Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai Mathematik. Teil-2-Aufgaben. öffentliches Dokument

Größe: px
Ab Seite anzeigen:

Download "Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. öffentliches Dokument"

Transkript

1 Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung HS 11. Mai 215 Mathematik Teil-2-ufgaben

2 Hinweise zur ufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat! Das vorliegende ufgabenheft zu Teil 2 enthält vier ufgaben mit je zwei bis vier Teilaufgaben, wobei alle Teilaufgaben unabhängig voneinander bearbeitbar sind. Ihnen stehen dafür insgesamt 15 Minuten an reiner rbeitszeit zur Verfügung. Verwenden Sie einen nicht radierbaren, blau oder schwarz schreibenden Stift! ei Konstruktionsaufgaben ist auch die Verwendung eines leistifts möglich. Verwenden Sie zur earbeitung dieser ufgaben dieses ufgabenheft und die Ihnen zur Verfügung gestellten lätter! Schreiben Sie Ihren Namen auf der ersten Seite des ufgabenheftes in das dafür vorgesehene Feld und auf jedes verwendete latt! Geben Sie bei der eantwortung jeder Teilaufgabe deren ezeichnung an! In die eurteilung wird alles einbezogen, was nicht durchgestrichen ist. Die Lösung muss dabei klar ersichtlich sein. Wenn die Lösung nicht klar ersichtlich ist oder verschiedene Lösungen angegeben sind, gilt die ufgabe als nicht gelöst. Streichen Sie Ihre Notizen durch. Sie dürfen eine approbierte Formelsammlung sowie die gewohnten elektronischen Hilfsmittel verwenden. bzugeben sind das ufgabenheft und alle von Ihnen verwendeten lätter. eurteilung Jede ufgabe in Teil 1 wird mit Punkten oder 1 Punkt bewertet, jede Teilaufgabe in Teil 2 mit, 1 oder 2 Punkten. Die mit gekennzeichneten ufgabenstellungen werden mit Punkten oder 1 Punkt bewertet. Werden im Teil 1 mindestens 16 von 24 ufgaben richtig gelöst, wird die rbeit positiv bewertet. Werden im Teil 1 weniger als 16 von 24 ufgaben richtig gelöst, werden mit markierte ufgabenstellungen aus Teil 2 zum usgleich (für den laut LVO wesentlichen ereich ) herangezogen. Werden unter erücksichtigung der mit markierten ufgabenstellungen aus Teil 2 mindestens 16 ufgaben richtig gelöst, wird die rbeit positiv bewertet. Werden auch unter erücksichtigung der mit markierten ufgabenstellungen aus Teil 2 weniger als 16 ufgaben richtig gelöst, wird die rbeit mit Nicht genügend beurteilt. Werden im Teil 1 mindestens 16 Punkte (mit erücksichtigung der usgleichspunkte ) erreicht, so gilt folgender eurteilungsschlüssel: Genügend efriedigend Gut Sehr gut Punkte Punkte 33 4 Punkte Punkte Erläuterung der ntwortformate Die ufgaben haben einerseits freie ntwortformate; dabei schreiben Sie Ihre ntwort direkt unter die jeweilige ufgabenstellung in das ufgabenheft oder auf die zur Verfügung gestellten lätter. Weitere ntwortformate, die in der Klausur zum Einsatz kommen können, werden im Folgenden vorgestellt: Zuordnungsformat: Dieses ntwortformat ist durch mehrere ussagen (bzw. Tabellen oder bbildungen) gekennzeichnet, denen mehrere ntwortmöglichkeiten gegenüberstehen. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die ntwortmöglichkeiten durch Eintragen der entsprechenden uchstaben den jeweils zutreffenden ussagen zuordnen! eispiel: Gegeben sind zwei Gleichungen. ufgabenstellung: Ordnen Sie den zwei Gleichungen jeweils die entsprechende ezeichnung (aus bis D) zu! = = 4 C C D ddition Division Multiplikation Subtraktion 2

3 Konstruktionsformat: Eine ufgabe und deren ufgabenstellung sind vorgegeben. Die ufgabe erfordert die Ergänzung von Punkten, Geraden und/oder Kurven im ufgabenheft. eispiel: Gegeben ist eine lineare Funktion f mit f(x) = k x + d. ufgabenstellung: Zeichnen Sie den Graphen einer linearen Funktion mit den edingungen k = 2 und d > in das vorgegebene Koordinatensystem ein! f(x) f x Multiple-Choice-Format in der Variante 1 aus 6 : Dieses ntwortformat ist durch einen Fragenstamm und sechs ntwortmöglichkeiten gekennzeichnet, wobei eine ntwortmöglichkeit auszuwählen ist. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die einzige zutreffende ntwortmöglichkeit ankreuzen! eispiel: Welche Gleichung ist korrekt? ufgabenstellung: Kreuzen Sie die zutreffende Gleichung an! = 1 a = 2 a = 3 a = 8 T = 5 a = 6 a Multiple-Choice-Format in der Variante 2 aus 5 : Dieses ntwortformat ist durch einen Fragenstamm und fünf ntwortmöglichkeiten gekennzeichnet, wobei zwei ntwortmöglichkeiten auszuwählen sind. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die beiden zutreffenden ntwortmöglichkeiten ankreuzen! eispiel: Welche Gleichungen sind korrekt? ufgabenstellung: Kreuzen Sie die beiden zutreffenden Gleichungen an! = 1 a = 4 T = 3 a = 8 T = 5 a 3

4 Multiple-Choice-Format in der Variante x aus 5 : Dieses ntwortformat ist durch einen Fragenstamm und fünf ntwortmöglichkeiten gekennzeichnet, wobei eine, zwei, drei, vier oder fünf ntwortmöglichkeiten auszuwählen sind. In der ufgabenstellung finden Sie stets die ufforderung Kreuzen Sie die zutreffende(n) ussage(n)/ Gleichung(en)/... an!. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die zutreffende ntwortmöglichkeit/die zutreffenden ntwortmöglichkeiten ankreuzen! eispiel: Welche der gegebenen Gleichungen ist/sind korrekt? ufgabenstellung: Kreuzen Sie die zutreffende(n) Gleichung(en) an! = 2 T = 4 T = 6 T = 4 a = 1 T Lückentext: Dieses ntwortformat ist durch einen Satz mit zwei Lücken gekennzeichnet, das heißt, im ufgabentext sind zwei Stellen ausgewiesen, die ergänzt werden müssen. Für jede Lücke werden je drei ntwortmöglichkeiten vorgegeben. earbeiten Sie ufgaben dieses Formats korrekt, indem Sie die Lücken durch nkreuzen der beiden zutreffenden ntwortmöglichkeiten füllen! eispiel: Gegeben sind 3 Gleichungen. ufgabenstellung: Ergänzen Sie die Textlücken im folgenden Satz durch nkreuzen der jeweils richtigen Satzteile so, dass eine korrekte ussage entsteht! Die Gleichung 1 wird als Zusammenzählung oder 2 bezeichnet = a = 2 T 1 1 = 1 a 2 Multiplikation Subtraktion ddition a a T So ändern Sie Ihre ntwort bei ufgaben zum nkreuzen: 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen ntwort. 2. Kreuzen Sie dann das gewünschte Kästchen an = 3 a = 4 T = 5 a = 4 a = 9 T Hier wurde zuerst die ntwort = 9 gewählt und dann auf = 4 geändert. So wählen Sie eine bereits übermalte ntwort: 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen ntwort. 2. Kreisen Sie das gewünschte übermalte Kästchen ein = 3 a = 4 T = 5 a = 4 a = 9 a Hier wurde zuerst die ntwort = 4 übermalt und dann wieder gewählt. Wenn Sie jetzt noch Fragen haben, wenden Sie sich bitte an Ihre Lehrerin/Ihren Lehrer! 4 Viel Erfolg bei der earbeitung!

5 ufgabe 1 2-m-Lauf In der Leichtathletik gibt es für Läufer/innen spezielle Trainingsmethoden. Dazu werden Trainingspläne erstellt. Es ist dabei sinnvoll, bei Trainingsläufen Teilzeiten zu stoppen, um Stärken und Schwächen der Läuferin/des Läufers zu analysieren. Zur Erstellung eines Trainingsplans für eine Läuferin wurden die Teilzeiten während eines Trainingslaufs gestoppt. Für die 2 Meter lange Laufstrecke wurden bei diesem Trainingslauf 26,4 Sekunden gemessen. Im nachstehenden Diagramm ist der zurückgelegte Weg s(t) in bhängigkeit von der Zeit t für diesen Trainingslauf mithilfe einer Polynomfunktion s vom Grad 3 modellhaft dargestellt. Für die Funktion s gilt die Gleichung s(t) = 7 45 t 3 +,7t 2 (s(t) in Metern, t in Sekunden). s(t) in m s t in s ufgabenstellung: a) erechnen Sie die Wendestelle der Funktion s! Interpretieren Sie die edeutung der Wendestelle in ezug auf die Geschwindigkeit der Läuferin! b) estimmen Sie die mittlere Geschwindigkeit der Läuferin für die 2 Meter lange Laufstrecke in Metern pro Sekunde! Der Mittelwertsatz der Differenzialrechnung besagt, dass unter bestimmten Voraussetzungen in einem Intervall [a; b] für eine Funktion f mindestens ein x (a; b) existiert, sodass f(b) f(a) f (x ) = gilt. Interpretieren Sie diese ussage im vorliegenden Kontext für die b a Funktion s im Zeitintervall [; 26,4]! 5

6 ufgabe 2 ltersbestimmung Die Radiokohlenstoffdatierung, auch 14 C-Methode genannt, ist ein Verfahren zur ltersbestimmung von kohlenstoffhaltigen Materialien. Das Verfahren beruht darauf, dass in abgestorbenen Organismen die Menge an gebundenen radioaktiven 14 C-tomen gemäß dem Zerfallsgesetz exponentiell abnimmt, während der nteil an 12 C-tomen gleich bleibt. Lebende Organismen sind von diesem Effekt nicht betroffen, da sie ständig neuen Kohlenstoff aus der Umwelt aufnehmen, sodass der 14 C-nteil nahezu konstant bleibt und somit auch das Verhältnis zwischen 14 C und 12 C. Die nzahl der noch vorhandenen 14 C-tome in einem abgestorbenen Organismus wird durch die Funktion N beschrieben. Für diese nzahl N(t) der 14 C-tome t Jahre nach dem Tod des Organismus gilt daher näherungsweise die Gleichung N(t) = N e λ t, wobei N die nzahl der 14 C-tome zum Zeitpunkt t = angibt und die Zerfallskonstante für 14 C den Wert λ = 1, pro Jahr hat. Eine frische Probe enthält pro illion (1 12 ) Kohlenstoffatomen nur ein 14 C-tom. Die Nachweisgrenze von 14 C liegt bei einem tom pro illiarde (1 15 ) Kohlenstoffatomen (also einem Tausendstel der frischen Probe). ufgabenstellung: a) erechnen Sie die Halbwertszeit von 14 C! Zeigen Sie, dass nach zehn Halbwertszeiten die Nachweisgrenze von 14 C unterschritten ist! b) Im Jahr 1991 wurde in den Ötztaler lpen von Wanderern die Gletschermumie Ötzi entdeckt. Die 14 C-Methode ergab, dass bereits 47 % ±,5 % der ursprünglich vorhandenen 14 C-tome zerfallen waren (d. h., das Messverfahren hat einen Fehler von ±,5 % der in der frischen Probe vorhandenen nzahl an 14 C-tomen). erechnen Sie ein Intervall für das lter der Gletschermumie zum Zeitpunkt ihres uffindens! 6

7 ngenommen, Ötzi wäre nicht im Jahr t 1 = 1991, sondern zu einem späteren Zeitpunkt t 2 gefunden worden. Geben Sie an, welche uswirkung auf die reite des für das lter der Gletschermumie ermittelten Intervalls dies hat (den gleichen Messfehler vorausgesetzt)! egründen Sie Ihre ussage anhand der unten abgebildeten Grafik! N(t) N t 1 t 2 t c) N(t) beschreibt die nzahl der 14 C-tome zum Zeitpunkt t. Interpretieren Sie N (t) im Hinblick auf den radioaktiven Zerfallsprozess! Nach den Gesetzmäßigkeiten des radioaktiven Zerfalls zerfällt pro Zeiteinheit ein konstanter Prozentsatz p der vorhandenen Menge an 14 C-tomen. Welche der folgenden Differenzengleichungen beschreibt diese Gesetzmäßigkeit? Kreuzen Sie die zutreffende Differenzengleichung an! N(t + 1) N(t) = p N(t + 1) N(t) = p N(t + 1) N(t) = p t N(t + 1) N(t) = p t N(t + 1) N(t) = p N(t) N(t + 1) N(t) = p N(t) 7

8 ufgabe 3 lutgruppen Die wichtigsten lutgruppensysteme beim Menschen sind das -System und das Rhesussystem. Es werden dabei die vier lutgruppen,, und unterschieden. Je nach Vorliegen eines bestimmten ntikörpers, den man erstmals bei Rhesusaffen entdeckt hat, wird bei jeder lutgruppe noch zwischen Rhesus-positiv (+) und Rhesus-negativ ( ) unterschieden. bedeutet z.. lutgruppe mit Rhesusfaktor negativ. In den nachstehenden Diagrammen sind die relativen Häufigkeiten der vier lutgruppen in Österreich und Deutschland und im weltweiten Durchschnitt ohne erücksichtigung des Rhesusfaktors dargestellt. Österreich Österreich Österreich Deutschland Deutschland Deutschland weltweit weltweit weltweit 15 % 15 % 15 % 11 % 11 % 11 % 11 % 11 % 11 % 41 % 41 % 41 % 37 % 37 % 37 % 43 % 43 % 43 % 41 % 41 % 41 % 4 % 4 % 4 % 45 % 45 % 45 % 7 % 7 % 7 % 5 % 5 % 5 % 4 % 4 % 4 % Die nachstehende Tabelle enthält die relativen Häufigkeiten der lutgruppen in Deutschland und Österreich zusätzlich aufgeschlüsselt nach den Rhesusfaktoren Deutschland 37 % 6 % 9 % 2 % 35 % 6 % 4 % 1 % Österreich 33 % 8 % 12 % 3 % 3 % 7 % 6 % 1 % ufgrund von Unverträglichkeiten kann für eine luttransfusion nicht lut einer beliebigen lutgruppe verwendet werden. Jedes Kreuz (X) in der nachstehenden Tabelle bedeutet, dass eine Transfusion vom Spender zum Empfänger möglich ist. Spender Empfänger X X X X X X X X X X X X + X X X X X X + X X X X X X + X X X Datenquelle: https://de.wikipedia.org/wiki/lutgruppe [ ] 8

9 ufgabenstellung: a) Geben Sie diejenigen lutgruppen an, die laut der abgebildeten Diagramme sowohl in Österreich als auch in Deutschland häufiger anzutreffen sind als im weltweiten Durchschnitt! Jemand argumentiert anhand der gegebenen Diagramme, dass die lutgruppe in Deutschland und Österreich zusammen eine relative Häufigkeit von 13 % hat. Entscheiden Sie, ob diese ussage richtig ist, und begründen Sie Ihre Entscheidung! b) Eine in Österreich lebende Person X hat lutgruppe. Geben Sie anhand der in der Einleitung angeführten Daten und Informationen die Wahrscheinlichkeit an, mit der diese Person X als lutspender/in für eine zufällig ausgewählte, in Österreich lebende Person Y geeignet ist! Wie viele von 1 zufällig ausgewählten Österreicherinnen/Österreichern kommen als lutspender/in für die Person X in Frage? Geben Sie für die nzahl der potenziellen lutspen - der/innen näherungsweise ein um den Erwartungswert symmetrisches Intervall mit 9 % Wahrscheinlichkeit an! c) In einer österreichischen Gemeinde, in der 1 8 Einwohner/innen lut spenden könnten, nahmen 15 Personen an einer freiwilligen lutspendeaktion teil. Es wird angenommen, dass die lutspender/innen eine Zufallsstichprobe darstellen. 72 lutspender/innen hatten lutgruppe. erechnen Sie aufgrund dieses Stichprobenergebnisses ein symmetrisches 95-%-Konfi denzintervall für den tatsächlichen (relativen) nteil p der Einwohner/innen dieser Gemeinde mit lutgruppe, die lut spenden könnten! Die reite des Konfidenzintervalls wird vom Konfidenzniveau (Sicherheitsniveau) und vom Umfang der Stichprobe bestimmt. Geben Sie an, wie jeweils einer der beiden Parameter geändert werden müsste, um eine Verringerung der reite des Konfidenzintervalls zu erreichen! Gehen Sie dabei von einem unveränderten (gleichbleibenden) Stichprobenergebnis aus. itte umblättern! 9

10 d) lutgruppenmerkmale werden von den Eltern an ihre Kinder weitervererbt. Dabei sind die Wahrscheinlichkeiten in der nachstehenden Tabelle angeführt. lutgruppe mögliche lutgruppe des Kindes der Eltern und 93,75 % 6,25 % und 18,75 % 18,75 % 56,25 % 6,25 % und 5 % 12,5 % 37,5 % und 75 % 25 % und 93,75 % 6,25 % und 12,5 % 5 % 37,5 % und 75 % 25 % und 25 % 25 % 5 % und 5 % 5 % und 1 % Quelle: https://de.wikipedia.org/wiki/-system [ ] Eine Frau mit lutgruppe und ein Mann mit lutgruppe haben zwei (gemeinsame) leibliche Kinder. erechnen Sie die Wahrscheinlichkeit, dass beide Kinder die gleiche lutgruppe haben! Ein Kind aus der Nachbarschaft dieser Familie hat lutgruppe. Gibt es eine lutgruppe bzw. lutgruppen, die der leibliche Vater dieses Kindes sicher nicht haben kann? egründen Sie Ihre ntwort anhand der gegebenen Daten! 1

11 ufgabe 4 Füllen eines Gefäßes Der Innenraum eines 2 cm hohen Gefäßes hat in jeder Höhe h eine rechteckige, horizontale Querschnittsfläche. Ihre Länge beträgt am oden 1 cm und nimmt dann mit der Höhe linear bis auf 16 cm zu, ihre reite beträgt in jeder Höhe 12 cm. 16 cm 2 cm 12 cm 1 cm ufgabenstellung: a) Geben Sie eine Formel für die Länge a(h) der rechteckigen Querschnittsfläche in der Höhe h an! In das Gefäß wird Flüssigkeit gefüllt. Geben Sie an, was der usdruck a(h)dh in diesem Zusammenhang bedeutet! b) Das leere Gefäß wird bis zum Rand mit Flüssigkeit gefüllt. Nach t Sekunden befindet sich die Wassermenge q(t) (in ml) im Gefäß. Die Füllung dauert 39 Sekunden. Für t [; 39] gilt: q (t) = 8. Interpretieren Sie q (t) = 8 im gegebenen Zusammenhang! Ermitteln Sie q(t 2 ) q(t 1 ) t 2 t 1 für beliebige t 1, t 2 mit t 1 < t 2 aus dem gegebenen Zeitintervall! c) Das Fassungsvermögen des Gefäßes (in ml) bis zur Höhe x kann durch das Integral (3,6 h + 12)dh dargestellt werden. x Ermitteln Sie, bei welcher Höhe x das Wasser im Gefäß steht, wenn man 2,5 Liter Wasser in das Gefäß gießt! Interpretieren Sie den im Integral vorkommenden Wert 3,6 im gegebenen Kontext! 11

12

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. öffentliches Dokument

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. öffentliches Dokument Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Angewandte Mathematik

Angewandte Mathematik Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil A Korrekturheft Handreichung zur Korrektur der standardisierten schriftlichen Reife-

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen.

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen. Exponentielles Wachstum und Zerfall Angenommen, man möchte ein Modell des Wachstums oder Zerfalls einer Population erarbeiten, dann ist ein Gedanke naheliegend: die Wachstumsrate ist proportional zur Anzahl

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 BRP Mathematik VHS Floridsdorf 5.10.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 Notenschlüssel:

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS)

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Inhalt Teil-1-Übungsaufgaben Inhaltsbereich Algebra und Geometrie (AG) 8 (1) Ganze

Mehr

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall 1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Angewandte Mathematik

Angewandte Mathematik Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Jänner 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Korrekturheft Aufgabe 1 Bevölkerungswachstum

Mehr

Kompetenzcheck Mathematik (AHS)

Kompetenzcheck Mathematik (AHS) Kompetenzcheck Mathematik (AHS) Jänner 2016 Teil-1-Aufgaben Hinweise zur Aufgabenbearbeitung Die Aufgaben dieses Kompetenzchecks haben einerseits freie Antwortformate; dabei schreiben Sie Ihre Antwort

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

8B - Haupttermin 2012/13

8B - Haupttermin 2012/13 8B - Haupttermin 2012/13 Beispiel 1 Zwischen den zwei gleich hoch gelegenen Orten Vormberg und Hintermberg soll eine geradlinige Eisenbahnstrecke gebaut werden, die zwischen den Geländepunkten M und N

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Korrekturheft zur Probeklausur März 2014.

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Korrekturheft zur Probeklausur März 2014. Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Korrekturheft zur Probeklausur März 2014 Teil-1-Aufgaben Aufgabe 1 Gleichung interpretieren + y = 24 = 2y Ein Punkt ist genau dann

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 16. Jänner 2015. Mathematik. Teil-2-Aufgaben. öffentliches Dokument

Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 16. Jänner 2015. Mathematik. Teil-2-Aufgaben. öffentliches Dokument Name: Klasse: Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 16. Jänner 2015 Mathematik Teil-2-Aufgaben Hinweise zur Aufgabenbearbeitung Sehr geehrte Kandidatin! Sehr geehrter Kandidat!

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Reale Zustandsdiagramme und ihre Interpretation

Reale Zustandsdiagramme und ihre Interpretation 4 Reale Zustandsdiagramme und ihre Interpretation 4. Grundlagen Was zu beachten ist, wird hier anhand einer kurzen Wiederholung dargestellt - die grundlegenden egriffe binärer ysteme: ufbau einer Legierung

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Einblick in das Thema Wachstums- und Zerfallsprozesse anhand von 4 konkreten Typen näher erläutert mit Hilfe von praktischen Beispielen

Einblick in das Thema Wachstums- und Zerfallsprozesse anhand von 4 konkreten Typen näher erläutert mit Hilfe von praktischen Beispielen Präsentation.nb 1 Einblick in das Thema Wachstums- und Zerfallsprozesse anhand von 4 konkreten Typen näher erläutert mit Hilfe von praktischen Beispielen Einstieg: Tritium (überschwerer Wasserstoff) ist

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Trendlinien in Diagrammen (Excel 2010)

Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010)... 1 Allgemeines... 2 Informationen über Prognosen und das Anzeigen von Trends in Diagrammen... 3 AUSWÄHLEN DES PASSENDEN TRENDLINIETYPS

Mehr

Angewandte Mathematik 9. Mai 2014 Teil A

Angewandte Mathematik 9. Mai 2014 Teil A Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik 9. Mai 2014 Teil A Hinweise zur Aufgabenbearbeitung Das vorliegende Aufgabenheft

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2009 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Trigonometrische Funktionen Luftvolumen

Trigonometrische Funktionen Luftvolumen Trigonometrische Funktionen Luftvolumen Die momentane Änderungsrate des Luftvolumens in der Lunge eines Menschen kann durch die Funktion f mit f(t) = 1 2 sin(2 5 πt) modelliert werden, f(t) in Litern pro

Mehr

Einführung in QtiPlot

Einführung in QtiPlot HUWagner und Julia Bek Einführung in QtiPlot 1/11 Einführung in QtiPlot Mit Bezug auf das Liebig-Lab Praktikum an der Ludwig-Maximilians-Universität München Bei Fragen und Fehlern: jubech@cup.lmu.de Inhaltsverzeichnis

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2004/2005 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

Analyse 1: Diskussion der Beschleunigungsdaten

Analyse 1: Diskussion der Beschleunigungsdaten Flugzeugstart Zielsetzung: In diesem Experiment untersuchen wir die Bewegung eines Flugzeugs, indem wir seine Beschleunigung messen. Da es schwierig sein dürfte, dieses Experiment heutzutage ohne Probleme

Mehr

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2.

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2. Prototypische Schularbeit 2 Klasse 8 Autor: Mag. Paul Schranz Begleittext Die vorliegende Schularbeit behandelt größtenteils Grundkompetenzen der Inhaltsbereiche Analysis und Wahrscheinlichkeitsrechnung

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

Systeme easy Systeme mit Bankzahlen Systeme gekürzt. Gültig ab 10. Januar 2013

Systeme easy Systeme mit Bankzahlen Systeme gekürzt. Gültig ab 10. Januar 2013 Systeme easy Systeme mit Systeme gekürzt Gültig ab 10. Januar 2013 Swisslos Interkantonale Landeslotterie, Lange Gasse 20, Postfach, CH-4002 Basel T 0848 877 855, F 0848 877 856, info@swisslos.ch, www.swisslos.ch

Mehr

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall 1. ufgabenstellung Bestimmen Sie die Halbwertszeit und die Zerfallskonstante von Radon 220. 2. Theoretische Grundlagen Stichworte zur Vorbereitung:

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Diplom BWL/VWL / Diplom BWL/VWL / B-BAE / B-SW

Diplom BWL/VWL / Diplom BWL/VWL / B-BAE / B-SW Diplom BWL/VWL / Diplom BWL/VWL / B-BE / B-SW Prüfungsfach/Modul: llgemeine Volkswirtschaftslehre BWL-Theorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (00101, 0109, 1101) Prüfer: Prof.

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Formen Sie (3 2x)²

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten

Grundlagen. Wozu Wahrscheinlichkeitsrechnung? Definition und Begriff der Wahrscheinlichkeit. Berechnung von Laplace-Wahrscheinlichkeiten Teil 2: Wahrscheinlichkeitsrechnung 326 Grundlagen Wozu Wahrscheinlichkeitsrechnung? Definition und egriff der Wahrscheinlichkeit erechnung von Laplace-Wahrscheinlichkeiten Rechnen mit einfachem Mengenkalkül

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

M1 1a Ko Kommentar Achsenssymmetrie bis Buch I S. 9 / II S. 9 / III S. 9

M1 1a Ko Kommentar Achsenssymmetrie bis Buch I S. 9 / II S. 9 / III S. 9 M1 1a Ko Kommentar chsenssymmetrie bis uch I S. 9 / II S. 9 / III S. 9 itte beachten, dass der rucker so eingestellt ist, dass die Seiten in richtiger rösse (Titelbalken = 18. cm) ausgedruckt werden. (In

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3 Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2015 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit: Nachschlagewerk zur Rechtschreibung der deutschen Sprache

Mehr

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen 2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-1-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Taschengeld Der Term stellt die Höhe des durchschnittlichen wöchentlichen

Mehr

Stochastische Modelle

Stochastische Modelle Klausur (Teilprüfung) zur Vorlesung Stochastische Modelle (WS04/05 Februar 2005, Dauer 90 Minuten) 1. Es sollen für eine Zufallsgröße X mit der Dichte Zufallszahlen generiert werden. (a) Zeigen Sie, dass

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

EMIL@A-stat. Vorkurs Mathematik. Arbeitsbuch zum Studienbeginn in Bachelor-Studiengängen. Bearbeitet von Erhard Cramer, Johanna Neslehova

EMIL@A-stat. Vorkurs Mathematik. Arbeitsbuch zum Studienbeginn in Bachelor-Studiengängen. Bearbeitet von Erhard Cramer, Johanna Neslehova EMIL@-stat Vorkurs Mathematik rbeitsbuch zum Studienbeginn in achelor-studiengängen earbeitet von Erhard Cramer, Johanna Neslehova 4. ufl. 2009. Taschenbuch. XII, 460 S. Paperback ISN 978 3 642 01832 9

Mehr

Aufbau von Hichert-Graphik Schritt für Schritt

Aufbau von Hichert-Graphik Schritt für Schritt Aufbau von Hichert-Graphik Schritt für Schritt Ausgangsdaten anlegen: o Sollte dann so aussehen: Umsatz Plan Ist Abweich. 60 40-20 o Details dazu: 4 Spaltenüberschriften eintragen: Plan, Ist, leer, Abweichung

Mehr

Excel 2013. Fortgeschrittene Techniken. Peter Wies. 1. Ausgabe, März 2013 EX2013F

Excel 2013. Fortgeschrittene Techniken. Peter Wies. 1. Ausgabe, März 2013 EX2013F Excel 2013 Peter Wies 1. Ausgabe, März 2013 Fortgeschrittene Techniken EX2013F 15 Excel 2013 - Fortgeschrittene Techniken 15 Spezielle Diagrammbearbeitung In diesem Kapitel erfahren Sie wie Sie die Wert-

Mehr

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

TOTO-System. Sonderteilnahmebedingungen zum Systemspiel

TOTO-System. Sonderteilnahmebedingungen zum Systemspiel TOTO-System Spiel-Erklärung Sonderteilnahmebedingungen zum Systemspiel Die Teilnahme am Spielangebot von WestLotto ist Personen unter 18 Jahren gesetzlich verboten. Glücksspiel kann süchtig machen! Hilfe

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Kapitel 12 Lernzielkontrolle PowerPoint 2010 Beantworten Sie die folgenden 12Fragen

Kapitel 12 Lernzielkontrolle PowerPoint 2010 Beantworten Sie die folgenden 12Fragen asic omputer Skills Microsoft PowerPoint 2010 Kapitel 12 Lernzielkontrolle PowerPoint 2010 eantworten Sie die folgenden 12Fragen Im Ordner 12_Kapitel_Lernzielkontrolle finden Sie alle notwendigen Dateien.

Mehr

Funktionaler Zusammenhang. Lehrplan Realschule

Funktionaler Zusammenhang. Lehrplan Realschule Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge

Mehr

Kaufmännische Berufsmatura 2013

Kaufmännische Berufsmatura 2013 Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Pflichtaufgaben Pflichtaufgabe 1 1 a) Berechnen Sie das Quadrat der Summe aus 8 und 4. b)

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006 , Jahrgang 8, Kurs I 9. März 006 Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen enthalten: I II III Allgemeine Hinweise zur Arbeit Aufgabenblätter in den Versionen A und B Lösungsskizzen, Punkteverteilung

Mehr