Sender- / Empfängerarchitekturen. Roland Küng, 2010

Größe: px
Ab Seite anzeigen:

Download "Sender- / Empfängerarchitekturen. Roland Küng, 2010"

Transkript

1 Sender- / Epfängerarchitekturen Roland Küng,

2 Sender (TX) und Epfänger (RX) RF-Band wird genutzt u ehr Bandbreite zu haben und u sich an den Übertragungskanal anzupassen Moderne Sender Epfänger bestehen aus eine DSP Teil für Base-Band und IF-Band sowie eine breitbandigen RF-Teil DA-Converter d[n] IQ - Modulator Up - Converter Base Band IF Band RF Band Power Aplifier TX Front End Filter RX / TX Duplexer Kanal d [n] IQ - Deodulator Down - Converter Low Noise Aplifier RX Front End Filter AD-Converter Betrachtung a Beispiel Funktechnik: grösste Koplexität 2

3 Wozu? Modulation Kanal ist nur in bestiten Frequenzbereich nutzbar Signal uss eine Träger eingeprägt werden Folgende Möglichkeiten bieten sich an: ( π θ ) v = V sin 2 f t + c c aplitude odulation frequency odulation phase odulation angle odulation 3

4 Modulation Aplitude Einfachste Sendearchitektur On/Off Keying: OOK oder Kabel oder Glasfaser On/Off Key Miniale Koponenten: einen frequenzstabilen Oszillator (Quarzoszillator) einen Modulator (Schalter) einen Leistungsverstärker eine Antenne 4

5 AM-Sender für allg. Modulationssignale Lineare Signale steuern Arbeitspunkt des HF-Verstärkers und dait die Verstärkung: Aplitudenodulation AM Beispiele: - Mittelwellen Radio - Kurzwellenfunk - Flugfunk 5

6 Modulation Phase / Frequenz Frequenzgang Z(f) Verstien des Schwingkreises in eine Filter führt zu Phasenverschiebung bei der Sendefrequenz PM Verstien des Schwingkreis in eine Oszillator führt zur Veränderung der Schwingbedingung FM 6

7 Modulation Phase / Frequenz s(t) Integrator Phasen odulator FM s(t) Differentiator Frequenz odulator PM Alternative FM- bzw. PM- Erzeugung it Hilfe von Vorverarbeitung 7

8 Einfacher Phasen-Modulator Schwingkreis it Auskopplung f 0 konstant Variables C it Kapazitätsdiode (Varactor, Varicap) Verstien des Schwingkreises C 1 L führt zu Phasenverschiebung bei der Sendefrequenz 8

9 Einfacher Frequenz-Modulator AC DC Verstien des Schwingkreises C 7, C 8, L, V 1 führt zu Änderung der Sendefrequenz (Colpitts-Oszillator in Kollektorbeschaltung u Q 1 ) V 1 : Variables C it Kapazitätsdiode V1 (Varactor, Varicap) 9

10 PM / FM - Sender Analog oder DSP RF Phase Modulator FM Modulator 2 cos( ω0 t + ϕ(t)) cos(2ω0t + 2ϕ(t)) + DC Analog / DSP PM: Schwingkreis verstien it Varicap / Direct Digital Synthesis FM: Oszillator verstien it Varicap / Direct Digital Synthesis Vorteil von PM/FM i Sender: Endstufe uss nicht linear sein (Klasse C) bessere Effizienz als AM 10

11 FM / PM Frequenzvervielfachung z.b. Modulator bei niedriger Zwischenfrequenz realisieren Signal durch Nichtlinearitäten auf Sendefrequenz ultiplizieren Effiziente Nichtlinearitäten sind Klasse C Verstärker und Mischer: Schaltbetrieb Filtern der Haronischen it abgestiten Parallelschwingkreisen oder Quarz-, SAW-, LC Filter Beispiele: FM Sender UKW, TV, CB-Funk 11

12 Mischen: Multiplikation it Trägerschwingung s(t) = A cos(2πf t) y(t) = s(t) cos(2πf 0 t) cos(2πf 0 t) Ausgangssignal: y(t) = s(t) cos(2πf 0 t) Spektru: Y(f) = (1/2) S(f+f 0 ) +(1/2) S(f-f 0 ) Double Sideband (DSB) S(f) f -f 0 B f 0 S(f+f 0 )/2 Y(f) S(f-f 0 )/2 USB LSB LSB USB f -f 0 f 0 Note: Enthält A DC-Anteil entsteht AM (DSB plus Träger) 12

13 SSB Sender Bandbreite sparen: Single Sideband (SSB) Modulation IF MIC SSB Baseband IF f USB f Filterethode: Unbedingt Zwischenfrequenz (ZF, IF) verwenden Benötigt steiles Seitenbandfilter (Quarzfilter) auf ZF Lower oder Upper Sideband (LSB/USB) Notes: - ohne Seitenbandfilter erhält an DSB - it Unbalanced Modulator (Mischer it DC-Offset) entsteht AM 13

