Die Quantennatur des Lichts von kohärenter Strahlung zu einzelnen Photonen. Axel Kuhn Max-Planck-Institut für Quantenoptik Garching bei München

Größe: px
Ab Seite anzeigen:

Download "Die Quantennatur des Lichts von kohärenter Strahlung zu einzelnen Photonen. Axel Kuhn Max-Planck-Institut für Quantenoptik Garching bei München"

Transkript

1 Die Quantennatur des Lichts von kohärenter Strahlung zu einzelnen Photonen Axel Kuhn Max-Planck-Institut für Quantenoptik Garching bei München

2 Die Quantennatur des Lichts Photoelektrischer Effekt (Einstein 1905) Lichtquanten Photonen Thermische Strahlung Bunching Kohärente Strahlung Einzelne Photonen Antibunching Von nicht-klassischem zu klassischem Licht Interferenz unabhängiger Photonen

3 Photoelektrischer Effekt E kin = hν E bind Licht quantisiert?

4 [... ]

5 Photoelektrischer Effekt Austrittsarbeit E kin = hν E bind Wechselwirkung quantisiert Keine Verzögerung Lichtquanten Lichtleistung P Elektronenrate t P! t = E bind Zeit keine Verzögerung! t Zeit

6 Was ist ein Photon? Die ganzen Jahre bewusster Grübelei haben mich der Antwort der Frage Was sind Lichtquanten nicht näher gebracht. Heute glaubt zwar jeder Lump, er wisse es, aber er täuscht sich... ALBERT EINSTEIN (in einem Brief an M. Besso, 1951)

7 Ein Photon... war da, wenn der Detektor klickt (fapp). ist ein Teilchen Licht (Newton). ist die kleinste Menge Licht einer Frequenz. ist ein Energiequant einer Feldmode (Planck). ist nicht teilbar. interferiert nur mit sich selbst (Dirac).

8 Quantisierung des Lichtfelds Photonenzahlzustände n+1 a a n E n = (n )hν ν 1 = c 2L ; ν 2 = 2 c 2L ; ν 3 = 3 c 2L 2 E 2 = ( )hν ν m = m c 2L 1 0 E 1 = ( )hν E 0 = 1 2 hν

9 E Photon = hν = h c λ Quantisierung des Lichtfelds bei 500 nm 0, Joule = 2,5 ev 5 mw Laserpointer Photonen Sekunde

10 Quantisierung des Lichtfelds Fock-Zustände: n harmonischer Oszillator: ΔE=hν n+1 n a a E n = (n )hν Leiteroperatoren: a n = n n 1 und a n 1 = n n Photonenzahloperator: 2 E 2 = ( )hν n = n a a n 1 E 1 = ( )hν Superpositionszustände: 0 E 0 = 1 2 hν ψ licht = c n n n

11 Photonen im freien Raum Raum-Zeit Moden (1D): ζ(t-z/c) freies Photon: Intensität Ein Photon in der begrenzten Raum-Zeit Mode t z/c exp i t-z/c t z c Raum-Zeit Mode im Zustand 1. i i Zeitauflösung: Zeit & Raum t z c Superposition aneinander gereihter Raum-Zeit Moden

12 Thermische Strahlung Boltzmannverteilung 0.20 <n> = 5 p(t,n) exp n hν k T B mittlere Photonenzahl p(n,n) = n n (n + 1) n+1 n(t ) Wahrscheinlichkeit Photonenzahl n thermische Verteilung Detektion: a n = n n-1 p cond (n,n) = p(n,n + 1) (n + 1) Norm = n n (n + 1) n+1 n + 1 n + 1

13 Thermische Strahlung Detektion eines Photons n p(n) p(n-1) konditioniert: neue Verteilung!

14 Thermische Strahlung Detektion eines Photons <n> 2 <n> konditioniert: doppelte Photonenzahl!

15 Photonenzahl-Statistik Hanbury Brown & Twiss (1954/1956): Korrelation im Licht entfernter Sterne Strahlteiler Detektor 1 Lichtquelle Konditionierte Wahrscheinlichkeit: Detektor 2 Korrelator g (2) (!") g (2) (Δτ ) = p(t)p(t + Δτ ) t p(t) t 2 = Wahrscheinlichkeit für zweites Photon im Abstand Δτ Mittlere Photonenzählrate

