Schriftliche Abiturprüfung. Mathematik. - Leistungskurs - Hauptprüfung. Teil A

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schriftliche Abiturprüfung. Mathematik. - Leistungskurs - Hauptprüfung. Teil A"

Transkript

1 Sächsisches Staatsministerium Geltungsbereich: Berufliches Gymnasium für Kultus und Sport Fachrichtung: Agrarwissenschaft Schuljahr 2009/2010 Ernährungswissenschaft Informations- und Kommunikationstechnologie Technikwissenschaft Biotechnologie Gesundheit und Soziales Schriftliche Abiturprüfung Mathematik - Leistungskurs - Hauptprüfung Teil A Hinweise Arbeitszeit: 60 Minuten Hilfsmittel: - Wörterbuch der deutschen Rechtschreibung - Eingeführte gedruckte Formelsammlung - Zeichengeräte Aufgaben: Pflichtaufgaben Teil A (2 Seiten) Bemerkungen: Dem Prüfungsteilnehmer werden die Aufgaben im Teil A und im Teil B vorgelegt. Er bearbeitet zunächst die Aufgaben im Teil A. Nach 60 Minuten gibt der Prüfungsteilnehmer sämtliche Unterlagen zu Teil A bei der Aufsicht führenden Lehrkraft ab. Der Aufgabensatz umfasst im Teil A 3 Blätter (einschließlich Deckblatt). Der Prüfungsteilnehmer ist verpflichtet, seinen Aufgabensatz umgehend auf Vollständigkeit zu prüfen und Abweichungen der Aufsicht führenden Lehrkraft anzuzeigen. Kennziffer Abiturprüfung 2010

2 Teil A 20 BE Aufgabe A Berechnen Sie die Lösungen x der Gleichung x ax a x = 0 4 und geben Sie deren Anzahl in Abhängigkeit von a an. + ( x R; a R) Aufgabe A 2 Gegeben ist die Funktion g mit y = g( x) = 2x sin x ( R) Die Tangente, die im Punkt P( / g( π) ) (4 BE) x. π an den Graphen der Funktion g gelegt werden kann, schließt mit den Koordinatenachsen eine Dreiecksfläche ein. Berechnen Sie das Volumen des Kegels, der entsteht, wenn dieses Dreieck um die x-achse rotiert. Aufgabe A 3 Gegeben ist die Funktion f mit der Gleichung y f(x) 2 2 x = = ( x R, x 0). (4 BE) Für jede reelle Zahl a (a > 0) sind die Punkte Pa ( a/0 ), Qa ( a/f(a) ), Ra ( a/f( a) ) S ( a/0) die Eckpunkte eines achsenparallelen Rechtecks. a und Berechnen Sie die Abszisse des Punktes P a so, dass der Umfang des Rechtecks minimal wird. Aufgabe A 4 Im Rechnerfenster rechts ist der Graph einer Funktion f dargestellt. Welche der folgenden Abbildungen stellt die erste Ableitungsfunktion dar? Begründen Sie Ihre Entscheidung. (1) (2) (3) (4) Kennziffer Teil A - Seite 1 Abiturprüfung 2010

3 Aufgabe A 5 a 2x 1 Berechnen Sie die reelle Zahl a so, dass gilt: 2 x e dx =. 2 0 (4 BE) Aufgabe A 6 (2 BE) Ein Schülerausschuss besteht aus drei Jungen und zwei Mädchen. Es wird ausgelost, wer Vorsitzender und wer Stellvertreter wird. Geben Sie die Wahrscheinlichkeiten folgender Ereignisse an: A: Ein Mädchen wird Vorsitzende und ein Junge wird Stellvertreter. B: Ein Mädchen wird Stellvertreterin. Kennziffer Teil A - Seite 2 Abiturprüfung 2010

