Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 12

Größe: px
Ab Seite anzeigen:

Download "Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 12"

Transkript

1 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 8. März 0 Peter Widmayer Yann Disser Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS Lösung 6. Selbstanordnende lineare Listen. a) Die Zugriffssequenz verursacht bei der Frequency-Count-Regel folgende Verschiebungen (jeweils mit dem zugehörigen Zählerstand dargestellt): K L A N G O P F E R Schrittzahl R K L A N G O P F E R E K L A N G O P F R E G K L A N O P F E R G K L A N O P F E R G N K L A O P F E R G N K L A O P F E R G N K L A O P F E R G N K L O A P F E R G N K L O P A F E R G N K L O P F A 0 0 E R G N K L O P F A 0 E N R G K L O P F A 4 0 Im ganzen werden 79 Schritte benötigt, im Mittel also 79/ 6.8 Schritte. Mit der Transpose Regel bewirkt die Zugriffssequenz folgende Verschiebungen:

2 K L A N G O P F E R Schrittzahl K L A N G O P F R E 0 K L A N G O P F E R 0 K L A G N O P F E R K L A G N O P E F R 9 K L A N G O P E F R K L A N G O P E F R L K A N G O P E F R L K A N O G P E F R 6 L K A N O P G E F R 7 L K A N O P G F E R 9 L K A N O P G E F R 9 L K N A O P G E F R 4 Im Ganzen werden 77 Schritte benötigt, im Mittel also 77/ 6.4. Die Frequency-Count Regel verhält sich somit bei diesem Beispiel ein wenig schlechter als die Transpose Regel. b) Eine schlechte Sequenz für die Transpose Regel auf der Startliste ist z.b. die n-malige Wiederholung von R, E. Hier benötigt jedes Paar 0 Schritte, im Ganzen also 0n Schritte (0 pro Zugriff). Mit der Move-To- Front Regel benötigt das erste Paar auch 0 Schritte, jedes folgende Paar aber nur 4. Für n benötigt Transpose also das -fache an Schritten. Im Allgemeinen ist Transpose schlecht, wenn man abwechselnd dieselben Elemente am Ende einer Liste abfragt und sich ihre Positionen im Mittel nicht verändern. Move-To-Front verhält sich schlecht, wenn ein selten gebrauchtes Element abgefragt wird. Dies ist beispielsweise dann der Fall, wenn die Elemente in der Liste rückwärts zugegriffen werden, also hier die n-malige Wiederholung von R, E, F, P, O, G, N, A, L, K. Move-To-Front benötigt jeweils 0 Schritte für jeden Zugriff, also 00n Schritte insgesamt. Dagegen benötigt Transpose = 60 Schritte für eine Wiederholung, und da danach die Liste wieder im Ursprungszustand ist, 60n Schritte insgesamt. Somit benötigt Move-To-Front hier.66 mal mehr Schritte als Transpose. Frequency-Count ist schlecht, wenn ein anfangs selten gebrauchtes Element plötzlich sehr oft gebraucht wird. Dann dauert es lange, bis das Element am Anfang der Liste ist. Zum Beispiel bei der Sequenz, die zuerst n mal auf K, dann n mal auf L, dann n mal auf A, und so weiter, zugreift. Erst nach dem n-ten Zugriff auf den jeweiligen Buchstaben rutscht das Element an den Anfang der Liste, und somit werden n 0 i = n Zugriffe benötigt. Mit Move-to-Front hingegen rutscht jedes Element beim ersten Zugriff zum Kopf der Liste und benötigt somit 0 (i + (n )) = 0n + 4 Zugriffe. Für n verursacht Frequency-Count bei dieser Sequenz also (asymptotisch) das.-fache an Schritten. Anmerkung: Sowohl Frequency-Count als auch Transpose können viel schlechter werden als eine andere Strategie, d.h. sind nicht k-kompetitiv für irgendeine Konstante k: Sei m die Anzahl Zugriffe, und n die Anzahl Elemente. Wenn man abwechselnd auf die letzten beiden Elemente zugreift, hat Transpose Kosten Ω(mn), Move-To-Front hätte O(m). Wenn man hingegen auf jedes Element in der ursprünglichen Anordnung nacheinander k + n mal zugreift, hat Frequency-Count Kosten Ω(kn ) = Ω(mn), optimal wäre aber O(m). Move-To-Front hingegen braucht stets höchstens zweimal soviele Zugriffe wie jede andere Lösung, ist also -kompetitiv. Lösung 6. Splay Trees & optimale Suchbäume. a) Einen Baum dieser Struktur erhält man z.b. durch Einfügen der Schlüssel,,,7,6,,4 in dieser Reihenfolge. b) Ein Beispiel ist a,..., a 7 =,,, 4,,, und b 0,..., b 7 = 0, 0,,,,, 0, 0, mit den Schlüsseln,..., 7 (die Zugriffshäufigkeiten stehen neben den Knoten/Blättern):

3 Dieses Beispiel erhält man, indem man die Gewichte von unten nach oben festlegt, und darauf achtet dass in jedem Teilbaum die Wurzel ein höheres Gewicht hat als die beiden Teilbäume zusammen, und dass die beiden Teilbäume ein gleichgrosses Gewicht haben (diese Bedingungen sind etwas stärker als nötig, führen aber mit Sicherheit zu der gewünschten Baumstruktur). Lösung 6. Erstellen von optimalen Suchbäumen. Die Tabellen r(i, j), P (i, j) und W (i, j) enthalten jeweils die Wurzel, die Anzahl Vergleiche und die Anzahl Zugriffe eines optimalen Suchbaums, so wie in Kapitel.7 des Buches beschrieben. W (i, j) i/j P (i, j) i/j r(i, j) i/j Der zugehörige Baum ist (die Zugriffshäufigkeiten stehen neben den Knoten/Blättern): 7 0 (-,) 4 4 (, ) 0 0 (,) (,) (,4) (4,)

4 Lösung 6.4 Amortisierte Analyse. Eine gute Wahl ist k = n. Dies bedeutet, dass, sobald das Array voll ist und man ein neues Element einfügen will, ein neues Array doppelter Länge erstellt wird. Um zu zeigen, dass mit dieser Wahl jede Einfügeoperation konstante amortisierte Kosten hat, führen wir eine amortisierte Analyse durch. Dazu definieren wir eine Potentialfunktion, welche jedem Array-Zustand einen Wert zuordnet (diesen Wert kann man intuitiv als Kontostand interpretieren). Zur Erinnerung: die amortisierte Analyse mittels Potentialfunktion funktioniert wie folgt: Man definiert Φ i als das Potential nach der i-ten Operation. Die i-te Operation hat tatsächliche Kosten t i. Dann sind die amortisierten Kosten der i-ten Operation definiert als a i := t i + Φ i Φ i. Aufgrund dieser Definition folgt für eine Folge von m Operationen: ( m ) a i = (t i + Φ i Φ i ) = t i + Φ m Φ 0, und somit t i = a i + Φ 0 Φ m. Wenn es also gelingt, die amortisierten Kosten jeder Operation abzuschätzen, sowie den Term Φ 0 Φ m, erhält man so auch eine Abschätzung für die tatsächlichen Gesamtkosten. Wenn man die Potenzialfunktion beispielsweise so wählt, dass Φ m Φ 0 für jedes m, dann folgt m t i m a i, d.h. man kann die tatsächlichen Gesamtkosten nach oben abschätzen durch die Summe der amortisierten Kosten. a) Einfügen in amortisiert konstanter Zeit: Wir definieren das Potential (bzw. den Kontostand) eines Arrays der Grösse n als 6 Anzahl der Elemente in der oberen Hälfte des Arrays (also an Positionen n +,..., n). Zu beachten ist, dass sich auch n ändert, wenn das Array vergrössert wird. Aus der Definition folgt Φ 0 = 0 (anfangs ist das Array leer), und weil Φ i mit dieser Definition nie negativ sein kann, ist auch klar, dass für i > 0 gilt Φ i 0, also insbesondere Φ m Φ 0. Wir müssen also nur noch untersuchen, wie gross die amortisierten Kosten einer Einfügeoperation sind. Dazu unterscheiden wir zwei Fälle: Wenn bei der i-ten Einfügeoperation das Array nicht verdoppelt wird (d.h. es ist noch nicht voll), dann ist t i = und Φ i Φ i 6 (= 0 falls das Array noch nicht halb voll ist, und = 6 sonst), und somit a i + 6 = 7. Wenn bei der i-ten Einfügeoperation das Array von Grösse n auf Grösse n verdoppelt wird, sind die tatsächlichen Kosten t i = n }{{} Array Anlegen + n }{{} Kopieren + }{{} = n + neues Element einfügen und die Potentialdifferenz ist Φ i Φ i = 6 ( n ) = 6 n, und somit sind die amortisierten Kosten in diesem Fall a i = n + 7 n = 7. Für jede Einfügeoperation sind also die amortisierten Kosten konstant (genauer: a i amortisierte Analyse für das Einfügen abgeschlossen. 7). Damit ist die b) Entfernen in amortisiert konstanter Zeit: Wir zeigen im Folgenden, dass eine amortisiert konstante Laufzeit möglich ist. Dabei wird das Array erst dann von der Grösse n auf die Grösse n/ geschrumpft, wenn es nur noch n/4 Elemente im Array hat, und nicht schon, wenn es noch n/ Elemente hat. Dies verhindert, dass die Arraygrösse stets verdoppelt und wieder halbiert wird, wenn man in ein Array zuerst n/ Elemente einfügt und dann immer abwechselnd eines einfügt und dieses gleich wieder löscht (dies würde passieren, wenn man bei n/ Elementen im Array schon die Grösse 4

5 halbieren würde). Für die amortisierte Analyse definieren wir das Potential (bzw. den Kontostand) eines Arrays der Grösse n als Anzahl leere Positionen in der unteren Hälfte des Arrays (also an Positionen,..., n ). Wenn bei einer Löschoperation i das Array nicht halbiert wird, gilt a i = + 0 falls das gelöschte Element in der oberen Hälfte des Arrays liegt, oder a i = + falls das gelöschte Element in der unteren Hälfte liegt. Wenn bei der Löschoperation i das Array halbiert wird, gilt und die Potentialdifferenz ist t i = n/ + n/4 = }{{}}{{} 4 n neues Array anlegen Elemente kopieren Φ i Φ i = ( n/4) und somit sind die amortisierten Kosten in diesem Fall a i = 4n + ( n/4) =. Für jede Löschoperation sind also die amortisierten Kosten konstant (genauer: a i 4). Es ist einfach zu sehen, dass Φ 0 Φ m m. Für die tatsächlichen Kosten erhalten wir t i = a i + Φ 0 Φ m 4m + m = O(m). Damit ist die amortisierte Analyse für das Löschen ebenfalls abgeschlossen. Es ist nun leicht zu sehen, dass man mit der Potentialfunktion 6 (Anz. El. in der oberen Hälfte des Arrays + Anz. leere Positionen in der unteren Hälfte des Arrays) auch für jede Folge von Einfüge- und Löschoperationen in beliebiger Reihenfolge zeigen kann, dass die amortisierten Kosten jeder Operation konstant sind. Bemerkung: Man könnte natürlich auch weitere Kosten in die Analyse mit einbeziehen, z.b. wenn man davon ausgeht dass das Löschen eines Arrays der Länge n die Kosten Θ(n) hat (und nicht 0).

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

3 Amortisierte Analyse

3 Amortisierte Analyse (M. Dietzfelbinger,.2.20) 3 Amortisierte Analyse Wir betrachten hier ein Analyseproblem, das oft bei Datenstrukturen, mitunter auch in anderen algorithmischen Situationen auftritt. Angenommen, wir haben

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte]

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte] UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH 4056 Basel Assistenten Bernhard Egger Andreas Forster Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Spezialvorlesung Online-Algorithmen. Matthias Westermann Berthold Vöcking Christian Sohler

Spezialvorlesung Online-Algorithmen. Matthias Westermann Berthold Vöcking Christian Sohler Spezialvorlesung Online-Algorithmen Matthias Westermann Berthold Vöcking Christian Sohler Sommersemester 2005 Inhaltsverzeichnis 1 Einleitung 3 1.1 Grundbegriffe.............................. 4 1.2 Amortisierte

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Schulinternes Curriculum für Informatik (Q2) Stand April 2015

Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner Komplexe Softwaresysteme 2 - SS 2014 Dominik Korner 24. März 2014 Inhaltsverzeichnis 1 Übung 1 2 1.1 Heap.............................................. 2 A Zeichnen Sie den (min)-heap, der durch Einfügen

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Methoden des Algorithmenentwurfs Kapitel 2.2: Randomisierte Online Algorithmen

Methoden des Algorithmenentwurfs Kapitel 2.2: Randomisierte Online Algorithmen Methoden des Algorithmenentwurfs Kapitel 2.2: Randomisierte Online Algorithmen Christian Scheideler SS 2009 16.07.2009 Kapitel 2 1 Übersicht Notation Paging Selbstorganisierende Suchstrukturen Finanzielle

Mehr

KREDITVERZEICHNIS Konfiguration Ausgabe: 20.02.13 1/13. Dokumentation KREDITVERZEICHNIS. Teil 2. Konfiguration

KREDITVERZEICHNIS Konfiguration Ausgabe: 20.02.13 1/13. Dokumentation KREDITVERZEICHNIS. Teil 2. Konfiguration KREDITVERZEICHNIS Konfiguration Ausgabe: 20.02.13 1/13 Dokumentation KREDITVERZEICHNIS Teil 2 Konfiguration Stand 20.02.2013 KREDITVERZEICHNIS Konfiguration Ausgabe: 20.02.13 2/13 Inhalt 1. KONFIGURATION...

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013 Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Seminarausarbeitung Entwurf und Analyse von Datenstrukturen

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

Eigene Seiten erstellen

Eigene Seiten erstellen PhPepperShop Anleitung Datum: 3. Oktober 2013 Version: 2.1 Eigene Seiten erstellen Eigene Inhalte / CMS Glarotech GmbH Inhaltsverzeichnis Anleitung zur Erstellung von eigenen Inhalten/Links...3 1. Anmeldung

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

Spieltheorien und Theoreme

Spieltheorien und Theoreme Spieltheorien und Theoreme Seminar: Randomisierte Algorithmen Prof. Dr. R. Klein Alexander Hombach Eine bilinguale Ausarbeitung von Alexander Hombach, Daniel Herrmann und Ibraguim Kouliev (Teil 1) Rheinische

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Checkliste für administrative Arbeiten - Installation

Checkliste für administrative Arbeiten - Installation Checkliste für administrative Arbeiten - Installation 1) Installation Eine minimale Installation erfordert auf den einzelnen Clients lediglich die korrekte Installation der BDE (in den BWSoft Setup-Versionen

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Nützliche Tipps im Umgang mit Word

Nützliche Tipps im Umgang mit Word Nützliche Tipps im Umgang mit Word Im Folgenden möchten wir einige Funktionen von Word beschreiben, von denen wir denken, dass Sie euch das Erstellen einer schriftlichen Arbeit erleichtern. Dazu gehören:

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Fully dynamic algorithms for the single source shortest path problem.

Fully dynamic algorithms for the single source shortest path problem. Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

BENUTZERHANDBUCH. Los gehts! Notepadgrundlagen... 2. Notepadeinstellungen... 4. Tastaturbearbeiter... 6. Sich organisieren... 9. Inhalte teilen...

BENUTZERHANDBUCH. Los gehts! Notepadgrundlagen... 2. Notepadeinstellungen... 4. Tastaturbearbeiter... 6. Sich organisieren... 9. Inhalte teilen... BENUTZERHANDBUCH Notepadgrundlagen... 2 Notepadeinstellungen... 4 Tastaturbearbeiter... 6 Sich organisieren... 9 Inhalte teilen... 11 Ein Dokument importieren... 12 Los gehts! 1 Notepadgrundlagen Ein Notepad

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Mitarbeitereinsatzplanung. easysolution GmbH 1

Mitarbeitereinsatzplanung. easysolution GmbH 1 Mitarbeitereinsatzplanung easysolution GmbH 1 Mitarbeitereinsatzplanung Vorwort Eines der wichtigsten, aber auch teuersten Ressourcen eines Unternehmens sind die Mitarbeiter. Daher sollten die Mitarbeiterarbeitszeiten

Mehr

Schulinternes Curriculum im Fach Informatik

Schulinternes Curriculum im Fach Informatik Schulinternes Curriculum im Fach Informatik Unterricht in EF : 1. Geschichte der elektronischen Datenverarbeitung (3 Stunden) 2. Einführung in die Nutzung von Informatiksystemen und in grundlegende Begriffe

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen!

Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen! Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen! Grundstrukturen: Sub [name]([übergabe]) End Sub [Übergabe] ist

Mehr

Datenstrukturen in Java

Datenstrukturen in Java Datenstrukturen in Java SEP 350 Datenstrukturen Datenstrukturen ermöglichen Verwaltung von / Zugriff auf Daten (hier: Objekte) Datenstrukturen unterscheiden sich duch Funktionalität Implementierung modulares

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen Inhalte Informatik I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen II.0 Grundlegende Programmstrukturen und Algorithmen Sortier- und Suchalgorithmen auf Arrays

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Begleitmaterial zur Vorlesung. Online-Algorithmen. Sommersemester 2007. Detlef Sieling. Universität Dortmund FB Informatik, LS 2 44221 Dortmund

Begleitmaterial zur Vorlesung. Online-Algorithmen. Sommersemester 2007. Detlef Sieling. Universität Dortmund FB Informatik, LS 2 44221 Dortmund Begleitmaterial zur Vorlesung Online-Algorithmen Sommersemester 2007 Detlef Sieling Universität Dortmund FB Informatik, LS 2 44221 Dortmund Von diesem Begleitmaterial dürfen einzelne Ausdrucke oder Kopien

Mehr

CALCOO Lite. Inhalt. 1. Projekt anlegen / öffnen. 2. Projekt von CALCOO App importieren

CALCOO Lite. Inhalt. 1. Projekt anlegen / öffnen. 2. Projekt von CALCOO App importieren CALCOO Lite Hier finden Sie eine Kurzanleitung zu den einzelnen Projektschritten von CALCOO Light. Nach dem Lesen wissen Sie die grundlegenden Funktionen zu bedienen und können ein Projekt erstellen. Inhalt

Mehr

FLASH USB 2. 0. Einführung DEUTSCH

FLASH USB 2. 0. Einführung DEUTSCH DEUTSCH FLASH ROTE LED (GESPERRT) GRÜNE LED (ENTSPERRT) SCHLÜSSEL-TASTE PIN-TASTEN BLAUE LED (AKTIVITÄT) Einführung Herzlichen Dank für Ihren Kauf des Corsair Flash Padlock 2. Ihr neues Flash Padlock 2

Mehr