16 Photonenzahl-Statistik g (2) (Δτ ) = p(t)p(t + Δτ ) t p(t) t 2 = Wahrscheinlichkeit für zweites Photon im Abstand Δτ Mittlere Photonenzählrate Photonen Strahlteiler {!" Detektor 1 Detektor 2 Zeit Sonderfall: Keine Korrelationen (konstante Rate) p(t)=const. g (2) (Δτ)=1

17 Photonenzahl-Statistik Korrelationen: Bunching (thermische Strahlung) g (2) (0)>1 Zeit Unkorreliert: Poisson-Verteilung (Laser) g (2) (Δτ)=1 Zeit Mindestabstand: Antibunching (Einzelphotonen) g (2) (0)< g (2) (Δτ) Zeit

18 Thermisches Bunching Detektion eines Photons <n> 2 <n> Doppelte Detektionswahrscheinlichkeit! konditioniert:

19 Thermisches Bunching Doppelte Photonenzahl nach jeder Detektion g (2) (0)=2 2 g (2) (!") Dauer τc Kohärenzlänge 1 0 #" c 0 +" c!" Zeit

20 Thermisches Bunching Bunching im Licht einer Hg-Dampflampe B. L. Morgan and L. Mandel Phys. Rev. Lett. 16, 1012 (1966)

21 Thermisches Bunching Bunching Dauer Linienbreite D. T. Phillips, H. Kleiman, and S. P. Davis Phys. Rev. 153, 113 (1967) Fabry-Perot Filter (FPI)+ Hg-Dampflampe zunehmende FPI Länge schmaleres Spektrum längeres Bunching

22 Thermisches Bunching

23 Thermisches Bunching Heuristische Begründung: unabhängige Dipole, Intensität I E 2 Interferenz unabhängiger Kugelwellen 4I mittlere Intensität 2I 2E 2 maximale Intensität 4I (2E) 2

24 te i n t e r v a l ~-. T h e n u m b e r of p u l s e s o c c u r r i n g in AT i s c o u n t e d and r e c o r d e d in the m e m o r y of a pulse-height analyzer. The source used was e i t h e r a G a u s s i a n s o u r c e o b t a i n e d by r a n d o m i z a t i o n of a l a s e r l i g h t [3] by m e a n s of a r o t a t i n g g r o u n d g l a s s d i s c and o b s e r v e d w i t h i n a c o h e r e n c e a r e a, o r the l a s e r l i g h t i t s e l f c o m i n g f r o m a s i n g l e a x i a l m o d e of a H e - N e l a s e r (with a c a v i t y l e n g t h of 20 c m and T E M o o e m i s s i o n ). T h e e x p e r i m e n t a l r e s u l t s a r e s h o w n in fig. 1 and a g r e e Thermisches Bunching te ca ab Photonenstatistik im pseudo-thermischen Licht F. T. Arecchi et al. Phys. Lett. 20, 27 (1966) h a- P,(~) 2 - t, ~. ~- ~ V cm/sec +o~ B o - V- 20g crn/sec o C + - V " 3.14 cm / s e c.~- wh ev cu pe re lo tia wh co as an Laser Laser mit Phasenrührer g(2)(0)=2 Laser ohne Störung g(2)(δτ)=1 A-O 0 C I I I I.~ see Fig. 1. Conditional probability pc(t) of a second count occurring at a time T after a f i r s t has occurred at time T=0. sp ur re wi pe

25 Kohärentes Licht Zeit Intensität konstant Poissonverteilung Wahrscheinlichkeit für n Photonen p(n,n) = n n n! exp( n) mittlere Photonenzahl n = α a a α = α 2 Wahrscheinlichkeit für n Photonen <n> = 0.1 <n> = 1 <n> = Photonenzahl n

26 Kohärentes Licht Kohärenter Zustand α = e α 2 /2 0 + α 1 + α α n n! n +... Detektion eines Photons a α = e α 2 /2 0 + α 0 + α α n n n! n = α α Zustand unverändert Photonenzahl bleibt! n initial = α 2 = n final