4 Sächsisches Staatsministerium Geltungsbereich: Berufliches Gymnasium für Kultus und Sport Fachrichtung: Agrarwissenschaft Schuljahr 2009/2010 Ernährungswissenschaft Informations- und Kommunikationstechnologie Technikwissenschaft Biotechnologie Gesundheit und Soziales Schriftliche Abiturprüfung Mathematik - Leistungskurs - Hauptprüfung Teil B Hinweise Arbeitszeit: Hilfsmittel: 210 Minuten - Wörterbuch der deutschen Rechtschreibung - Taschenrechner mit Computer-Algebra-System (CAS) - Eingeführte gedruckte Formelsammlung - Zeichengeräte Aufgaben: Pflichtaufgaben Aufgabe 1 Aufgabe 2 Wahlaufgaben Aufgabe 3 Aufgabe 4 (2 Seiten) (1 Seite) (2 Seiten) (1 Seite) Bemerkungen: Dem Prüfungsteilnehmer werden im Teil B vier Aufgaben vorgelegt, zwei Pflichtaufgaben und zwei Wahlaufgaben. Er hat die zwei Pflichtaufgaben und eine Wahlaufgabe zu bearbeiten. Die Auswahl trifft der Prüfungsteilnehmer. Werden beide Wahlaufgaben bearbeitet, so hat der Prüfungsteilnehmer die zu bewertende Wahlaufgabe deutlich zu kennzeichnen. Zur Lösung jeder Aufgabe ist ein neuer Reinschriftbogen zu verwenden. Der Aufgabensatz umfasst im Teil B 7 Blätter (einschließlich Deckblatt). Der Prüfungsteilnehmer ist verpflichtet, seinen Aufgabensatz umgehend auf Vollständigkeit zu prüfen und Abweichungen der Aufsicht führenden Lehrkraft anzuzeigen. Kennziffer Abiturprüfung 2010

5 Teil B Pflichtaufgaben Aufgabe 1 15 BE 1.1 Bestimmen Sie die Menge aller Funktionen, die als erste Ableitung die Funktionen f a,b,c mit der Gleichung haben. fa,b, c (x) = 2a x + bx + c ( x D ) f á,b,c ; a R, a 0; b R, b 0; c R, c 0 Genau eine dieser Funktionen hat im Punkt W(1 / 5) einen Wendepunkt, in dem die zugehörige Tangente den Anstieg 6 besitzt. Außerdem verläuft der Graph der Funktion durch den Punkt P(0 / 1). Bestimmen Sie die Gleichung dieser speziellen Funktion. (6 BE) 1.2 Gegeben ist für jede Zahl a und b ( a R, a 0; b R, b 0) eine Funktion g a,b mit b 4 y = ga,b (x) = x a x ( x R, x 0) mit b = - a Begründen Sie, dass die Funktion g a,b genau einen lokalen Extrempunkt hat. Ermitteln Sie den Wert des Parameters a so, dass die zugehörige Funktion den Extrempunkt E(4 / 24) besitzt. (5 BE) Kennziffer Teil B - Seite 1 Abiturprüfung 2010

6 Für a = und b = entspricht der Graph der zugehörigen Funktion g a,b im Intervall 0 x annähernd dem Hang eines Motorsportgeländes 9 (1 LE = 1 km). Geben Sie die Koordinaten des Punktes an, in dem dieser Hang die größte Steigung besitzt. Wie groß ist der zugehörige maximale Steigungswinkel? Bei einem Wettkampf kommen im ersten Durchgang im Durchschnitt 15 % der Sportler fehlerfrei zum Ziel, 20 % mit einem Fehler, 25 % mit zwei Fehlern. Alle anderen machen drei oder mehr Fehler. Im zweiten Durchgang ändern sich die Werte wie folgt: fehlerfrei: 10 % ein Fehler: 20 % zwei Fehler: 45 %. Es finden zwei Durchgänge statt. Wie groß ist die Wahrscheinlichkeit, dass ein Sportler in beiden Durchgängen fehlerfrei ins Ziel kommt? Mit welcher Wahrscheinlichkeit macht ein Sportler in jedem der beiden Durchgänge mindestens drei Fehler? (4 BE) Kennziffer Teil B - Seite 2 Abiturprüfung 2010