14 IF to RF Conversion Dies ist eigentlich nichts anderes als SSB it de IF-Signal als Input (kleine relative Bandbreite) Σ und Frequenzen Ansatz 1: Filterethode MixerIn IF RF MixerOut f Seitenbandfilter Σ LO f Bsp. ZF = 10.7 MHz, LO = 87.3 MHz RF = 98 MHz, B = 100 khz Filter uss erst bei 87.3 MHz oder 76.6 MHz stark däpfen 14

15 IF to RF Conversion Dies ist eigentlich nichts anderes als SSB it de IF-Signal als Input (kleine relative Bandbreite) Ansatz 2: 90 0 Phasenschieber (Allpass) 10.7 MHz IF 87.3 MHz RF MHz 0 0 Bsp. FM Radio: ZF = 10.7 MHz, LO = 87.3 MHz RF = 98 MHz, B = 100 khz, 90 0 Phasenschieber bei 10.7 MHz achbar, uss nur 1% Bandbreite abdecken 15

16 Die oderne SSB-Erzeugung Nachrichtensignal (Inphase): i(t) Aplitude = V cos(2πf t Phase + φ ) Frequenz Sendesignal (z.b. LSB): s(t) = V cos(2π(f c f )t φ ) Wie kann ich das erzeugen? s(t) = V cos(2π(f c f )t φ ) = V cos(2πf t + φ ) cos(2πf c t) + V sin(2πf t + φ ) sin(2πf c t) q(t) = V sin(2πf t + φ ) Allg. Erzeugung des Quadratursignals q(t): Hilberttransforierte von i(t) it DSP berechnen, d.h. Filterung von i(t) it H H Hilbert Transforation siehe Wikipedia 16

17 Die oderne Senderlösung heisst I/Q-Modulation Anwendungen: Für SSB, ISB sofern I und Q ein Hilbert-Paar sind (90 0 phasenverschoben). Hilbert Transforation siehe Wikipedia Für koplexe Modulationen: Signale I und Q i selben Band übertragen und i Epfänger wieder zerlegen, inde an die Orthogonalität von Sinus und Cosinusträger ausnutzt. sin( ωt) cos( ωt) dt = T 0 17

18 Die koplexe Modulation Man kann 2 beliebige Signale i selben Band übertragen und i Epfänger wieder zerlegen! Basisband RF s(t) s(t) = V(t) cos(2πf c t φ(t)) = i(t) cos(2πf c t) + q(t) sin(2πf c t) Führt zu den heute verbreiteten digitalen koplexen Modulationsverfahren: i(t) und q(t) nehen je für eine Anzahl Bit den entsprechenden analogen Wert an I und Q kann an als koplexes Zeitsignal i(t)+jq(t) auffassen Diese Architektur nennt an auch Direct Up-Conversion 18

19 Beispiel koplexe Modulation: QAM I-Signal: I(t) it 4 öglichen DC-Werten: ±1 und ±3 Q-Signal: Q(t) it 4 öglichen DC-Werten: ±1 und ±3 16-QAM: Quadratur Aplitude Modulation: 4 Bit ergeben 1 Sybol s(t) 2 Q t Ausgangsignal a cos(x) + b sin(x) = a 2 + b 2 I cos(x atan(b /a)) z.b. DVB-T, ADSL 19

20 Mathe für koplexe Zeitsignale Grundlage: Fouriertransforation F(ω) Spektren F(ω) sind koplex-wertig f(t) darf neu auch koplex sein Eulersche Forel bringen cos und sin in Beziehung 2 cos(2πf t) = e j2πf t + e -j2πf t 2 sin(2πf t) = -j e j2πf t + j e -j2πf t Operationen a Zeitsignal Auswirkung i Spektru Additionen Additonen i Spektru f(t) = i(t) + j q(t) I(ω) +j Q(ω) = F(ω) Multiplikation it j / j Drehung i Spektru u 90 0 / Multiplikation it e j2πf t / e -j2πf t Schieben i Spektru rechts / links Note: I / Q-Achsen des Zeitsignal sind nicht direkt vergleichbar it RE / IM -Achsen des Spektru 20

21 Die koplexe Modulation Alternative: die koplexe Betrachtung Basisband r(t) RF s(t) r(t) = i(t) + j q(t) r(t) wird auch als Quadratursignal bezeichnet s(t) = [ j ] ωc e t RE r(t) Das koplexe Spektru R(ω) ist die Sue des Spektrus von I(ω) und de it j ultiplizierten Spektru von Q(ω) des koplexen Basisbandsignals r(t). U S(ω) zu erhalten wird R(ω) wird nach rechts geschoben u ω c und syetrisch zur S-Achse ergänzt dait ein reelles Signal s(t) resultiert, 21

22 Quadratursignale unkopliziert Q (Quadrature) e j2πf ot I (Inphase) Koplexe Schwingung it f 0 0: Auffassung als koplexes Zeitsignal i(t) + j q(t) Darstellung durch Projektionen in I/Q- Ebene Realisation durch separate i(t)- und q(t)- Signalzweige 22

23 Zusaenhang Projektionen I,Q und Spektren 23

24 Quadratursignale unkopliziert Drehung i Spektru Verschiebung i Spektru = Operation a Zeitsignal * = Multiplikation Nützliche Äquivalenzen: cos(2πf t) + j sin(2πf t) = e j2πf t cos(2πf t) - j sin(2πf t) = e -j2πf t 2 cos(2πf t) = e j2πf t + e -j2πf t 2 sin(2πf t) = -j e j2πf t + j e -j2πf t 24

25 Spektren der 6 Grundsignale 2 cos(2πf t) = e j2πf t + e -j2πf t 2 sin(2πf t) = -j ej2πf t + j e -j2πf t Note: Faktor 2 aus der Trigonoetrie nicht gezeichnet. Nur relative Aplituden interessieren. 25

26 Beispiel: Mischen it Cosinus und Sinus Reelles gerades Signal Note: Faktor 2 aus der Trigonoetrie nicht gezeichnet. Nur relative Aplituden interessieren 26

27 Beispiel: IQ-Modulator für SSB Nutzsignal Mischen it cos(2πf t) ~ e j2πf t + e -j2πf t Hilbertsignal Mischen it sin(2πf t) ~ -j e j2πf t + j e -j2πf t Σ ergibt unteres Seitenband LSB ergibt oberes Seitenband USB 27

28 Beispiel 1: IQ-Modulator für QAM i(t) und q(t) Notes: 2 cos(2πf t) = e j2πf t + e -j2πf t 2 sin(2πf t) = -je j2πf t + je -j2πf t Orthogonalität bleibt auch für andere spektrale Lagen der reellen Signale erhalten 28

3. Frequenzmultiplextechnik

3. Frequenzmultiplextechnik Pro. Dr.-Ing. W.-P. Buchwald Modulationsverahren 3. Frequenzultiplextechnik Bei ausreichender Bandbreite kann ein Übertragungskanal ehrach genutzt werden, inde die zu übertragenden Signale so oduliert

Mehr

Frequenzkonverter. Roland Küng, 2014

Frequenzkonverter. Roland Küng, 2014 Frequenzkonverter 1 Roland Küng, 2014 Motivation LO Filterproblematik mit hohen Güten Q Hohe Abtastraten Rauschen (Lock-in) Funkmedium 2nd LO Dual-Band GSM Handy 2 Motivation Messsystem Tankfüllung Umgang

Mehr

Praktikum 3: I/Q Architekturen

Praktikum 3: I/Q Architekturen ZHAW, NTM1, HS2012, 1(10) Praktikum 3: I/Q Architekturen 1. Ziele Moderne Modulationsformen verlangen in den Architekturen von Kommunikationsgeräten nach einer Inphase- & Quadrature Modulation und Demodulation

Mehr

Sender / Empfänger. P&S Amateurfunkkurs HS Marco Zahner Institute of Electromagnetic Fields (IEF) ETH Zürich

Sender / Empfänger. P&S Amateurfunkkurs HS Marco Zahner Institute of Electromagnetic Fields (IEF) ETH Zürich P&S Amateurfunkkurs HS 2016 Sender / Empfänger Marco Zahner (mzahner@ethz.ch) Marco Zahner mzahner@ethz.ch 08.12.2016 1 HB9: Selbstbau Erlaubt! Marco Zahner mzahner@ethz.ch 08.12.2016 2 Prinzip NF HF NF

Mehr

Grundlagen Videotechnik, Modulation

Grundlagen Videotechnik, Modulation Grundlagen Videotechnik, Modulation AM Spektrum: Spektrum des Nutzsignals viele Sinus-Komponenten Ampl.moduliertes Signal Frequenz der Trägerwelle Beachte: Bandbreite des AM Signals ist doppelt so groß

Mehr

Analoge Modulationsverfahren. Roland Küng, 2013

Analoge Modulationsverfahren. Roland Küng, 2013 Analoge Modulationsverfahren Roland Küng, 203 Amplitudenmodulation AM m s(t) y(t) A [+m s(t)] cos(2πf 0 t) Einfache Implementation Geringe Bandbreite Is(t)I A cos(2πf 0 t) Beispiel: m0.5, s(t) cos(2πf

Mehr

Sender- / Empfänger Architekturen. Roland Küng, 2012

Sender- / Empfänger Architekturen. Roland Küng, 2012 Sender- / Empfänger Architekturen Roland Küng, 2012 1 Einfachste Empfangsarchitektur Der Empfänger hat folgende fünf Aufgaben zu erfüllen: Er enthält einen Wandler (z.b. die Antenne), welche die verfügbare

Mehr

Es gibt genau 10 Arten von Menschen: diejenigen, die Binärzahlen verstehen und diejenigen, die sie nicht verstehen.

Es gibt genau 10 Arten von Menschen: diejenigen, die Binärzahlen verstehen und diejenigen, die sie nicht verstehen. Digitale Signalverarbeitung & HackRF One Thomas Baier DG8SAQ, Ferdinand Sigloch DB2SG Es gibt genau 10 Arten von Menschen: diejenigen, die Binärzahlen verstehen und diejenigen, die sie nicht verstehen.

Mehr

Digitale Bandpass Übertragung. Roland Küng, 2009

Digitale Bandpass Übertragung. Roland Küng, 2009 Digitale Bandpass Übertragung Roland Küng, 2009 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Basisband RF Was ändert sich? Sender

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

Übertragung, Modulation. Vorlesung: Grundlagen der Videotechnik

Übertragung, Modulation. Vorlesung: Grundlagen der Videotechnik Vorlesung: Grundlagen der Videotechnik Übertragung, Modulation 12/19/16 Seite 1 Übertragung, Modulation Wie wird das Bild oder Video vom Sender zum Empfänger übertragen? Sender: Videoinformation nötig

Mehr

Vorlesung Grundlagen der Videotechnik. Vorlesung 8 QAM, ESB, FM

Vorlesung Grundlagen der Videotechnik. Vorlesung 8 QAM, ESB, FM Vorlesung Grundlagen der Videotechnik Vorlesung 8 QAM, ESB, FM 1 8.1 Quadratur Amplituden Modulation Lösung des Problems mit dem Träger der AM: AM mit unterdrücktem Träger: s(t ) sin(ω T t) Empfänger muss

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

Digitale Bandpass Übertragung

Digitale Bandpass Übertragung Digitale Bandpass Übertragung Roland Küng, 2014 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Repetition ASV: Mischen TX Ausgangssignal:

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 13: Frequenzaufbereitung. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 13: Frequenzaufbereitung. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 13: Frequenzaufbereitung Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 17.06.2016 Balance- Mehrfach- This work is licensed under the Creative Commons Attribution-ShareAlike

Mehr

Vorlesung Grundlagen der Videotechnik. Vorlesung 7. Modulationsarten

Vorlesung Grundlagen der Videotechnik. Vorlesung 7. Modulationsarten Vorlesung Grundlagen der Videotechnik Vorlesung 7 Modulationsarten 1 7. Modulationsarten Wie bekommen wir unser Signal über die Senderwelle übertragen? wir können unser Signal (Ton, Video) nicht direkt

Mehr

Amplituden-, Doppelseitenband- und Einseitenbandmodulation

Amplituden-, Doppelseitenband- und Einseitenbandmodulation Amplituden-, Doppelseitenband- und Einseitenbandmodulation Dipl.-Phys. Jochen Bauer 31.05.2013 Einführung und Motivation Die Behandlung von Modulationsverfahren erfolgt in den Ingenieurwissenschaften üblicherweise

Mehr

Praktikum Signalverarbeitung A. Sanchez-Lorente, O. Borodina, W. Lauth, J. Pochodzalla WS 2011/2012 Versuch Modulation

Praktikum Signalverarbeitung A. Sanchez-Lorente, O. Borodina, W. Lauth, J. Pochodzalla WS 2011/2012 Versuch Modulation Praktiku Signalverarbeitung A. Sanchez-Lorente, O. Borodina, W. Lauth, J. Pochodzalla WS / Versuch 6 7.. Modulation I. Ziel des Versuches. Grundlagen der Frequenz und Aplitudenodulation. II. Vorkenntnisse.

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

Präsentation am Schwarzwaldtreffen der DL-QRP-AG in Schluchsee

Präsentation am Schwarzwaldtreffen der DL-QRP-AG in Schluchsee Präsentation am Schwarzwaldtreffen der DL-QRP-AG in Schluchsee Dipl.-Ing. Sebastian W. Zettl, DL3GAZ 29. September 2018 Rückblende: KW-Handfunkprojekt KW-Handfunkgerät 20-30 MHz als OV-Bastelprojekt Zodiac

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

AfuTUB-Kurs Überblick

AfuTUB-Kurs Überblick Technik Klasse A 13: Frequenzaufbereitung Balance- Amateurfunkgruppe der TU Berlin Mehrfach- https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

AfuTUB-Kurs. Technik Klasse A 12: Modulation und Demodulation. Amateurfunkgruppe der TU Berlin. https://dk0tu.de. AfuTUB-Kurs.

AfuTUB-Kurs. Technik Klasse A 12: Modulation und Demodulation. Amateurfunkgruppe der TU Berlin. https://dk0tu.de. AfuTUB-Kurs. Technik Klasse A 12: und sgrad Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Überblick über Quadratur-Generation. Roland Pfeiffer 15. Vorlesung

Überblick über Quadratur-Generation. Roland Pfeiffer 15. Vorlesung Überblick über uadratur-generation Oszillator A Oszillator B Roland Pfeiffer 5. Vorlesung Design einer uadratur-generation Ihr Chef stellt Ihnen die Aufgabe, ein Signal in zwei um 90 phasenversetzte Signale

Mehr

die vom Oszillator erzeugt wird; es erfolgt keine Mischung oder Vervielfachung.

die vom Oszillator erzeugt wird; es erfolgt keine Mischung oder Vervielfachung. Sendertechnik Zu einem Sender gehören grundsätzlich : HF-Trägerfrequenzerzeugung (Oszillator) Modulation des HF-Trägers (Modulator) Verstärkung des modulierten HF-Signals (Treiber, Endstufe "PA") TX 1

Mehr

Einführung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen. Roland Pfeiffer 1. Vorlesung

Einführung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen. Roland Pfeiffer 1. Vorlesung Einführung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen Roland Pfeiffer 1. Vorlesung Verstanden? Dieses Mobiltelefon nützt GFSK Modulation im DECT- TDMA/TDD Band mit homodyne I/Q

Mehr

Fachprüfung. Signal- und Systemtheorie

Fachprüfung. Signal- und Systemtheorie Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Entwicklung des Hochfrequenzteils eines universellen Mobilfunk-Messsystems. Robert Langwieser, Gerhard Humer und Prof. Dr. Arpad L.

Entwicklung des Hochfrequenzteils eines universellen Mobilfunk-Messsystems. Robert Langwieser, Gerhard Humer und Prof. Dr. Arpad L. Entwicklung des Hochfrequenzteils eines universellen Mobilfunk-Messsystems Messsystems Robert Langwieser, Gerhard Humer und Prof. Dr. Arpad L. Scholtz EEEfCOM 2006, ULM Übersicht Anwendungs Szenarien Konzept

Mehr

Praktikum Signalverarbeitung W.Lauth, M. Biroth, P. Gülker, P. Klag WS 2016/2017 Versuch Fourier-Transformation und Modulation

Praktikum Signalverarbeitung W.Lauth, M. Biroth, P. Gülker, P. Klag WS 2016/2017 Versuch Fourier-Transformation und Modulation Praktiku Signalverarbeitung W.Lauth, M. Biroth, P. Gülker, P. Klag WS 16/17 Versuch 6 19.1.17 Fourier-Transforation und Modulation I. Ziel des Versuches. Diskrete Fourier-Transforation, Spektralanalyse

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

SDR# Software Defined Radio

SDR# Software Defined Radio SDR# Software Defined Radio Beispiel von DVB T USB Stick und SDR Receiver Frequenz 24 1700MHz Frequenz 0,1 2000MHz, mit Down Converter für KW Treiber und Software http://sdrsharp.com/#download 1 Nach dem

Mehr

Universität Hannover Hochfrequenztechnik und Funksysteme

Universität Hannover Hochfrequenztechnik und Funksysteme Einführung und Grundlagen...7 Übertragungssystem...7 Frequenzbänder und deren Nutzung...7 Wiederholungen...8 Signalarten...8 Physikalische Größen...8 Deterministisch vs. stochastisch...9 Kontinuierlich

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

SDR-Technologien. Prinzip der digitalen Empfänger. Die Funktionsblöcke des ADT-200A. Eigenschaften des ADT-200A. Das Bedienungskonzept des ADT-200A

SDR-Technologien. Prinzip der digitalen Empfänger. Die Funktionsblöcke des ADT-200A. Eigenschaften des ADT-200A. Das Bedienungskonzept des ADT-200A SDR-Technologien Prinzip der digitalen Empfänger Direct_Conversion Rx AD-Wandler Digital Down Converters Die Funktionsblöcke des ADT-200A DSP-Modul PA-Modul Preselector-Modul Eigenschaften des ADT-200A

Mehr

Verzerrungen. Purple Haze. Roland Küng, 2012

Verzerrungen. Purple Haze. Roland Küng, 2012 Verzerrungen Purple Haze Roland Küng, 2012 1 Motivation Was passiert wenn. Netzwerke nur Phase im Spektrum verzerren? Quelle: http://falstad.com/fourier/ Beispiele: Kabel Laufzeiten, Allpässe 2 Motivation

Mehr

Der ideale Op-Amp 2. Roland Küng, 2009

Der ideale Op-Amp 2. Roland Küng, 2009 Der ideale Op-Amp 2 Roland Küng, 2009 Reiew Reiew o f(, 2 ) L: o /2 + 2 Strom-Spannungswandler Photodiode liefert Strom proportional zur Lichtmenge Einfachstes Ersatzbild: Stromquelle V out -R 2 i in Anwendung:

Mehr

Abschlussprüfung Nachrichtentechnik 03. August 2015

Abschlussprüfung Nachrichtentechnik 03. August 2015 Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander

Mehr

Mischer, Tiefpass, Hochpass,..., Superhet

Mischer, Tiefpass, Hochpass,..., Superhet Mischer, Tiefpass, Hochpass,..., Superhet David Vajda 0. März 207 Tiefpass, Hochpass,...,Mischer Begriff: Tiefpass Hochpass Bandpass Bandsperre Filter Mischer Symbole: Tiefpass Hochpass Bandpasse Bandsperre

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2010 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen EMPFANG / ÜBERTRAGUNG Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle

Mehr

Bildsignaltechnik. Name:... Matrikelnummer:...

Bildsignaltechnik. Name:... Matrikelnummer:... Fachbereich lektrotechnik Fachgebiet Kounikationstechnik Schriftliche Prüfung Bildsignaltechnik.9. Nae:... Matrikelnuer:... zugelassene Hilfsittel : Vorlesungshilfsblätter ohne zusätzliche Blätter, keine

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

Q-Schlüssel. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de)

Q-Schlüssel. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Q-Schlüssel Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Q-Schlüssel Abkürzungen beginnend mit Q, 3 Buchstaben Eingeführt zur Vereinfachung bei CW In der Praxis auch

Mehr

Radio Frequency Systems

Radio Frequency Systems Radio Frequency Systems by Manfred Thumm and Werner Wiesbeck Forschungszentrum Karlsruhe in der Helmholtz - Gemeinschaft Universität Karlsruhe (TH) Research University founded 1825 Receiver Forschungszentrum

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 5. Vorlesung 10.04.2006 schindel@informatik.uni-freiburg.de 1 Basisband und Breitband Basisband (baseband) Das digitale Signal wird direkt in Strom-

Mehr

Überblick über Senderschaltungen

Überblick über Senderschaltungen Überblick über Senderschaltungen I sin t 1 cos t 1 BPF PA 1 + 2 Q cos t 2 1 2-1 1 + 2 2 Roland Pfeiffer 7. Vorlesung Ausahl einer Senderschaltung Ihr Chef stellt Ihnen die Aufgabe, eine optimale Senderschaltung

Mehr

Der Transceiver "Teltow 215B"

Der Transceiver Teltow 215B Der Transceiver "Teltow 215B" Funktionsweise Der "Teltow 215 B" ist eine Weiterentwicklung des Transceivers "Teltow 210". Eine Zwischenstufe stellt der "Teltow 215 A" dar. Im Grundprinzip entspricht der

Mehr

Modul SiSy: Einleitung

Modul SiSy: Einleitung Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,

Mehr

Fachprüfung. Mobile Communication

Fachprüfung. Mobile Communication Fachprüfung Mobile Communication 5. September 005 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: Stunden Hilfsmittel: Nichtprogrammierbarer Taschenrechner Name:... Matr.-Nr.:... Unterschrift:... Punkte

Mehr

Der Einsatz von SDR-Technologien in verkehrstelematischen Forschungs- und Produktplattformen neuer Generationen

Der Einsatz von SDR-Technologien in verkehrstelematischen Forschungs- und Produktplattformen neuer Generationen 11. ViMOS-Tagung am 26.11.2015 in Dresden Fakultät Verkehrswissenschaften Friedrich List Institut für Verkehrstelematik Der Einsatz von SDR-Technologien in verkehrstelematischen Forschungs- und Produktplattformen

Mehr

Zusammenfassung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen. Roland Pfeiffer 18. Vorlesung

Zusammenfassung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen. Roland Pfeiffer 18. Vorlesung Zusammenfassung zur Vorlesung CMOS- Analogschaltungen für Transceiver- Anwendungen Roland Pfeiffer 18. Vorlesung TX/RX Ziel der Chip-Hersteller: Single-chip-Handy : Integration aller Funktionen auf einem

Mehr

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11 Modulaion Frequenzlagen modulaion Ampliudenmodulaion requenzechnik Digiale Modulaion OFDM CDMA Marin Werner WS 2010/11 Marin Werner, 11.11.2010 1 Frequenzlagen in der Nachrichenechnik sym. NF Kabel sym.

Mehr

Dual-Mode-Kommunikationssysteme für Anwendungen im Auto?

Dual-Mode-Kommunikationssysteme für Anwendungen im Auto? Dual-Mode-Kommunikationssysteme für Anwendungen im Auto? Von Prof. H. Heuermann 13.05.2010 Fachhochschule Aachen Prof. Heuermann Eupener Str. 70, 52066 Aachen Telefon +49 241 6009 52108, Telefax +49 241

Mehr

Signalverteilung: Rechteck mit Mittelung über 2

Signalverteilung: Rechteck mit Mittelung über 2 Signalverteilung: Rechteck mit Mittelung über 2 Original-Signal Mittelwert aus 2.6.4.2-2 -1.5-1 -.5.5 1 1.5 2 Signalwert 1.8.6.4.2 Parameter: 1. Werte über 1sec Rauschen, rechteckverteilt 1 Intervalle

Mehr

Baugruppen für Amateurfunk

Baugruppen für Amateurfunk Baugruppen für Amateurfunk www.dg0ve.de Roberto Zech Liebenauer Str. 28 01920 Brauna Tel. 03578/314731 Mail: dg0ve@freenet.de Vorverstärker / preamp 100MHz 25 Frequenzbereich MHz Verstärkung db Rauschzahl

Mehr

Amateurfunk- Empfänger. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de)

Amateurfunk- Empfänger. Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Amateurfunk- Empfänger Matti Reiffenrath, DC1DMR viele Grafiken von Eckart Moltrecht, DJ4UF (www.dj4uf.de) Themen für heute Prinzip eines Empfängers Wichtige Funktionsblöcke Filter Verstärker Mischer Oszillator

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Formelsammlung Nachrichtentechnik

Formelsammlung Nachrichtentechnik Pegel und Dämpfung Absolutpegel Ausgangsspannung komplex H komplexe Übertragungsfunktion Eingangsspannung komplex H mit D Dämpfungsfunktion D dbm : 0 db mw dbv : 0 db V dbµv : 0 db µv dbw : 0 db W etc.

Mehr

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004

Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan. Abschlussklausur am 09. Februar 2004 Fachhochschule Aalen Studiengang Wirtschaftsingenieurwesen Physik II Dr. Haan Abschlussklausur a 9. Februar 4 Folgendes bitte in Druckbuchstaben schreiben: Nae: Vornae: Geburtstag: Matrikelnuer: Erstversuch

Mehr

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.

Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden. Nachrichtentechnisches Praktikum Versuch 2: Analoge Winkelmodulation Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Harmonische Schwingungen und komplexe Zeiger

Harmonische Schwingungen und komplexe Zeiger Harmonische Schwingungen und komplexe Zeiger Eine harmonische Schwingung wird durch eine allgemeine sinusartige Funktion beschrieben (Grafik siehe unten: y = y (t = sin (ω t + ϕ Dabei ist die mplitude,

Mehr

Bestandteile eines RFID-Systems

Bestandteile eines RFID-Systems Bestandteile eines RFID-Systems WCOM1, RFID, 1 typisch wenige cm bis wenige Meter Applikation RFID- Reader Koppelelement (Spule, Antenne) lesen Daten Energie,Takt schreiben, speichern Transponder meist

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47

Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47 Encoding und Modulation Digitale it Dt Daten auf Analogen Signalen Grundlagen der Rechnernetze Physikalische Schicht 47 Amplitude Shift Keying (ASK) Formal: Signal s(t) für Carrier Frequenz f c : Bildquelle:

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

Kapitel 12: Modulation

Kapitel 12: Modulation 12: Modulation 12.1 Grundlegende Begriffe 12.2 Aplitudenodulation eines Sinusträgers 12.3 Winkelodulation 12.4 Digitale Modulationsverfahren 12.1 Grundlegende Begriffe Kapitel 12: Modulation Motivation

Mehr

MHz sind verglichen mit der Wellenlänge von m die Welche der aufgelisteten Frequenzen liegt im 15m Amateurfunkband?

MHz sind verglichen mit der Wellenlänge von m die Welche der aufgelisteten Frequenzen liegt im 15m Amateurfunkband? 1. Was versteht man unter Spannungsabfall? Restspannung einer entladenen Batterie. Ein mehr oder weniger grosser Spannungsverlust, der nicht mit dem ohmschen Gesetz erklärt werden kann. c) Man bezeichnet

Mehr

Kapitel 6 Frequenzkonverter

Kapitel 6 Frequenzkonverter ZHAW, ASV, FS2009, 6-1 Kapitel 6 Frequenzkonverter Inhaltsverzeichnis 6.1 EINLEITUNG... 2 6.2 GRUNDLAGEN DER FREQUENZUMSETZUNG... 3 6.2.1 Multiplikative Mischer (idealer Mischer)... 3 6.2.2 Idealer Schaltermischer

Mehr

Untersuchungen zur Auslegung von Linearisierungssystemen mit digitaler Vorverzerrung

Untersuchungen zur Auslegung von Linearisierungssystemen mit digitaler Vorverzerrung Untersuchungen zur Auslegung von Linearisierungssystemen mit digitaler Vorverzerrung von Eberhard Gamm 08.11.2002 Linearisierungssysteme mit digitaler Vorverzerrung 1 Übersicht Aufgabe Stand der Technik

Mehr

Software Defined Radios The Future Is Now

Software Defined Radios The Future Is Now SWISS AMATEUR TELEPRINTER GROUP Software Defined Radios The Future Is Now Dominik Bugmann, HB9CZF hb9czf@swiss-artg.ch 15. Februar 2008 1 Warum SDR? Packet Radio über die letzten 20+ Jahre Keine Anwendungen,

Mehr

Simulation AM-Radio: Sender und Empfänger

Simulation AM-Radio: Sender und Empfänger Prof. Dr. R. Kessler, FH-Karlsruhe, FB-NW, C:\ro\Si05\kuellmar\radio\AMRADIO_6.doc, Seite 1/6 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Simulation AM-Radio: Sender und Empfänger Prinzip-Aufbau

Mehr

Kapitel 5: Analoge Modulationsverfahren

Kapitel 5: Analoge Modulationsverfahren ZHAW, NTM1, FS2008, 5-1 Kapitel 5: Analoge Modulationsverfahren Inhaltsverzeichnis 5.1. EINLEITUNG... 2 5.2. AMPLITUDENMODULATION... 3 5.2.1. FREQUENZTRANSLATION DURCH MISCHUNG... 3 5.2.2. KLASSISCHE AM

Mehr

13. AM-Empfänger Geradeausempfänger. (Quellen: TECAV T2EC von Gerry Neu,

13. AM-Empfänger Geradeausempfänger. (Quellen: TECAV T2EC von Gerry Neu, (Quellen: TECAV T2EC von Gerry Neu, www.wikipedia.de) In Praxis sind die Blockschaltbilder von Empfänger komplexer als dies im Kapitel "Grundlagen der Funktechnik" behandelt wurde. Bei der AM findet man

Mehr

PSK-31 Modulation. DJ4FQ OV München-Süd (C18)

PSK-31 Modulation. DJ4FQ OV München-Süd (C18) PSK-31 Modulation Vortrag und Einführung von DJ4FQ OV München-Süd (C18) Was ist PSK31? zuerst SP9VRC, Durchbruch : Peter G3PLX betrieblich vergleichbar TTY geeignet für QSO von Tastatur zu Tastatur Schrittgeschwindigkeit

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 24 TELEKOMMUNIKATIONSTECHNIK 4 ISDN. Kapitel 24 TelekommunikationstechnIk 4 ISDN Februar 2017.

TG TECHNOLOGISCHE GRUNDLAGEN 24 TELEKOMMUNIKATIONSTECHNIK 4 ISDN. Kapitel 24 TelekommunikationstechnIk 4 ISDN Februar 2017. TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 24 TelekommunikationstechnIk 4 ISDN TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 24. Weltweit einmalig ist in der Schweiz eine Breitbandverbindung mit 600 kbit/s downstream

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Modul SiSy: Einleitung

Modul SiSy: Einleitung Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen visuelle «Signale» Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,

Mehr

Integrierte Hochfrequenzschaltungen für die Mess- und Kommunikationstechnik Vorlesung

Integrierte Hochfrequenzschaltungen für die Mess- und Kommunikationstechnik Vorlesung Integrierte Hochfrequenzschaltungen für die Mess- und Kommunikationstechnik Vorlesung 21.01.2013 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Struktur

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

mit Nutzung von USRP-Bausteinen als Signalgenerator und Empfänger

mit Nutzung von USRP-Bausteinen als Signalgenerator und Empfänger mit Nutzung von USRP-Bausteinen als Signalgenerator und Empfänger p.1 Übersicht 1 Motivation & Zielsetzung 2 Grundlagen 3 Konzeptentwurf der Übertragungsstrecke 4 Implementierung der digitalen Vorverzerrung

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Das Prinzip der digitalen Empfänger. Die Funktionsblöcke des ADT-200A. Das Bedienungskonzept des ADT-200A

Das Prinzip der digitalen Empfänger. Die Funktionsblöcke des ADT-200A. Das Bedienungskonzept des ADT-200A Das Prinzip der digitalen Empfänger AD-Wandler IP3-Problematik Direct_Conversion Rx Die Funktionsblöcke des ADT-200A DSP-Modul PA-Modul Preselector-Modul Das Bedienungskonzept des ADT-200A Wie weiter?

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

Resonanz. R. Schwarz OE1RSA. Übersicht. Amateurfunkkurs. L-C Kreis. Resonanz. Filter. Fragen. Landesverband Wien im ÖVSV. Erstellt:

Resonanz. R. Schwarz OE1RSA. Übersicht. Amateurfunkkurs. L-C Kreis. Resonanz. Filter. Fragen. Landesverband Wien im ÖVSV. Erstellt: Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 6. Mai 2012 Themen 1 2 3 Mechanische und elektrische en Mechanisches System: Lageenergie - Bewegungsenergie. Periodische

Mehr

Labor für Informationsübertragung. Quadratur-Amplitudenmodulation

Labor für Informationsübertragung. Quadratur-Amplitudenmodulation Labor für Informationsübertragung Prof. Dr.-Ing. Lilia Lajmi Dipl.-Ing. Irina Ikkert Gruppennummer: Teilnehmer Name Vorname Matrikelnummer 1 2 3 Ostfalia Hochschule für angewandte Wissenschaften Hochschule

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

L R. keine Stufenfunktion, sondern die Amplitudenübertragungsfunktion ändert sich nur langsam mit. Anwendungen bei der Signalübertragung

L R. keine Stufenfunktion, sondern die Amplitudenübertragungsfunktion ändert sich nur langsam mit. Anwendungen bei der Signalübertragung g( ) Für das Quadrat gilt dann: g( ) it 1 1 1 L 1 1 R g R L g g keine Stufenfunktion, sondern die Aplitudenübertragungsfunktion ändert sich nur langsa it. Anwendungen bei der Signalübertragung Beispiel

Mehr

Nonreturn to Zero (NRZ)

Nonreturn to Zero (NRZ) Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem

Mehr

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1

Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1 Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden

Mehr

Frequenzplanung II. 3 Zellen/Cluster. 7 Zellen/Cluster. 3 Zellen/Cluster plus 3 Sektoren/Zelle. f 2. f 1. f 3. f 1 f 1. f 2 f 2. f 5 f 6. f 4.

Frequenzplanung II. 3 Zellen/Cluster. 7 Zellen/Cluster. 3 Zellen/Cluster plus 3 Sektoren/Zelle. f 2. f 1. f 3. f 1 f 1. f 2 f 2. f 5 f 6. f 4. Frequenzplanung II f 3 f 1 f 2 f 3 f 2 f 1 f 3 f 2 f 1 f 2 f 3 f 1 f 1 f 3 f 2 3 Zellen/Cluster f 3 f 3 f 3 7 Zellen/Cluster f 2 f 4 f 5 f 1 f 3 f 2 f 3 f 2 f 6 f 7 f 4 f 5 f 3 f 7 f 1 f 6 f 5 f 2 f 2

Mehr

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur - 1 - Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur I ersten Teil der Vorlesung wurde zunächst ein Überblick über Typen von Differentialgleichungen gegeben. Anschließend wurden hauptsächlich

Mehr

Amateurfunkkurs 2017

Amateurfunkkurs 2017 Rufzeichen und Empfänger Christian Pohl DL5CP Thomas Gatzweiler DL2IC 1 Deutsche Rufzeichen Präfix (DA bis DR) + Ziffer + 1-3 stelliges Suffix Aufteilung gemäß Amateurfunkverordnung (AfuV) Personengebunden

Mehr