27 Kohärentes Licht Detektion eines Photons <n> Wahrscheinlichkeit <n> = <n> Photonenzahl unverändert! Wahrscheinlichkeit p(n) n n n! n 1 n p'(n 1) n p(n) = n (n 1)! Photonenzahl n

28 Kohärentes Licht Detektion eines Photons <n> Wahrscheinlichkeit <n> = <n> Photonenzahl unverändert! Wahrscheinlichkeit Photonenzahl n

29 Kohärentes Licht Keine Änderung durch Photodetektion g (2) (Δτ)=1 Kohärenz nicht limitiert 2 1 g (2) (!") 0 0!" Zeit

30 ma tem a g a t e of a s h o r t f i x e d d u r a t i o n AT a f t e r a t i m e i n t e r v a l ~-. T h e n u m b e r of p u l s e s o c c u r r i n g in AT i s c o u n t e d and r e c o r d e d in the m e m o r y of a pulse-height analyzer. The source used was e i t h e r a G a u s s i a n s o u r c e o b t a i n e d by r a n d o m i z a t i o n of a l a s e r l i g h t [3] by m e a n s of a r o t a t i n g g r o u n d g l a s s d i s c and o b s e r v e d w i t h i n a c o h e r e n c e a r e a, o r the l a s e r l i g h t i t s e l f c o m i n g f r o m a s i n g l e a x i a l m o d e of a H e - N e l a s e r (with a c a v i t y l e n g t h of 20 c m and T E M o o e m i s s i o n ). T h e e x p e r i m e n t a l r e s u l t s a r e s h o w n in fig. 1 and a g r e e Kohärentes Licht h a- P,(~) F. T. Arecchi et al. Phys. Lett. 20, 27 (1966) 2 - t, ~. ~- ~ V cm/sec +o~ B o - V- 20g crn/sec o C + - V " 3.14 cm / s e c.~- ter ca ab wh ev cu pe re lo tia wh co as an Laser Laser mit Phasenrührer g(2)(0)=2 Laser ohne Störung g(2)(δτ)=1 A-O 0 C I I I I.~ see Fig. 1. Conditional probability pc(t) of a second count occurring at a time T after a f i r s t has occurred at time T=0. sp ur re wi pe

31 Einzelne Photonen Mode (Zeitfenster) im Zustand 1 Detektion: a g (2) (!") Vacuum! 1 Anti-Bunching g (2) (0)< g (2) (Δτ) 0 #" r 0 +" r!" Zeit

32 Einzelne Photonen Fluoreszenz weniger Atome Atomstrahl geringer Dichte Antibunching H.J. Kimble et al. Phys. Rev. Lett. 39, 691 (1977) Zahl der Korrelationen

33 Einzelne Photonen Fluoreszenz eines einzigen Ions Ion gefangen in RF-Falle Antibunching Laser F. Diedrich and H. Walther Phys. Rev. Lett. 58, 203 (1987) verschiedene Laserintensitäten: schwach breites Minimum stark schmales Minimum

34 Rabioszillationen in der Korrelation Absorption & stimulierte Emission Besetzung oszilliert Besetzung im angeregten Zustand t spontane Emission g t Photonen Relaxation Antibunching

35 Intensitätskorrelationen Bunching: thermisch g (2) (0)=2 2 g (2) (!") Unkorreliert: Laser g (2) (Δτ)=1 1 Antibunching: 1 0 g (2) (0)< g (2) (Δτ) 0 0!"

36 Atom & Photon im Resonator E. T. Jaynes and F. W. Cummings. Proc. IEEE, 51:89 109, e,n-1 Besetzungsoszillation Ω E n / V g,n

37 Atom & Photon im optischen Resonator Laser x Resonator e g e Raman g A. Kuhn et al., Phys. Rev. Lett. 89, (2002) J. McKeever et al., Science 303, 1992 (2004) M. Keller et al., Nature 431, 1075 (2004)

38 Atom & Photon im optischen Resonator M. Hennrich, A. Kuhn & G. Rempe, Phys. Rev. Lett. 94, (2005) A. Kuhn et al., Phys. Rev. Lett. 89, (2002) 85 Rb 5P 3/2 e,0 u,0 Atom- Resonator Kopplung Γ Pumplaser Rückpumplaser 5S 1/2 g,1 Photonenemission g,0