7 Aufgabe 2 15 BE A D a F R S c C E b B Skizze (nicht maßstäblich) In einem Urlaubsgebiet befindet sich ein Aussichtsturm, dessen Grundgerüst aus den drei Stahlstreben AS, BS und CS besteht. Die Lage dieser Stahlstreben wird in einem dreidimensionalen kartesischen Koordinatensystem durch die Punkte A(10 / 0 / 0), B(0 / 10 / 0) bzw. C(0 / 0 / 2) und durch die Richtungsvektoren r r r a = 0, b = 1 bzw. c = beschrieben (siehe Skizze, 1 LE 1 m). 2.1 Der Aussichtsturm steht auf einer Ebene G, die durch die Punkte A, B und C festgelegt ist. Geben Sie eine Gleichung der Ebene G in Parameterform und in parameterfreier Form an. (2 BE) 2.2 Weisen Sie nach, dass die drei oben beschriebenen Stahlstreben des Turmes in einem gemeinsamen Punkt S zusammentreffen und geben Sie die Koordinaten des Punktes S an. 2.3 In einer Höhe von 30 m über der xy-ebene befindet sich parallel zu dieser Ebene eine dreieckige Aussichtsplattform. Die Eckpunkte D, E und F der Plattform sind mit den Stahlstreben des Grundgerüstes verankert (siehe Skizze). Berechnen Sie den Flächeninhalt der Aussichtsplattform. (4 BE) 2.4 Die Stahlstrebe, deren Lage durch den Punkt C und den Richtungsvektor c r festgelegt ist, endet im Punkt R(0 / 0 / 50). In diesem Punkt R wurde eine Richtfunk-Antennenanlage installiert, die die umliegenden Touristikzentren mit Breitband-Internet per Funk versorgen soll. Der Richtfunk wurde so eingestellt, dass nur Orte erreicht werden, die sich auf den Geraden durch die Punkte R und P a (a 100 / a² + 200a / 50) (a R, 0 < a < 200) befinden Das Büro einer Hotelanlage befindet sich im Punkt H(- 40 / 1800 / 0). Prüfen Sie rechnerisch, ob man in diesem Büro durch die Richtfunk- Antennenanlage des Aussichtssturmes über einen Breitband-Internetzugang verfügen kann Bestimmen Sie die Koordinaten des Punktes P a, der die größte Luftlinienentfernung von der Richtfunk-Antennenanlage im Punkt R hat und geben Sie diese Luftlinienentfernung an. Runden Sie die Entfernung auf einen ganzzahligen Wert. Kennziffer Teil B - Seite 3 Abiturprüfung 2010

8 Wahlaufgaben Aufgabe 3 10 BE Ein Parfümhersteller möchte ein neues Produkt auf den Markt bringen. 3.1 Drei Produktentwickler werden beauftragt, eine Flasche mit einem Fassungsvermögen zwischen 60 ml und 65 ml zu entwerfen. Damit die Flasche zur Kollektion passt, darf sie nicht höher als 10 cm sein und muss an ihrer dicksten Stelle einen Innendurchmesser von maximal 5 cm haben. Zunächst ist die innere Randkontur durch eine geeignete Funktion zu beschreiben (1 LE 1 cm). Der Verschluss ist dabei nicht zu gestalten, an der Oberseite der Flasche muss dafür aber ein Durchmesser von 2 cm vorhanden sein. Es wurden die folgenden drei Funktionen als Entwürfe vorgeschlagen: ( x + 20x 125x + 250x) f(x) = mit x R, 0 x g (x) = sin x + 1 mit x R, 0 x 7 5 h(x) 1 1 e 0,25x 1 = + e mit x R, 0 x 7. Durch Rotation der Graphen dieser Funktionen um die x-achse soll die innere Randkontur der Flasche beschrieben werden. Die Oberseite der Flasche liegt auf der y-achse. Prüfen Sie, ob alle drei Entwürfe die oben genannten Kriterien erfüllen. Alle Flaschen, die die oben genannten Kriterien erfüllen, werden in derselben Wandstärke ausgeführt und erhalten die gleiche Verschlusshöhe. Welche Funktionsvariante ist zu wählen, wenn die Flasche in einem quaderförmigen Karton verpackt wird und der Materialbedarf dafür minimal sein soll? Begründen Sie Ihre Entscheidung. (5 BE) Kennziffer Teil B - Seite 4 Abiturprüfung 2010

9 3.2 Der Hersteller überlegt, welches Material für die Verpackung verwendet werden soll. Für die Materialkosten k t (in Euro) in Abhängigkeit von der Anzahl x der Flaschen gilt: k (x) = 0,002 x 0,1t x + 3 t x 10 (t R). t + Der Parameter t ist eine spezifische Konstante für das Verpackungsmaterial. Die Kosten für die Verpackung aus Papier lassen sich durch Einsetzen des Parameterwertes t = 2 beschreiben. Zur Produkteinführung soll aber eine Sonderedition von 45 Flaschen präsentiert werden, die einzeln in einer Kunststoffpackung liegen. Die Verpackung aus Kunststoff ist optisch ansprechender und kostengünstiger als die Papierverpackung. Der Wert des Parameters t kann während der Herstellung der Kunststoffverpackung verändert werden. Untersuchen Sie, wie groß der Parameter t zu wählen ist, damit bei der Verpackung von 45 Flaschen eine maximale Kosteneinsparung erzielt wird. 3.3 Das neue Produkt wird auf einer Messe mit einer sehr großen Zahl an Besuchern präsentiert. Erfahrungsgemäß interessieren sich 30 % aller Messebesucher für neue Produkte dieser Branche. Ermitteln Sie, wie viele Messebesucher mindestens angesprochen werden müssen, damit die Wahrscheinlichkeit, mindestens einen Interessenten dabei zu haben, über 90 % liegt. (2 BE) Kennziffer Teil B - Seite 5 Abiturprüfung 2010

10 Aufgabe 4 10 BE 4.1 Die Funktion f a,b mit f a,b a b t a t (t) = (e e ) mit t R, t 0 und a,b R; a > 1 a b beschreibt die Konzentration eines Medikamentenwirkstoffes im Blut eines Patienten in mg/l in Abhängigkeit von der Zeit t (in Stunden). Die Parameter a und b kennzeichnen spezielle Konstanten zur näheren Beschreibung von Wirkstoffaufnahme und Wirkstoffabbau. Es gilt: a = 5b. Der Wirkstoff werde zum Zeitpunkt t = 0 durch eine Tablette verabreicht. Nach genau einer Stunde wird im Blut des Patienten eine Konzentration von 0,647 mg/liter gemessen. Bestimmen Sie einen Wert für den Parameter b. (2 BE) 4.2 Im Nachfolgenden gelte für die Wirkstoffkonzentration k (in mg/l) in Abhängigkeit von der Zeit t (in h) 0,3t 1,5 t k(t) 1,25(e e ) (t R,t 0) =. Geben Sie den Zeitpunkt der maximalen Wirkstoffkonzentration im Blut des Patienten an. Wie groß ist der maximale Wirkstoffgehalt im Blut, wenn man davon ausgeht, dass ein Mensch etwa 5 Liter Blut besitzt? Zu welchem Zeitpunkt ist die Abnahme der Wirkstoffkonzentration im Blut am größten? Wie groß ist sie zu diesem Zeitpunkt? Interpretieren Sie das Verhalten der Funktion k für t. (5 BE) 4.3 Die Behandlung mit dem Medikament führt in 60 % der Fälle zum Erfolg, ohne dass erkennbare Nebenwirkungen auftreten. In 30 % der Fälle treten für den Patienten leichte Nebenwirkungen auf, schwere Nebenwirkungen wurden bei 0,2 % der Patienten ermittelt. Dem Test liegt das Ergebnis der Befragung von 100 Patienten zu Grunde Geben Sie die Wahrscheinlichkeiten folgender Ereignisse an: A: Mehr als die Hälfte der Patienten verträgt das Medikament ohne Nebenwirkungen. B: Mindestens 30 Patienten, aber weniger als 40 Patienten haben leichte Nebenwirkungen. (2 BE) Das Medikament soll an 385 Patienten verabreicht werden. Bei wie vielen Patienten ist mit schweren Nebenwirkungen zu rechnen? (1 BE) Kennziffer Teil B - Seite 6 Abiturprüfung 2010

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A Sächsisches Staatsministerium Geltungsbereich: Berufliches Gymnasium für Kultus und Sport Fachrichtung: Agrarwissenschaft Schuljahr 009/010 Ernährungswissenschaft Informations- und Kommunikationstechnologie

Mehr

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A

Schriftliche Abiturprüfung. Mathematik. - Grundkurs - Hauptprüfung. Teil A Sächsisches Staatsministerium Geltungsbereich: Berufliches Gymnasium für Kultus Fachrichtung: Agrarwissenschaft Schuljahr 2008/2009 Ernährungswissenschaft Informations- und Kommunikationstechnologie Technikwissenschaft

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik

Schriftliche Abiturprüfung Grundkursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 1998/99 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 2008/09 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik -NACHTERMIN-

Schriftliche Abiturprüfung Grundkursfach Mathematik -NACHTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 2005/06 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material für Schüler

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material für Schüler Sächsisches Staatsministerium für Kultus Schuljahr 04/5 Geltungsbereich: Schüler der Klassenstufe 0 an allgemeinbildenden Gymnasien Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Material

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN-

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl.

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl. Abitur 2005 Mathematik Gk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Hilfsmittel: Hinweise: Sonstiges: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus und Sport Schuljahr 010/11 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung

Mehr

Beispielarbeit. MATHEMATIK (ohne CAS)

Beispielarbeit. MATHEMATIK (ohne CAS) Abitur 008 Mathematik (ohne CAS) Beispielarbeit Seite 1 Abitur 008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (ohne CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von Zentrale Klausur am Ende der Einführungsphase 011 Mathematik Aufgabenstellung In Nordrhein-Westfalen sind Hochwasser nichts Unbekanntes. Insbesondere die Rheinschiene im Großraum

Mehr

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS-

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS- HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie 3 auswählen. Sie müssen

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Abiturprüfung Mathematik, Grundkurs

Abiturprüfung Mathematik, Grundkurs M GK HT 1 Seite 1 von 2 Abiturprüfung 2009 Mathematik, Grundkurs Aufgabenstellung Die Höhe eines Strauches in den ersten zwanzig Tagen nach dem Auspflanzen wird durch die Funktion h mit der Funktionsgleichung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer

Mehr

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013

SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 SCHRIFTLICHE PRÜFUNG ZUM EINTRITT IN DIE QUALIFIKATIONSPHASE DER GYMNASIALEN OBERSTUFE UND ZENTRALE KLASSENARBEIT AN DEUTSCHEN SCHULEN IM AUSLAND 2013 MATHEMATIK 5. März 2013 Prüfungsregion WEST Arbeitszeit:

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/2001 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin. Allgemeine Arbeitshinweise

Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin. Allgemeine Arbeitshinweise Leibnizschule - Gymnasium Schuljahr 2008/09 Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin Allgemeine Arbeitshinweise Ihre Arbeitszeit (einschließlich

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1993/94 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2001/2002 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik Haupttermin 2008/09 1 Schriftliche Abiturprüfung Grundkursfach Mathematik Inhaltsverzeichnis Vorwort...1 Material für den Prüfungsteilnehmer...2 Allgemeine Arbeitshinweise...2 Prüfungsinhalt...2 Pflichtaufgaben...2

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1993/94 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Erprobungsschulen Schuljahr 2000/2001 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 0 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gmnasium, Fachberater Mathematik Gmnasium, CAS-Multiplikatoren Hinweise für Prüfungsteilnehmerinnen

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

ABITURPRÜFUNG 2015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag,. Mai 015, 9.00 Uhr bis 1.00 Uhr Die Schülerinnen

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Mathematik Seite 1 Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2005 Mathematik Seite 2 Hinweise für Schülerinnen

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik Haupttermin 011/1 1 Schriftliche Abiturprüfung Grundkursfach Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer... Bewertungsmaßstab... Prüfungsinhalt... Aufgabe A... Aufgabe B 1...3

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Vorwort. Schriftliche Abiturprüfung Grundkursfach Mathematik

Vorwort. Schriftliche Abiturprüfung Grundkursfach Mathematik Nachtermin 2009/10 1 Schriftliche Abiturprüfung Grundkursfach Mathematik Vorwort Aus rechtlichen Gründen möchte ich Sie darauf hinweisen, dass Sie sich auf einer privaten Seite befinden. Insbesondere ist

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2001/2002 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema.

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema. Gegeben sind die Funktionen f und g durch y y f() g(), ln, D f R, und! 0. Ihre Graphen werden mit F bzw. G bezeichnet. a) Ermitteln Sie den größtmöglichen Definitionsbereich D f der Funktion f. Untersuchen

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Grundkursfach Mathematik Nachtermin 2008/09 1 Schriftliche Abiturprüfung Grundkursfach Mathematik Inhaltsverzeichnis Vorwort...1 Material für den Prüfungsteilnehmer...3 Allgemeine Arbeitshinweise...3 Bewertungsmaßstab...3 Prüfungsinhalt...3

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 009 Mathematik Seite Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 2013/2014 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten.

Mehr

Abiturähnliche Aufgaben

Abiturähnliche Aufgaben Abiturähnliche Aufgaben 2005 1 Schriftliche Abiturprüfung Grundkursfach Mathematik Inhaltsverzeichnis Vorwort... 1 Material zur Vorbereitung der Abiturprüfungen 2005... 2 Allgemeine Arbeitshinweise...

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Zentrale schriftliche Abiturprüfung Mathematik

Zentrale schriftliche Abiturprüfung Mathematik LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 mit CAS Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2005 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 2005 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Leistungskursfach Mathematik

Vorwort. Inhaltsverzeichnis. Schriftliche Abiturprüfung Leistungskursfach Mathematik Haupttermin 2010/11 1 Schriftliche Abiturprüfung Leistungskursfach Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt (Aufgaben ohne CAS)...2

Mehr

2015/2016 Abitur Sachsen - Grundkurs Mathematik

2015/2016 Abitur Sachsen - Grundkurs Mathematik Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

Abiturprüfung Mathematik 004 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f() = + 3 Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Mathematik Abivorklausur Probe Wal 2011

Mathematik Abivorklausur Probe Wal 2011 Mathematik Abivorklausur Probe Wal 0 Zugelassene Hilfsmittel: Wissenschaftlicher Taschenrechner (ohne oder mit Grafikfähigkeit) Mathematische Formelsammlung Wörterbuch zur deutschen Rechtschreibung Aufgabenstellung:

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2007 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 2009 Mathematik Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015 7 Kombinatorik https://de.wikipedia.org/wiki/abzählende_kombinatorik 7.1 Grundformeln https://de.wikipedia.org/wiki/variation_(kombinatorik) https://de.wikipedia.org/wiki/permutation https://de.wikipedia.org/wiki/fakultät_(mathematik)

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

2014/2015 Abitur Sachsen - Grundkurs Mathematik

2014/2015 Abitur Sachsen - Grundkurs Mathematik Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2005 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Erprobungsarbeit Mathematik

Erprobungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 10 für Kultus an Erprobungsschulen Schuljahr 2003/2004 Erprobungsarbeit Mathematik Realschulbildungsgang Allgemeine Arbeitshinweise Die Erprobungsarbeit

Mehr

Anzahl der Fahrschüler Bild 1

Anzahl der Fahrschüler Bild 1 Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/2001 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N -

Besondere Leistungsfeststellung Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 006/007 Geltungsbereich: Schüler der Klassenstufe 10 an allgemein bildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung Mathematik

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr