (L5) 3

4 Empirische Verteilung, theoretische Verteilung Wenn eine metrische Größe an einer großen Anzahl von Individuen gemessen wird, so nennt man das daraus entstehende Muster des Auftretens der Werte eine empirische (weil auf einer Beobachtung beruhend) Verteilung. Die Mathematik hat immer versucht, in den beobachteten Verteilungen Prototypen von theoretischen Verteilungen zu entdecken, die sich als mathematische Objekte beschreiben lassen und damit Berechnungen zugänglich sind. Als Herausforderung wurde die theoretische Beschreibung von Erfolg und Verlust beim Glücksspiel gesehen. Wie lässt sich das Verhalten eines Münzwurfs formal beschreiben? Wie oft kann man bei 10 Würfen einer Münze mit mehr als 7 mal Kopf rechnen? Die Normalverteilung ist eine der wichtigsten Verteilungen in der Statistik. Im 18. Jahrhundert haben Mathematiker bewiesen, dass die geeignet skalierte Summe vieler gleicher, unabhängiger Effekte immer normalverteilt ist. Brown sche Bewegung: Kleine Partikel werden in Flüssigkeiten durch die Molekularbewegung hin und her gestoßen. Ihre Position verändert sich gegenüber dem Ausgangspunkt nach der Normalverteilung. IBE, Med. Biom. (L5) 4

5 Die Normalverteilung (I) Dichte Die Normalverteilung ist symmetrisch um den Modalwert. Wegen der Symmetrie ist der Modalwert auch ihr Mittelwert und Median. Beide Flächen haben den Inhalt 1. Die spitze Normalverteilung (schwarz) ist besser um den Mittelwert konzentriert als die flache (rot). Die flache Normalverteilung ist über einen größeren Bereich gestreut als die steile IBE, Med. Biom. (L5) 5

6 Die Normalverteilung (II): Umskalierung µ = 10 σ = 4 Translation µ = 0 Reskalierung µ = 0 σ = 4 σ = 1 IBE, Med. Biom. (L5) 6

7 Die Normalverteilung (III): Umskalierung Nach geeigneter Umskalierung können die Dichten verschiedener Normalverteilungen nicht mehr unterschieden werden. Dichte Angaben zur Lokalisation (µ) und Streuung (σ) beschreiben die Normalverteilung vollständig µ - 4σ µ - 3σ µ - 2σ µ - σ Gesamtfläche unter der Kurve =1 µ µ + σ µ + 2σ µ + 3σ µ + 4σ IBE, Med. Biom. (L5) 7

8 Die Normalverteilung (IV): Umskalierung Wichtige Rechenregel: Die Fläche einer Normalverteilung mit Parametern µ und σ, die rechts vom Abszissenwert µ + x σ liegt, ist identisch der Fläche einer Normalverteilung mit Parametern µ = 0 und σ = 1 (Standardnormalverteilung), die rechts vom Abszissenwert x liegt. Als Formel: P (µ,σ) [W> µ + x σ] = P (0,1) [Z>x] Dichte P (µ,σ) [W>a] IBE, Med. Biom. (L5) 8 a

9 Standardnormalverteilung: Fläche unter der Kurve Das Integral unter der Dichtefunktion der Standardnormalverteilung für interessierende Bereiche lässt sich explizit nur mit aufwändigen numerischen Verfahren berechnen. Sie liegen in der Regel in tabellierter Form vor. x P[Z>x] x P[Z>x] x P[Z>x] IBE, Med. Biom. (L5) 9

10 Standardnormalverteilung: Fläche unter der Kurve Zwei wichtige Regeln: P (0,1) [Z>x] = P (0,1) [Z< -x] Fläche rechts von x ist gleich der Fläche links von x (Symmetrie um 0) Dichte P[Z < -x] P[Z >x ] -x 0 x P (0,1) [Z>x] = 1 - P (0,1) [Z x] Gesamtfläche addiert sich zu 1 (Eigenschaft der Dichtefunktion) Dichte P[Z >x ] P[Z >x ] 0 x IBE, Med. Biom. (L5) 10

11 Wahrscheinlichkeitsdichte Wahrscheinlichkeitsverteilung Dichtefunktion Verteilungsfunktion Dichte W'keit F(x)=P(Z<x) Größe der Fläche vor dem Ordinatenwert IBE, Med. Biom. (L5) 11

12 Aufgabe 1 Die Eisenbindungskapazität bei gesunden Personen ist normalverteilt mit Mittelwert µ = 115 g / 100 ml und Standardabweichung σ = 25 g / 100ml. In welchem zentralen Bereich um den Mittelwert liegen 95% aller Werte? Dichte µ-x σ µ+ x σ Wie muss x gewählt werden, dass die zentrale Fläche den Wert 0.95 erhält? Wie muss x gewählt werden, dass die gestrichelte Fläche den Wert 0.05 erhält? Wie muss x gewählt werden, dass die Fläche rechts außen den Wert erhält? µ Für die Standardnormalverteilung liegt rechts von 1,96 noch 2.5% der Dichtefläche. Dichte Lösung: Im Bereich (115 ± 1,96 25) g/100ml liegen 95% aller Werte der Eisenbindungskapazität bei gesunden Personen. µ µ+ x σ IBE, Med. Biom. (L5) 12

13 Aufgabe 2 Die Kreatininwerte von Nieren-Gesunden sind normalverteilt mit Mittelwert µ = 0,9 mg / 100 ml und Standardabweichung σ = 0,2 mg / 100ml. Kreatininwerte über 1.4 mg/ 100 ml gelten als Anzeichen der Retention harnpflichtiger Substanzen und damit als pathologisch. Mit welcher Wahrscheinlichkeit ist bei einem Nieren-Gesunden ein pathologischer Kreatinin-Wert zu erwarten? Dichte = µ + x σ = x 0.2 x = ( )/0.2 = 0.5/0.2 = 2.5 Wie groß ist die Fläche die bei der Standardnormalverteilung rechts von 2.5 liegt? P (µ,σ) [W> µ + x σ] = P (0,1) [Z>x] P (0,1) [Z>2.5] < Lösung: Bei weniger als 0,0062% der Nieren- Gesunden ist ein pathologischer Kreatinin-Wert zu erwarten. a IBE, Med. Biom. (L5) 13

14 QQ-Plot Sample Quantiles Normal Q-Q Plot Die beobachtete Verteilung wird mit der theoretischen Normalverteilung verglichen. Pro Beobachtung wird ein Punkt in ein Koordinatenkreuz eingetragen. Für x i wird der Wert der empirischen Verteilungsfunktion an x i berechnet, zu diesem Wert wird das entsprechende Quantil z i der Standardnormalverteilung berechnet. Der Punkt (z i,x i ) wird in ein Koordinatenkreuz eingetragen. Eine Gerade wird gezeichnet, die die theoretische Normalverteilung repräsentiert: Abszisse der Geraden: Mittelwert Steigung der Geraden: Standardabweichung. Folgen die Punkte der Geraden, so kann die Normalverteilung der Beobachtung zugrunde gelegt werden. Theoretical Quantiles IBE, Med. Biom. (L5) 14

15 QQ-Plot Parameter der theoretischen Verteilung sind der MW und die Standardabw. der beobachteten Daten. Theor. Vereilung Emp. Vereilung W'keit Anteil Skalierung auf Standardnormalverteilung Skal. Vereilung Normal Q-Q Plot W'keit Sample Quantiles Theoretical Quantiles IBE, Med. Biom. (L5) 15

16 Log-Transformation Serum Bilirubin von 216 Patienten mit Leberzirrhose (Christensen et al.) Historgramm Normal Q-Q Plot Frequency Sample Quantiles Daten sind schief verteilt und passen nicht zu einer Normalverteilung Serum Bilirubin [µmol/l] Theoretical Quantiles IBE, Med. Biom. (L5) 16

17 Log-Transformation Die Logarithmusfunktion wird oft in der Beschreibung von Daten verwendet. Man betrachtet dann die log-transformierten Werte der Messungen und nicht die Originalwerte. Der Logarithmus kontrahiert Bereiche mit großen Werten und extrahiert Wertebereiche zwischen 0 und 1. Somit können rechts-schiefe positive Verteilungen eventuell symmetrisiert werden IBE, Med. Biom. (L5) 17

18 Log-Transformation Frequency Frequency Serum Bilirubin Serum Bilirubin (log-transf.) Normal Q-Q Plot Frequency Sample Quantiles Serum Bilirubin Theoretical Quantiles IBE, Med. Biom. (L5) 18

19 Log-Transformation Der arrithmetische Mittelwert der log-transformierten Beobachtungen wird durch Exponentialisierung zum geometrischen Mittelwert der Originaldaten: x i Originalwert der Beobachtung i y i = log(x i ) log-transformierter Wert der Beobachtung i Arithm. Mittel der log- transf. Werte: m = (y 1 + y n ) / n Geometrisches Mittel der Originalwerte: g = exp{m} = (x 1 x n ) 1/n IBE, Med. Biom. (L5) 19

20 Binomial-Verteilung Die Wahrscheinlichkeit einer Person zur Blutgruppe B zu gehören ist etwa 8% (0.08). Somit ist die Wahrscheinlichkeit einer Person die Blutgruppe A, 0 oder AB zu haben 92% (0.92). Wie groß ist die W keit in einer Gruppe von 4 Personen mindestens 2 Mitglieder der Gruppe B zu finden? Keine mit B = Genau eine mit B = Genau zwei mit B = Genau drei mit B = Genau vier mit B = Gesuchte Antwort: = ~ 3.4% IBE, Med. Biom. (L5) 20

21 Binomial-Verteilung Die Wahrscheinlichkeit bei n unabhängigen Versuchen genau k Erfolge zu erhalten, falls die Erfolgswahrscheinlichkeit p beträgt ist: P ( n, p) ( n k k ) = p (1 p) k n k n n! = k n! = 1... n k!( n k )! n und p sind die Parameter der Binomialverteilung Mittelwert: n p Varianz: n p (1-p) Beispiel: W keit genau 2 Personen mit Blutgruppe B in einer Gruppe von 4 unabhängigen Personen zu finden? (n=4, p=0.08, k=2) 4 2 4! 2! 2! ( 4,0.08) ( 2) = 0.08 (1 0.08) = = = P IBE, Med. Biom. (L5) 21

22 Poisson-Verteilung Die Poisson-Verteilung beschreibt das Auftreten von Ereignissen in einem Zeitintervall oder in einem räumlichen Gebiet. Die Poisson-Verteilung spielt in epidemiologischen Analysen eine zentrale Rolle. Die Poisson-Verteilung wird durch einen Parameter beschrieben: λ = mittlere Zahl von Ereignissen pro Einheit Wahrscheinlichkeit von genau k Ereignissen bei der mittleren Anzahl von Ereignissen pro Einheit λ; Mittelwert: λ Varianz: λ P λ (k) = exp{-λ} λ k / (k!) IBE, Med. Biom. (L5) 22

23 Poisson-Verteilung Beispiel: 1983 wurden im Umfeld von Kernkraftwerk B 10 kindliche Leukämiefälle in einer Population von etwa Kindern gemeldet. Die mittlere jährliche Leukämieinzidenz einer entsprechenden deutschen Kinderpopulation betrug in diesem Jahr 10 Fälle pro Kinder. Wie groß ist die W keit mindestens 10 Leukämiefälle im Umfeld von B im betreffenden Jahr entdeckt zu haben, wenn man die deutsche Durchschnittsinzidenz zu Grunde legt? P(Anzahl 10) = 1 P(Anzahl 9) = 1 P(0) P(1) - - P(9) λ = mittlere Anzahl von Ereignissen in einer Population von Kindern = (10/100000) = 3 P(0) = P 3 (0) = exp{-3} = 0.05 P(1) = P 3 (1) = exp{-3} 3 = 0.15 P(2) = P 3 (2) = exp{-3} 3 2 /2 =0.224 P(Anzahl 10) = 1 P(Anzahl 9) = = IBE, Med. Biom. (L5) 23

24 Zusammenfassung Die Normalverteilung erlaubt durch die Kenntnis zweier Parameter (Mittelwert µ und Standardabweichung σ) Verteilungseigenschaften einer metrischen Variablen von Populationen zu beschreiben. Wie gut die beobachtete Verteilung in einer Population der Normalverteilung entspricht kann durch einen QQ Plot visualisiert werden. Eine Populationsvariable, deren beobachtete Verteilung stark von der Normalverteilung abweicht, kann möglicherweise durch eine geeignete Transformation einer Normalverteilung ähnlich gemacht werden. Damit lassen sich über den Umweg der Transformation die Vorteile der Normalverteilung für die Informationsübermittlung nutzen. Die Binomialverteilung beschreibt die Verteilung von Erfolgen in einer Serie unabhängiger Experimente. Die Poissonverteilung beschreibt das Auftreten seltener Ereignisse in einer großen Population für eine räumliche oder zeitliche Bezugseinheit. IBE, Med. Biom. (L5) 24

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516

Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15: Türcode: 1516 Übung zur Vorlesung: Geostatistik 1 Philipp, Mo. 15:45 3067 Türcode: 1516 Deskriptive Statistik Maße der Zentraltendenz Deskriptive Statistik Maße der Zentraltendenz arithmetischer Mittewert klassenorientierter

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 3 - NORMALVERTEILUNG 05.12.2014 1 05.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 DIE NORMALVERTEILUNG 02 ZENTRALES GRENZTHEOREM 03 Z-WERTE 04 KONFIDENZINTERVALLE

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik

Demokurs. Modul Grundlagen der Wirtschaftsmathematik Grundlagen der Statistik Demokurs Modul 31101 Grundlagen der Wirtschaftsmathematik und Statistik Kurs 40601 Grundlagen der Statistik 13. Juli 2010 KE 1 2.4 Schiefe und Wölbung einer Verteilung Seite: 53 2.4 Schiefe und Wölbung

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 6

Übung zur Vorlesung Statistik I WS Übungsblatt 6 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 6 26. November 2012 Aufgabe 17 (4 Punkte): Sei X B(n, p) eine binomial verteilte Zufallsvariable, die ein Zufallseperiment mit n unabhängigen Wiederholungen

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN: Box Mathematik Schülerarbeitsbuch P (μ o- X μ + o-) 68,3 % s rel. E P (X = k) f g h A t μ o- μ μ + o- k Niedersachsen Wachstumsmodelle und Wahrscheinlichkeitsrechnung ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet.

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Einführung in grundlegende

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Mathematik 3 für Wirtschaftsingenieure Teilnehmer (Name, Vorname): Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 15 Aufg. 2 9

Mehr