39 Von Antibunching zu Bunching Einzelne Atome Antibunching Viele Atome Bunching

40 Von Antibunching zu Bunching Einzelne Atome Antibunching Viele Atome Bunching intensity correlation g (2) ( ) N= delay / s

41 Von Antibunching zu Bunching Einzelne Atome Antibunching Viele Atome Bunching intensity correlation g (2) ( ) N= delay s

42 Von Antibunching zu Bunching kontinuierlicher Übergang mit steigender Atomzahl M. Hennrich, A. Kuhn & G. Rempe, Phys. Rev. Lett. 94, (2005) (c) 3.0 antibunching minimum Rückpumpdauer 2.5 Kohärenzzeit g ( 1) A 2 and g ( 2) A delay s g ( 2) A g ( 1) 2 A intensity correlation g (2) ( ) average atom number N bunching maximum 0 delay [ s] 20 10

43 Photonen auf Knopfdruck A. Kuhn et al., Phys. Rev. Lett. 89, (2002) J. McKeever et al., Science 303, 1992 (2004) M. Keller et al., Nature 431, 1075 (2004)

44 Photonen auf Knopfdruck 200 Einhüllende begrenzte Zeit Äquidistanter Kamm Emission getriggert Antibunching: g (2) (0)< g (2) (Δτ) einzelne Photonen # correlations

45 Einzelne Photonen - Wozu? Quantenkryptographie Optische Quantencomputer Verschränkung und Teleportation

46 Quantenlogik mit Licht Knill, Laflamme & Milburn, Nature 409, 46 (2001) Lineare Optik: Interferenz & Phasenschieber Einzelne Photonen kodieren 0 und 1 Probabilistisch: Konditioniert auf Hilfsphotonen B3 ψ in ψ probe B2 B1 KLM-Teleporter D1 D2 ψ out B4 D3 D4

47 Interferenz klassisch gesehen Dirac: Jedes Photon interferiert nur mit sich selbst 1 cos ,0 e i 0,1 Strahlteiler 0 sin 2 2 z

48 Interferenz unabhängiger Photonen transmittiert reflektiert destruktive Interferenz Zwei Photonen am Strahlteiler: verlassen den Strahlteiler als Paar Phasensprung bei Reflektion destruktive Interferenz

49 Interferenz unabhängiger Photonen Photonenpaar aus einem nichtlinearen Kristall Hong, Ou & Mandel, unabhängige Photonen von einem Quantenpunkt C. Santori et al. Nature 419, 594 (2002) 1,1 ( 2, 0 0, 2 ) 2 No. of coincidence counts in 10 min. Phys. Rev. Lett. 59, 2044 (1987) Position of beam splitter (!m) 360

50 Interferenz unabhängiger Photonen

51 Interferenz unabhängiger Photonen A 1,1 Single photon Detector C Beam splitter 1. Detektion B Detector D ( 1,0 ± 0,1 ) 2 Trigger pulse... Dephasierung Zeitaufgelöste ( 1,0 ± e iφ 0,1 ) 2 Zwei-Photonen-Interferenz 2. Detektion T. Legero et al. Appl. Phys. B 77, 797 (2003) ( ) P Koinzidenz = sin 2 φ 2

52 Zeitaufgelöste Zwei-Photonen-Interferenz keine Interferenz identische Polarisation T. Legero et al. Phys. Rev. Lett. 93, (2004) # Korrelationen Interferenz unabhängig 0 erzeugter Photonen [!s] a 25 Magnetooptical trap Cavity Delay 5.3 s (1085 m fiber) B A Beam splitter C # Korrelationen Trigger pulses Polarizer D Photo diodes 0-2,5-2,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 [!s]

53 Zwei-Photonen Quantenbeat Unterschiedliche Frequenz Dephasierung: φ = Δτ Δω Oszillation in der Korrelationsfunktion Coincidences 20 Polarization Polarization 10 ( ) Detection-time delay s x e g Cavity 1 2 Emission g Number of coincidences Polarization Polarization ( MHz) Detection-time delay s

54 Zusammenfassung antibunching minimum (c) Detektor Lichtquelle (2) intensity correlation g (T) Strahlteiler 2.5 Detektor 2 Korrelator g(2)(!") g(2)(!") bunching maximum to ea ag er av m m nu!" rn be n # correlations n yt[ dela Ms] 20

Zweiphotoneninterferenz

Zweiphotoneninterferenz Zweiphotoneninterferenz Patrick Bürckstümmer 11. Mai 2011 Einführung: Gewöhnliche Interferometrie Übersicht Theorie der 2PHI für monochromatische Photonen Das Experiment von Hong,Ou und Mandel (1987) Versuchsaufbau

Mehr

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung

Mehr

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany Moderne Themen der Physik Photonik Dr. Axel Heuer Exp. Quantenphysik, Universität Potsdam, Germany Übersicht 1. Historisches und Grundlagen 2. Hochleistungslaser 3. Diodenlaser 4. Einzelne Photonen 2 LASER

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Optische Gitter. Vorlesung: Moderne Optik

Optische Gitter. Vorlesung: Moderne Optik Diese Zusammenstellung ist ausschließlich für die Studierenden der Vorlesung MODERNE OPTIK im Wintersemester 2009 / 2010 zur Nacharbeitung der Vorlesungsinhalte gedacht und darf weder vervielfältigt noch

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Schrödinger Katzen und Messung von Photonenfeldern

Schrödinger Katzen und Messung von Photonenfeldern Schrödinger Katzen und Messung von Photonenfeldern Universität Ulm 9. Juli 2009 Gliederung Was ist eine Schrödinger Katze? Realisierung von Schrödinger Katzen mit Ionen Realisierung von Schrödinger Katzen

Mehr

Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik. Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen

Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik. Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen Inhalt 1. Was ist Licht? 2. Was ist Farbe? 3. Prisma und Regenbogen 4.

Mehr

Kälter als der Weltraum Mit Licht zum Temperaturnullpunkt

Kälter als der Weltraum Mit Licht zum Temperaturnullpunkt Universität Hamburg Institut für Laser-Physik Andreas Hemmerich Kälter als der Weltraum Mit Licht zum Temperaturnullpunkt Was ist Wärme? Warmes und kaltes Licht Kühlen mit Licht Gase am absoluten Nullpunkt:

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16 Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Quanten 2. Dominik Dillhof, Abraham Hinteregger, Sarah Langer, Lisa Nachtmann

Quanten 2. Dominik Dillhof, Abraham Hinteregger, Sarah Langer, Lisa Nachtmann Quanten 2 Seit 50 Jahren grüble ich darüber nach was ein Lichtquant sei, und kann es immer noch nicht sagen. Heute glaubt jeder Lump er wüsste es aber er weiß es nicht. Albert Einstein Dominik Dillhof,

Mehr

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242 Versuch : Laserresonator Protokoll Von Jan Oertlin und Ingo Medebach Gruppe 242 8. Dezember 2010 Inhaltsverzeichnis 1 Theoretische Grundlagen 5 1.1 Funktionsweise eines Laser..................................

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

ÜBER KURZE UND LANGE PHOTONEN. Oder was ist Licht überhaupt Thomas Feurer Uni Bern

ÜBER KURZE UND LANGE PHOTONEN. Oder was ist Licht überhaupt Thomas Feurer Uni Bern ÜBER KURZE UND LANGE PHOTONEN Oder was ist Licht überhaupt Thomas Feurer Uni Bern Albert Einstein 1916: WAS MEINT EIN GENIE DAZU... Für den Rest meines Lebens will ich nachdenken, was Licht ist.... Albert

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Teleportation mit Photonen und Ionen

Teleportation mit Photonen und Ionen Hauptseminar: Schlüsselexperimente der Quantenphysik und ihre Interpretation Teleportation mit Photonen und Ionen Stephan Kleinert Teleportation mit Photonen und Ionen - Allgemeines Prinzip der Teleportation

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Laser als Strahlungsquelle

Laser als Strahlungsquelle Laser als Strahlungsquelle Arten v. Strahlungsquellen Thermische Strahlungsquellen typisch kontinuierliches Spektrum, f(t) Fluoreszenz / Lumineszenzstrahler typisch Linienspektrum Wellenlänge def. durch

Mehr

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Dr. Martin Sczepan Forschungszentrum Rossendorf Inhalt Laser für das Infrarot Was macht den Bereich des IR interessant? Der Infrarot-FEL im Vergleich

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Ultrakurze Lichtimpulse und THz Physik

Ultrakurze Lichtimpulse und THz Physik Ultrakurze Lichtimpulse und THz Physik 1. Einleitung 2. Darstellung ultrakurzer Lichtimpulse 2.1 Prinzip der Modenkopplung 2.2 Komplexe Darstellung ultrakurzer Lichtimpulse 2.2.1 Fourier Transformation

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Eichler. Jürgen. Hans Joachim Eichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage. 4^ Springer Vieweq

Eichler. Jürgen. Hans Joachim Eichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage. 4^ Springer Vieweq Hans Joachim Eichler Jürgen Eichler Laser Bauformen, Strahlführung, Anwendungen 8., aktualisierte und überarbeitete Auflage 4^ Springer Vieweq 1 Licht, Atome, Moleküle, Festkörper 1 1.1 Eigenschaften von

Mehr

Versuch 1: Interferometrie, Kohärenz und Fourierspektroskopie

Versuch 1: Interferometrie, Kohärenz und Fourierspektroskopie Versuch : nterferometrie, Kohärenz und Fourierspektroskopie Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958

Mehr

Laserdiode & Faraday-Effekt (V39)

Laserdiode & Faraday-Effekt (V39) Laserdiode & Faraday-Effekt (V39) 1. Laser Prinzip und Eigenschaften Optisches Pumpen Laserverstärkung Lasermoden und Selektion 2. Halbleiter-Laser pn-übergang Realisierung Kennlinien 3. Faradayeffekt

Mehr

Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA. Yokogawa MT GmbH September 2009 Jörg Latzel

Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA. Yokogawa MT GmbH September 2009 Jörg Latzel Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA Yokogawa MT GmbH September 2009 Jörg Latzel Überblick: Das Seminar gibt einen Überblick über Möglichen Wege zur Beurteilung

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

Die Stoppuhren der Forschung: Femtosekundenlaser

Die Stoppuhren der Forschung: Femtosekundenlaser Die Stoppuhren der Forschung: Femtosekundenlaser Stephan Winnerl Institut für Ionenstrahlphysik und Materialforschung Foschungszentrum Rossendorf Inhalt Femtosekunden Laserpulse (1 fs = 10-15 s) Grundlagen

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung

Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung Nicole Martin und Cathrin Wälzlein February 18, 2008 Praktikumsbetreuer: Dominik Blömer Durchführungsdatum: 17.12.2007 1 1 Einleitung

Mehr

Zeitaufgelöste Zwei-Photonen-Interferenz

Zeitaufgelöste Zwei-Photonen-Interferenz Technische Universität München Max-Planck-Institut für Quantenoptik Zeitaufgelöste Zwei-Photonen-Interferenz Thomas Legero Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität

Mehr

Moderne Optik. Schwerpunkt Quantenoptik. Vorlesung im Wintersemester 2016/2017. Prof. Dr. Gerhard Birkl

Moderne Optik. Schwerpunkt Quantenoptik. Vorlesung im Wintersemester 2016/2017. Prof. Dr. Gerhard Birkl Moderne Optik Schwerpunkt Quantenoptik Vorlesung im Wintersemester 2016/2017 Prof. Dr. Gerhard Birkl ATOME - PHOTONEN - QUANTEN Institut für Angewandte Physik Raum: S2/15-125 - Telefon: 16-20410 - email:

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Optische Dipolfallen und Optische Gitter. von Lukas Ost

Optische Dipolfallen und Optische Gitter. von Lukas Ost Optische Dipolfallen und Optische Gitter von Lukas Ost Klassische Herleitung der Dipolkraft Das Atom wird als klassischer harmonischer Oszillator behandelt Äußeres elektrisches Feld, das auf ein Atom in

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Optische Spektroskopie und Laserphysik

Optische Spektroskopie und Laserphysik Optische Spektroskopie und Laserphysik Dr. Cedrik Meier Institut für Experimentalphysik Was Euch in der nächste Stunde erwartet... Der Laser Was ist ein Laser? Geschichte des Lasers Eigenschaften von Laserlicht

Mehr

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs 1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

THz Physik: Grundlagen und Anwendungen

THz Physik: Grundlagen und Anwendungen THz Physik: Grundlagen und Anwendungen Inhalt: 1. Einleitung 2. Wechselwirkung von THz-Strahlung mit Materie 3. Erzeugung von THz-Strahlung 3.1 Elektronische Erzeugung 3.2 Photonische Erzeugung 3.3 Nachweis

Mehr

Pk4: Moderne Physik Experimentalphysik IV

Pk4: Moderne Physik Experimentalphysik IV Pk4: Moderne Physik Experimentalphysik IV Atome und Moleküle, Kerne und Teilchen, Phänomene der Quantenphysik Sommersemester 2011 Oliver Benson 0 1.1. Quanteneffekte mit Licht 1.1.1. Geschichtliches: 1900:

Mehr

Experimentalphysik 3

Experimentalphysik 3 Optik Experimentalphysik 3 Dr. Georg von Freymann 26. Oktober 2009 Matthias Blaicher Dieser Text entsteht wärend der Vorlesung Klassische Experimentalphysik 3 im Wintersemester 2009/200 an der Universität

Mehr

Hochbitratige optische Übertragungssysteme. Empfänger. C.-A. Bunge; Hochschule für Telekommunikation Leipzig: High-Speed Optical Transmission Systems

Hochbitratige optische Übertragungssysteme. Empfänger. C.-A. Bunge; Hochschule für Telekommunikation Leipzig: High-Speed Optical Transmission Systems Hochbitratige optische Übertragungssysteme Empfänger Prinzip eines Empfängers Taktrückgewinnung Prinzip eines Empfängers optisch Taktrückgewinnung Prinzip eines Empfängers optisch elektrisch Taktrückgewinnung

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Lichtquellen für Mess- und Signalübertragungszwecke beurteilt mit optischen Spektrumanalysatoren. Optische Spektralanalyse Jörg Latzel Juli 2009

Lichtquellen für Mess- und Signalübertragungszwecke beurteilt mit optischen Spektrumanalysatoren. Optische Spektralanalyse Jörg Latzel Juli 2009 Lichtquellen für Mess- und Signalübertragungszwecke beurteilt mit optischen Spektrumanalysatoren Optische Spektralanalyse Jörg Latzel Juli 2009 Wir beschäftigen uns im folgenden mit Licht Spektraler Bereich

Mehr

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie Grundlagen Vorlesung basiert auf Material von Prof. Rick Trebino (Georgia Institute of Technology, School of Physics) http://www.physics.gatech.edu/gcuo/lectures/index.html Interaktive Plattform Femto-Welt

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

Tomographie eines Zweiniveau-Systems

Tomographie eines Zweiniveau-Systems Tomographie eines Zweiniveau-Systems Martin Ibrügger 15.06.011 1 / 15 Übersicht Motivation Grundlagen Veranschaulichung mittels Bloch-Kugel Beispiel / 15 Motivation Warum Tomographie eines Zweiniveau-Systems?

Mehr

Bild:Dali : Zerfliessende Uhren. Zeitmessungen

Bild:Dali : Zerfliessende Uhren. Zeitmessungen Bild:Dali : Zerfliessende Uhren Zeitmessungen Gliederung Einleitung Zeitmessung Theorie Experimentelle Realisierung Möglichkeiten der Zeitbestimmung Riehle 'Frequency standards' Eigenschaften der guten

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

Laser in der Medizin. Historie

Laser in der Medizin. Historie Sonne ist Licht. Licht ist Energie. Energie ist Leben. Durch Licht werden viele Funktionen in unserem Körper angeregt. Dieses Wissen wird seit jeher genutzt vom Schamanentum bis in die moderne Medizin.

Mehr

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg Ramanspektroskopie an von (5,5) (6,4) Atomare Struktur chirale Indices Herstellung keine bevorzugte Chiralität (n1,n2) Eigenschaften ähnlicher Durchmesser + verschiedene Windung unterschiedliche elektronische

Mehr

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. EINSTEIN und die Natur des Lichts Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. Einstein, Annalen der Physik, 17, 132 (1905) Über einen die Erzeugung und Verwandlung des

Mehr

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut Seminar zum Praktikumsversuch: Optische Spektroskopie Tilman Zscheckel Otto-Schott-Institut Optische Spektroskopie Definition: - qualitative oder quantitative Analyse, die auf der Wechselwirkung von Licht

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

2.2 Elektronentransfer (Dexter)

2.2 Elektronentransfer (Dexter) Experimentelle Bestimmung der Transferrate: 1. Messung der Fluoreszenzintensitäten von Donor (F D ) und Akzeptor (F A ): F A E t = F D + F A 2. Messung der Fluoreszenzintensität des Donors ohne Akzeptor

Mehr

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen Dieter Suter - 423 - Physik B2 6.7. Laser 6.7.1. Grundlagen Das Licht eines gewöhnlichen Lasers unterscheidet sich vom Licht einer Glühlampe zunächst dadurch dass es nur eine bestimmte Wellenlänge, resp.

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

Das Goldhaber Experiment

Das Goldhaber Experiment ν e Das Goldhaber Experiment durchgeführt von : Maurice Goldhaber, Lee Grodzins und Andrew William Sunyar 19.12.2014 Goldhaber Experiment, Laura-Jo Klee 1 Gliederung Motivation Physikalische Grundlagen

Mehr

13. Elektromagnetische Wellen

13. Elektromagnetische Wellen 13. Elektromagnetische Wellen 13.1 Erzeugung elektromagnetischer Wellen 13.2 Eigenschaften elektromagnetischer Wellen 13.3 Ausbreitung elektromagnetischer Wellen 13.4 Reflexion und Brechung 13.5 Interferenz

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Äußerer lichtelektrischer Effekt

Äußerer lichtelektrischer Effekt Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte

Mehr

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1 V. Optik V. Wellenoptik Physik für Mediziner 1 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik mikroskopische Wechselwirkung

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Der Mensch

Mehr

Verschränkung. Kay-Sebastian Nikolaus

Verschränkung. Kay-Sebastian Nikolaus Verschränkung Kay-Sebastian Nikolaus 24.10.2014 Überblick 1. Definition und Allgemeines 2. Historische Hintergründe, Probleme 2.1 Einstein-Podolsky-Rosen-Paradoxon 2.2 Erklärung, Bell sche Ungleichungen

Mehr

Informationsübertragung mittels Photonen

Informationsübertragung mittels Photonen Informationsübertragung mittels Photonen Inhaltsverzeichnis 1 Einführung 1 Theoretischer Hintergrund 3 Experimentelle Umsetzung 3 4 Zusammenfassung 6 5 Literatur 7 1 Einführung Dadurch, daß Quantenzustände

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Der photoelektrische Effekt

Der photoelektrische Effekt Der photoelektrische Effekt h ν I ph Abnahme der negativen Ladung auf einer Platte bei Beleuchtung mit UV-Strahlung. Lichtinduzierte Elektronenemission (Lenard, 1902). Erklärung durch A. Einstein (1905)

Mehr

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben...

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben... 1 Licht, Atome, Moleküle, Festkörper...................... 1 1.1 Eigenschaften von Licht................................. 1 1.2 Atome: Elektronenbahnen, Energieniveaus................ 7 1.3 Atome mit mehreren

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage

Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage Jürgen Eichler Hans Joachim Eichler Laser Bauformen, Strahlführung, Anwendungen Sechste, aktualisierte Auflage Mit 266 Abbildungen und 57 Tabellen, 164 Aufgaben und vollständigen Lösungswegen Springer

Mehr

Spontaneos Parametric Down Conversion

Spontaneos Parametric Down Conversion Spontaneos Parametric Down Conversion (Parametric Fluorescence) Hauptseminar Atom trifft Photon MPQ München, 29. Juni 2011 Thomas Reimann Inhalt 1 Theoretische Beschreibung 2 Experimentelle Realisierung

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

4.6 Nd:YAG Laser. Ausarbeitung

4.6 Nd:YAG Laser. Ausarbeitung 4.6 Nd:YAG Laser Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Jan Schupp, Florian Wetzel Versuchsdatum: 06.07.2009 Betreuer: Dipl. Phys. Lukas Drzewietzki Inhaltsverzeichnis

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr