Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai Mathematik. Teil-2-Aufgaben. öffentliches Dokument

Größe: px
Ab Seite anzeigen:

Download "Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. öffentliches Dokument"

Transkript

1 Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung HS 11. Mai 215 Mathematik Teil-2-ufgaben

2 Hinweise zur ufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat! Das vorliegende ufgabenheft zu Teil 2 enthält vier ufgaben mit je zwei bis vier Teilaufgaben, wobei alle Teilaufgaben unabhängig voneinander bearbeitbar sind. Ihnen stehen dafür insgesamt 15 Minuten an reiner rbeitszeit zur Verfügung. Verwenden Sie einen nicht radierbaren, blau oder schwarz schreibenden Stift! ei Konstruktionsaufgaben ist auch die Verwendung eines leistifts möglich. Verwenden Sie zur earbeitung dieser ufgaben dieses ufgabenheft und die Ihnen zur Verfügung gestellten lätter! Schreiben Sie Ihren Namen auf der ersten Seite des ufgabenheftes in das dafür vorgesehene Feld und auf jedes verwendete latt! Geben Sie bei der eantwortung jeder Teilaufgabe deren ezeichnung an! In die eurteilung wird alles einbezogen, was nicht durchgestrichen ist. Die Lösung muss dabei klar ersichtlich sein. Wenn die Lösung nicht klar ersichtlich ist oder verschiedene Lösungen angegeben sind, gilt die ufgabe als nicht gelöst. Streichen Sie Ihre Notizen durch. Sie dürfen eine approbierte Formelsammlung sowie die gewohnten elektronischen Hilfsmittel verwenden. bzugeben sind das ufgabenheft und alle von Ihnen verwendeten lätter. eurteilung Jede ufgabe in Teil 1 wird mit Punkten oder 1 Punkt bewertet, jede Teilaufgabe in Teil 2 mit, 1 oder 2 Punkten. Die mit gekennzeichneten ufgabenstellungen werden mit Punkten oder 1 Punkt bewertet. Werden im Teil 1 mindestens 16 von 24 ufgaben richtig gelöst, wird die rbeit positiv bewertet. Werden im Teil 1 weniger als 16 von 24 ufgaben richtig gelöst, werden mit markierte ufgabenstellungen aus Teil 2 zum usgleich (für den laut LVO wesentlichen ereich ) herangezogen. Werden unter erücksichtigung der mit markierten ufgabenstellungen aus Teil 2 mindestens 16 ufgaben richtig gelöst, wird die rbeit positiv bewertet. Werden auch unter erücksichtigung der mit markierten ufgabenstellungen aus Teil 2 weniger als 16 ufgaben richtig gelöst, wird die rbeit mit Nicht genügend beurteilt. Werden im Teil 1 mindestens 16 Punkte (mit erücksichtigung der usgleichspunkte ) erreicht, so gilt folgender eurteilungsschlüssel: Genügend efriedigend Gut Sehr gut Punkte Punkte 33 4 Punkte Punkte Erläuterung der ntwortformate Die ufgaben haben einerseits freie ntwortformate; dabei schreiben Sie Ihre ntwort direkt unter die jeweilige ufgabenstellung in das ufgabenheft oder auf die zur Verfügung gestellten lätter. Weitere ntwortformate, die in der Klausur zum Einsatz kommen können, werden im Folgenden vorgestellt: Zuordnungsformat: Dieses ntwortformat ist durch mehrere ussagen (bzw. Tabellen oder bbildungen) gekennzeichnet, denen mehrere ntwortmöglichkeiten gegenüberstehen. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die ntwortmöglichkeiten durch Eintragen der entsprechenden uchstaben den jeweils zutreffenden ussagen zuordnen! eispiel: Gegeben sind zwei Gleichungen. ufgabenstellung: Ordnen Sie den zwei Gleichungen jeweils die entsprechende ezeichnung (aus bis D) zu! = = 4 C C D ddition Division Multiplikation Subtraktion 2

3 Konstruktionsformat: Eine ufgabe und deren ufgabenstellung sind vorgegeben. Die ufgabe erfordert die Ergänzung von Punkten, Geraden und/oder Kurven im ufgabenheft. eispiel: Gegeben ist eine lineare Funktion f mit f(x) = k x + d. ufgabenstellung: Zeichnen Sie den Graphen einer linearen Funktion mit den edingungen k = 2 und d > in das vorgegebene Koordinatensystem ein! f(x) f x Multiple-Choice-Format in der Variante 1 aus 6 : Dieses ntwortformat ist durch einen Fragenstamm und sechs ntwortmöglichkeiten gekennzeichnet, wobei eine ntwortmöglichkeit auszuwählen ist. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die einzige zutreffende ntwortmöglichkeit ankreuzen! eispiel: Welche Gleichung ist korrekt? ufgabenstellung: Kreuzen Sie die zutreffende Gleichung an! = 1 a = 2 a = 3 a = 8 T = 5 a = 6 a Multiple-Choice-Format in der Variante 2 aus 5 : Dieses ntwortformat ist durch einen Fragenstamm und fünf ntwortmöglichkeiten gekennzeichnet, wobei zwei ntwortmöglichkeiten auszuwählen sind. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die beiden zutreffenden ntwortmöglichkeiten ankreuzen! eispiel: Welche Gleichungen sind korrekt? ufgabenstellung: Kreuzen Sie die beiden zutreffenden Gleichungen an! = 1 a = 4 T = 3 a = 8 T = 5 a 3

4 Multiple-Choice-Format in der Variante x aus 5 : Dieses ntwortformat ist durch einen Fragenstamm und fünf ntwortmöglichkeiten gekennzeichnet, wobei eine, zwei, drei, vier oder fünf ntwortmöglichkeiten auszuwählen sind. In der ufgabenstellung finden Sie stets die ufforderung Kreuzen Sie die zutreffende(n) ussage(n)/ Gleichung(en)/... an!. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die zutreffende ntwortmöglichkeit/die zutreffenden ntwortmöglichkeiten ankreuzen! eispiel: Welche der gegebenen Gleichungen ist/sind korrekt? ufgabenstellung: Kreuzen Sie die zutreffende(n) Gleichung(en) an! = 2 T = 4 T = 6 T = 4 a = 1 T Lückentext: Dieses ntwortformat ist durch einen Satz mit zwei Lücken gekennzeichnet, das heißt, im ufgabentext sind zwei Stellen ausgewiesen, die ergänzt werden müssen. Für jede Lücke werden je drei ntwortmöglichkeiten vorgegeben. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die Lücken durch nkreuzen der beiden zutreffenden ntwortmöglichkeiten füllen! eispiel: Gegeben sind 3 Gleichungen. ufgabenstellung: Ergänzen Sie die Textlücken im folgenden Satz durch nkreuzen der jeweils richtigen Satzteile so, dass eine korrekte ussage entsteht! Die Gleichung 1 wird als Zusammenzählung oder 2 bezeichnet = a = 2 T 1 1 = 1 a 2 Multiplikation Subtraktion ddition a a T So ändern Sie Ihre ntwort bei ufgaben zum nkreuzen: 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen ntwort. 2. Kreuzen Sie dann das gewünschte Kästchen an = 3 a = 4 T = 5 a = 4 a = 9 T Hier wurde zuerst die ntwort = 9 gewählt und dann auf = 4 geändert. So wählen Sie eine bereits übermalte ntwort: 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen ntwort. 2. Kreisen Sie das gewünschte übermalte Kästchen ein = 3 a = 4 T = 5 a = 4 a = 9 a Hier wurde zuerst die ntwort = 4 übermalt und dann wieder gewählt. Wenn Sie jetzt noch Fragen haben, wenden Sie sich bitte an Ihre Lehrerin/Ihren Lehrer! 4 Viel Erfolg bei der earbeitung!

5 ufgabe 1 2-m-Lauf In der Leichtathletik gibt es für Läufer/innen spezielle Trainingsmethoden. Dazu werden Trainingspläne erstellt. Es ist dabei sinnvoll, bei Trainingsläufen Teilzeiten zu stoppen, um Stärken und Schwächen der Läuferin/des Läufers zu analysieren. Zur Erstellung eines Trainingsplans für eine Läuferin wurden die Teilzeiten während eines Trainingslaufs gestoppt. Für die 2 Meter lange Laufstrecke wurden bei diesem Trainingslauf 26,4 Sekunden gemessen. Im nachstehenden Diagramm ist der zurückgelegte Weg s(t) in bhängigkeit von der Zeit t für diesen Trainingslauf mithilfe einer Polynomfunktion s vom Grad 3 modellhaft dargestellt. Für die Funktion s gilt die Gleichung s(t) = 7 45 t 3 +,7t 2 (s(t) in Metern, t in Sekunden). s(t) in m s t in s ufgabenstellung: a) erechnen Sie die Wendestelle der Funktion s! Interpretieren Sie die edeutung der Wendestelle in ezug auf die Geschwindigkeit der Läuferin! b) estimmen Sie die mittlere Geschwindigkeit der Läuferin für die 2 Meter lange Laufstrecke in Metern pro Sekunde! Der Mittelwertsatz der Differenzialrechnung besagt, dass unter bestimmten Voraussetzungen in einem Intervall [a; b] für eine Funktion f mindestens ein x (a; b) existiert, sodass f(b) f(a) f (x ) = gilt. Interpretieren Sie diese ussage im vorliegenden Kontext für die b a Funktion s im Zeitintervall [; 26,4]! 5

6 ufgabe 2 ltersbestimmung Die Radiokohlenstoffdatierung, auch 14 C-Methode genannt, ist ein Verfahren zur ltersbestimmung von kohlenstoffhaltigen Materialien. Das Verfahren beruht darauf, dass in abgestorbenen Organismen die Menge an gebundenen radioaktiven 14 C-tomen gemäß dem Zerfallsgesetz exponentiell abnimmt, während der nteil an 12 C-tomen gleich bleibt. Lebende Organismen sind von diesem Effekt nicht betroffen, da sie ständig neuen Kohlenstoff aus der Umwelt aufnehmen, sodass der 14 C-nteil nahezu konstant bleibt und somit auch das Verhältnis zwischen 14 C und 12 C. Die nzahl der noch vorhandenen 14 C-tome in einem abgestorbenen Organismus wird durch die Funktion N beschrieben. Für diese nzahl N(t) der 14 C-tome t Jahre nach dem Tod des Organismus gilt daher näherungsweise die Gleichung N(t) = N e λ t, wobei N die nzahl der 14 C-tome zum Zeitpunkt t = angibt und die Zerfallskonstante für 14 C den Wert λ = 1, pro Jahr hat. Eine frische Probe enthält pro illion (1 12 ) Kohlenstoffatomen nur ein 14 C-tom. Die Nachweisgrenze von 14 C liegt bei einem tom pro illiarde (1 15 ) Kohlenstoffatomen (also einem Tausendstel der frischen Probe). ufgabenstellung: a) erechnen Sie die Halbwertszeit von 14 C! Zeigen Sie, dass nach zehn Halbwertszeiten die Nachweisgrenze von 14 C unterschritten ist! b) Im Jahr 1991 wurde in den Ötztaler lpen von Wanderern die Gletschermumie Ötzi entdeckt. Die 14 C-Methode ergab, dass bereits 47 % ±,5 % der ursprünglich vorhandenen 14 C-tome zerfallen waren (d. h., das Messverfahren hat einen Fehler von ±,5 % der in der frischen Probe vorhandenen nzahl an 14 C-tomen). erechnen Sie ein Intervall für das lter der Gletschermumie zum Zeitpunkt ihres uffindens! 6

7 ngenommen, Ötzi wäre nicht im Jahr t 1 = 1991, sondern zu einem späteren Zeitpunkt t 2 gefunden worden. Geben Sie an, welche uswirkung auf die reite des für das lter der Gletschermumie ermittelten Intervalls dies hat (den gleichen Messfehler vorausgesetzt)! egründen Sie Ihre ussage anhand der unten abgebildeten Grafik! N(t) N t 1 t 2 t c) N(t) beschreibt die nzahl der 14 C-tome zum Zeitpunkt t. Interpretieren Sie N (t) im Hinblick auf den radioaktiven Zerfallsprozess! Nach den Gesetzmäßigkeiten des radioaktiven Zerfalls zerfällt pro Zeiteinheit ein konstanter Prozentsatz p der vorhandenen Menge an 14 C-tomen. Welche der folgenden Differenzengleichungen beschreibt diese Gesetzmäßigkeit? Kreuzen Sie die zutreffende Differenzengleichung an! N(t + 1) N(t) = p N(t + 1) N(t) = p N(t + 1) N(t) = p t N(t + 1) N(t) = p t N(t + 1) N(t) = p N(t) N(t + 1) N(t) = p N(t) 7

8 ufgabe 3 lutgruppen Die wichtigsten lutgruppensysteme beim Menschen sind das -System und das Rhesussystem. Es werden dabei die vier lutgruppen,, und unterschieden. Je nach Vorliegen eines bestimmten ntikörpers, den man erstmals bei Rhesusaffen entdeckt hat, wird bei jeder lutgruppe noch zwischen Rhesus-positiv (+) und Rhesus-negativ ( ) unterschieden. bedeutet z.. lutgruppe mit Rhesusfaktor negativ. In den nachstehenden Diagrammen sind die relativen Häufigkeiten der vier lutgruppen in Österreich und Deutschland und im weltweiten Durchschnitt ohne erücksichtigung des Rhesusfaktors dargestellt. Österreich Österreich Österreich Deutschland Deutschland Deutschland weltweit weltweit weltweit 15 % 15 % 15 % 11 % 11 % 11 % 11 % 11 % 11 % 41 % 41 % 41 % 37 % 37 % 37 % 43 % 43 % 43 % 41 % 41 % 41 % 4 % 4 % 4 % 45 % 45 % 45 % 7 % 7 % 7 % 5 % 5 % 5 % 4 % 4 % 4 % Die nachstehende Tabelle enthält die relativen Häufigkeiten der lutgruppen in Deutschland und Österreich zusätzlich aufgeschlüsselt nach den Rhesusfaktoren Deutschland 37 % 6 % 9 % 2 % 35 % 6 % 4 % 1 % Österreich 33 % 8 % 12 % 3 % 3 % 7 % 6 % 1 % ufgrund von Unverträglichkeiten kann für eine luttransfusion nicht lut einer beliebigen lutgruppe verwendet werden. Jedes Kreuz (X) in der nachstehenden Tabelle bedeutet, dass eine Transfusion vom Spender zum Empfänger möglich ist. Spender Empfänger X X X X X X X X X X X X + X X X X X X + X X X X X X + X X X Datenquelle: https://de.wikipedia.org/wiki/lutgruppe [ ] 8

9 ufgabenstellung: a) Geben Sie diejenigen lutgruppen an, die laut der abgebildeten Diagramme sowohl in Österreich als auch in Deutschland häufiger anzutreffen sind als im weltweiten Durchschnitt! Jemand argumentiert anhand der gegebenen Diagramme, dass die lutgruppe in Deutschland und Österreich zusammen eine relative Häufigkeit von 13 % hat. Entscheiden Sie, ob diese ussage richtig ist, und begründen Sie Ihre Entscheidung! b) Eine in Österreich lebende Person X hat lutgruppe. Geben Sie anhand der in der Einleitung angeführten Daten und Informationen die Wahrscheinlichkeit an, mit der diese Person X als lutspender/in für eine zufällig ausgewählte, in Österreich lebende Person Y geeignet ist! Wie viele von 1 zufällig ausgewählten Österreicherinnen/Österreichern kommen als lutspender/in für die Person X in Frage? Geben Sie für die nzahl der potenziellen lutspen - der/innen näherungsweise ein um den Erwartungswert symmetrisches Intervall mit 9 % Wahrscheinlichkeit an! c) In einer österreichischen Gemeinde, in der 1 8 Einwohner/innen lut spenden könnten, nahmen 15 Personen an einer freiwilligen lutspendeaktion teil. Es wird angenommen, dass die lutspender/innen eine Zufallsstichprobe darstellen. 72 lutspender/innen hatten lutgruppe. erechnen Sie aufgrund dieses Stichprobenergebnisses ein symmetrisches 95-%-Konfi denzintervall für den tatsächlichen (relativen) nteil p der Einwohner/innen dieser Gemeinde mit lutgruppe, die lut spenden könnten! Die reite des Konfidenzintervalls wird vom Konfidenzniveau (Sicherheitsniveau) und vom Umfang der Stichprobe bestimmt. Geben Sie an, wie jeweils einer der beiden Parameter geändert werden müsste, um eine Verringerung der reite des Konfidenzintervalls zu erreichen! Gehen Sie dabei von einem unveränderten (gleichbleibenden) Stichprobenergebnis aus. itte umblättern! 9

10 d) lutgruppenmerkmale werden von den Eltern an ihre Kinder weitervererbt. Dabei sind die Wahrscheinlichkeiten in der nachstehenden Tabelle angeführt. lutgruppe mögliche lutgruppe des Kindes der Eltern und 93,75 % 6,25 % und 18,75 % 18,75 % 56,25 % 6,25 % und 5 % 12,5 % 37,5 % und 75 % 25 % und 93,75 % 6,25 % und 12,5 % 5 % 37,5 % und 75 % 25 % und 25 % 25 % 5 % und 5 % 5 % und 1 % Quelle: https://de.wikipedia.org/wiki/-system [ ] Eine Frau mit lutgruppe und ein Mann mit lutgruppe haben zwei (gemeinsame) leibliche Kinder. erechnen Sie die Wahrscheinlichkeit, dass beide Kinder die gleiche lutgruppe haben! Ein Kind aus der Nachbarschaft dieser Familie hat lutgruppe. Gibt es eine lutgruppe bzw. lutgruppen, die der leibliche Vater dieses Kindes sicher nicht haben kann? egründen Sie Ihre ntwort anhand der gegebenen Daten! 1

11 ufgabe 4 Füllen eines Gefäßes Der Innenraum eines 2 cm hohen Gefäßes hat in jeder Höhe h eine rechteckige, horizontale Querschnittsfläche. Ihre Länge beträgt am oden 1 cm und nimmt dann mit der Höhe linear bis auf 16 cm zu, ihre reite beträgt in jeder Höhe 12 cm. 16 cm 2 cm 12 cm 1 cm ufgabenstellung: a) Geben Sie eine Formel für die Länge a(h) der rechteckigen Querschnittsfläche in der Höhe h an! In das Gefäß wird Flüssigkeit gefüllt. Geben Sie an, was der usdruck a(h)dh in diesem Zusammenhang bedeutet! b) Das leere Gefäß wird bis zum Rand mit Flüssigkeit gefüllt. Nach t Sekunden befindet sich die Wassermenge q(t) (in ml) im Gefäß. Die Füllung dauert 39 Sekunden. Für t [; 39] gilt: q (t) = 8. Interpretieren Sie q (t) = 8 im gegebenen Zusammenhang! Ermitteln Sie q(t 2 ) q(t 1 ) t 2 t 1 für beliebige t 1, t 2 mit t 1 < t 2 aus dem gegebenen Zeitintervall! c) Das Fassungsvermögen des Gefäßes (in ml) bis zur Höhe x kann durch das Integral (3,6 h + 12)dh dargestellt werden. x Ermitteln Sie, bei welcher Höhe x das Wasser im Gefäß steht, wenn man 2,5 Liter Wasser in das Gefäß gießt! Interpretieren Sie den im Integral vorkommenden Wert 3,6 im gegebenen Kontext! 11

12

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. öffentliches Dokument

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. öffentliches Dokument Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................

Mehr

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS)

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Inhalt Teil-1-Übungsaufgaben Inhaltsbereich Algebra und Geometrie (AG) 8 (1) Ganze

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall 1. ufgabenstellung Bestimmen Sie die Halbwertszeit und die Zerfallskonstante von Radon 220. 2. Theoretische Grundlagen Stichworte zur Vorbereitung:

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen 2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Angewandte Mathematik

Angewandte Mathematik Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Jänner 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Prüfungsaufgabensammlung

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Kapitel 12 Lernzielkontrolle PowerPoint 2010 Beantworten Sie die folgenden 12Fragen

Kapitel 12 Lernzielkontrolle PowerPoint 2010 Beantworten Sie die folgenden 12Fragen asic omputer Skills Microsoft PowerPoint 2010 Kapitel 12 Lernzielkontrolle PowerPoint 2010 eantworten Sie die folgenden 12Fragen Im Ordner 12_Kapitel_Lernzielkontrolle finden Sie alle notwendigen Dateien.

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Informationen zum Aufnahmetest Mathematik

Informationen zum Aufnahmetest Mathematik Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

Mathematik Teil 1 (ohne Hilfsmittel) Aufgabe 1

Mathematik Teil 1 (ohne Hilfsmittel) Aufgabe 1 Teil 1 (ohne Hilfsmittel) Aufgabe 1 1 Analysis 1.1 Erläutern Sie anhand einer Skizze, ob das Integral π sin(x)dx π 2 größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion f gilt: 3 (1) f (x) = 0

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

DRESDEN. Ermitteln von Sprunghöhen mit einem Windows Phone. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht.

DRESDEN. Ermitteln von Sprunghöhen mit einem Windows Phone. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht DRESDEN Ermitteln von Sprunghöhen mit einem Windows Phone Felix Guttbier Schule: Gymnasium Brandis Jugend forscht 2014 ERMITTELN VON SPRUNGHÖHEN

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt.

D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt. D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt. Schätzen Sie auf eine halbe Stunde genau, wie lange es dauert, den Tank zu füllen. A. 4 Stunden B. 3 1

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)

Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet) erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

Teil A Arbeitsblatt. Teil B Pflichtaufgaben

Teil A Arbeitsblatt. Teil B Pflichtaufgaben Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Ein Word-Dokument anlegen

Ein Word-Dokument anlegen 34 Word 2013 Schritt für Schritt erklärt Ein Word-Dokument anlegen evor Sie einen Text in Word erzeugen können, müssen Sie zunächst einmal ein neues Dokument anlegen. Die nwendung stellt zu diesem Zweck

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Englisch. Schreiben. 18. September 2015 HTL. Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung. Name: Klasse/Jahrgang:

Englisch. Schreiben. 18. September 2015 HTL. Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung. Name: Klasse/Jahrgang: Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung HTL 18. September 2015 Englisch (B2) Schreiben Hinweise zum Beantworten der Fragen Sehr geehrte Kandidatin,

Mehr

2 Lineare Gleichungen mit zwei Variablen

2 Lineare Gleichungen mit zwei Variablen 2 Lineare Gleichungen mit zwei Variablen Die Klasse 9 c möchte ihr Klassenzimmer mit Postern ausschmücken. Dafür nimmt sie 30, aus der Klassenkasse. In Klasse 7 wurden lineare Gleichungen mit einer Variablen

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit.

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit. 1. Schachbrett voller Reis Wir haben uns für mehr als 1000 kg entschieden, da wir glauben, dass aufgrund des stark ansteigenden Wachstums (exponentiell!) dieses Gewicht leicht zustande kommt. Anfangs eine

Mehr

Origin Tutorial. 1. Einleitung : 2.Importieren von Dateien in Origin :

Origin Tutorial. 1. Einleitung : 2.Importieren von Dateien in Origin : Origin Tutorial 1. Einleitung : Dieses Tutorial soll Einsteigern das Importieren und Plotten von Daten in Origin erklären. Außerdem werden Möglichkeiten zur Durchführung linearer Anpassungen, polynomieller

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

Englisch. Hören. 6. Mai 2014 HAK. Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung. Name: Klasse/Jahrgang:

Englisch. Hören. 6. Mai 2014 HAK. Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung. Name: Klasse/Jahrgang: Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und iplomprüfung HK. Mai Englisch () Hören öffentliches okument Hinweise zum eantworten der Fragen Sehr geehrte Kandidatin,

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Fotos in einer Diashow bei PPT

Fotos in einer Diashow bei PPT Fotos in einer Diashow bei PPT Drei mögliche Verfahren, mit Bildern eine PPT-Präsentation aufzuwerten, möchte ich Ihnen vorstellen. Verfahren A Fotoalbum Schritt 1: Öffnen Sie eine leere Folie in PPT Schritt

Mehr

Kulturorientierung nach Handy/Harrison Fragebogen

Kulturorientierung nach Handy/Harrison Fragebogen Kulturorientierung nach Handy/Harrison Fragebogen 1. er Vorgesetze: 2. er Mitarbeiter zeigt Stärke, ist entscheidungsfreudig, streng aber gerecht. Sozialen Untergebenen gegenüber ist er großzügig und nachsichtig

Mehr

Wie viel Alkohol darf ich trinken, wenn ich noch Autofahren muss und nicht meinen Führerschein verlieren will?

Wie viel Alkohol darf ich trinken, wenn ich noch Autofahren muss und nicht meinen Führerschein verlieren will? Unterrichts- und Lernmaterialien geprüft vom PARSEL-Konsortium im Rahmen des EC FP6 geförderten Projekts: SAS6-CT-2006-042922-PARSEL Kooperierende Institutionen und Universitäten des PARSEL-Projekts: Anregungen

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Bachelor-Kursprüfung International Finance Schwerpunktmodule Finanzmärkte und Außenwirtschaft 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten SS 2015, 22.07.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Lehrerhandbuch Unterrichtsstunde zum Mathematiklabor Thema Proportionalität. Universität Würzburg Lena Moser

Lehrerhandbuch Unterrichtsstunde zum Mathematiklabor Thema Proportionalität. Universität Würzburg Lena Moser Lehrerhandbuch Unterrichtsstunde zum Mathematiklabor Thema Proportionalität Universität Würzburg Lena Moser Tafelbild Proportionalität Raupe auf Uhr r(ϕ)= ϕ Eigenschaft: Zellteilung exponentielles Wachstum

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik

Institut für Informatik. Aufgaben zum Seminar Technische Informatik UNIVERSITÄT LEIPZIG Institut für Informatik bt. Technische Informatik Dr. Hans-Joachim Lieske ufgaben zum Seminar Technische Informatik ufgabe 2.4.1. - erechnung einer Transistorschaltung mit Emitterwiderstand

Mehr

Aufgabenblatt 6 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015

Aufgabenblatt 6 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015 Universität Bern Bern, den. März Professur für Quantitative Methoden der BWL Schützenmattstr., Bern Prof. Dr. Norbert Trautmann, Oliver Strub E-Mail: oliver.strub@pqm.unibe.ch Aufgabenblatt 6 zur Lehrveranstaltung

Mehr

1.Schularbeit aus MATHEMATIK: Klasse 7D 24.Oktober 1997. 1.) Eine in D definierte Funktion y=f(x) heißt linksgekrümmt, wenn gilt: <

1.Schularbeit aus MATHEMATIK: Klasse 7D 24.Oktober 1997. 1.) Eine in D definierte Funktion y=f(x) heißt linksgekrümmt, wenn gilt: < 1.Schularbeit aus MATHEMATIK: Klasse 7D 24.Oktober 1997 1.) Eine in D definierte Funktion y=f(x) heißt linksgekrümmt, wenn gilt: x1 + x2 f( x1) + f( x2) x1, x2 D, x1 < x2: f < 2 2 Zeige, daß f(x) = x²

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Versuch 22. Luftfeuchtigkeit

Versuch 22. Luftfeuchtigkeit Versuch 22 Luftfeuchtigkeit 1 1 Grundlagen Infolge der Verdunstung an der freien Wasseroberfläche der Erde hat die Atmosphäre immer einen gewissen Feuchtigkeitsgehalt. Diese Feuchtigkeit wird gemessen

Mehr

Musterzwischenprüfung Seite 1

Musterzwischenprüfung Seite 1 Musterzwischenprüfung Seite 1 Aufgabe 1 Steigungsverhältnisse (8 Punkte) Die nachfolgend genannten Bahnen überwinden eine Steigung von: a) Eisenbahn 25 b) Zahnradbahn 25% c) Drahtseilbahn 78% d) Seilbahn

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller Versuch: D0 - Radioaktivität Auswertung Radioaktivität beschreibt die Eigenschaft von Substanzen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Bei einem solchen Versicherungsvertrag wollen die guten Risiken keine Volldeckung haben. Sie streben stattdessen den Punkt F an.

Bei einem solchen Versicherungsvertrag wollen die guten Risiken keine Volldeckung haben. Sie streben stattdessen den Punkt F an. Neue Institutionenökonomik, ufgabe 11 und 12 Seite 1 ufgabe 11 Von Zeit zu Zeit wird die Forderung erhoben, dass private Krankenversicherer eine einheitliche Krankenversicherungsprämie für Frauen und Männer

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

PLANUNG UND ENTSCHEIDUNG EXCEL-FORMELN. für INVESTITIONSRECHNUNGEN

PLANUNG UND ENTSCHEIDUNG EXCEL-FORMELN. für INVESTITIONSRECHNUNGEN . UNIVERSITÄT HOHENHEIM INSTITUT FÜR LNDWIRTSCHFTLICHE ETRIESLEHRE FCHGEIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK. Prof. Dr. Stephan Dabbert PLNUNG UND ENTSCHEIDUNG EXCEL-FORMELN für INVESTITIONSRECHNUNGEN

Mehr

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner

Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Probeunterricht 2006 M 7 Textrechnen 1 Name:. Vorname:.. Hinweise: Bei allen Aufgaben muss der Lösungsweg nachvollziehbar sein! Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner Aufgabe 1.

Mehr

PRÜFUNG. Grundlagen der Softwaretechnik

PRÜFUNG. Grundlagen der Softwaretechnik Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner PRÜFUNG Grundlagen der Softwaretechnik Name: Matrikelnummer: Note: Prüfungstag: 21.09.2012 Prüfungsdauer:

Mehr

Grundkompetenzen und Technologie

Grundkompetenzen und Technologie Grundkompetenzen und Technologie MARKUS HOHENWARTER, ANDREAS LINDNER, SANDRA REICHENBERGER, LINZ Der Technologieeinsatz im Mathematikunterricht wird in Zukunft gerade im Hinblick auf die standardisierte

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

b) Bestimmen Sie den Zeitpunkt, zu dem das Medikament am stärksten abgebaut wird. 10 P

b) Bestimmen Sie den Zeitpunkt, zu dem das Medikament am stärksten abgebaut wird. 10 P Abitur 008 I. Medikation ANALYSIS Nach Einnahme eines Medikamentes kann man dessen Konzentration im Blut eines Patienten messen. Für die ersten 6 Stunden beschreibt die Funktion f mit der Gleichung f()

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Beispielsammlung - Matura Juni 2010

Beispielsammlung - Matura Juni 2010 1 Beispielsammlung - Matura Juni 2010 I. TRIGONOMETRIE 1) Von einem Grundstück sind bekannt: CD = 48 m; AB = 35 m; AD = 36,6 m sowie die Winkel =

Mehr

Nachholklausur zur Vorlesung OCII Reaktionsmechanismen WS 2007/2008

Nachholklausur zur Vorlesung OCII Reaktionsmechanismen WS 2007/2008 liver eiser, Institut für rganische Chemie der Universität egensburg achholklausur zur Vorlesung CII eaktionsmechanismen WS 2007/2008 Jedes Blatt muss mit Ihrem amen gekennzeichnet sein, auf dem ersten

Mehr