Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Spieltheorie mit. sozialwissenschaftlichen Anwendungen"

Transkript

1 .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

2 .. Motivation: Warum Spieltheorie? Spiele in vielen Situationen des täglichen Lebens WGs und Familien Professoren und Studenten Verabredungen Weitere Anwendungsgebiete Politik und Wirtschaft Konfliktbewältigung Evolutionäre Biologie Sport Der Beginn der Spieltheorie 944 Theory of Games and Economic Behavior Oskar Morgenstern & John Neumann 4

3 .. Entscheidungen vs Spiele Entscheidung: eine Situation in der eine Person zwischen verschiedenen Alternativen wählt ohne die Reaktion Dritter zu berücksichtigen Spiel: eine strategische Entscheidungssituation, d.h. Das Ergebnis hängt von den Entscheidungen mehrerer Entscheidungsträger ab, so dass ein einzelner das Ergebnis nicht unabhängig von der Wahl der anderen bestimmen kann. Jeder Entscheidungsträger ist sich dieser Interdependenz bewusst und geht davon aus, dass sich alle anderen ebenfalls der Interdependenzen bewusst sind. Jeder berücksichtigt die gegenseitigen Abhängigkeiten bei seiner Entscheidung. Spiele mit sequentiellen und simultanen Zügen Sequentielle Spiele (Spiele in extensiver Form): die Spieler ziehen nacheinander Beispiel: Schach Spiele mit simultanen Zügen (Matrixspiele, Spiele in Normalform): Die Spieler ziehen gleichzeitig ohne die Züge der anderen Spieler zu beobachten. Beispiel: Entwicklung neuer Medikamente in der Pharmaindustrie

4 .. Interessenskonflikte der Spieler Nullsummenspiel: ein Spieler gewinnt den Verlust des anderen Vollständiger Interessenskonflikt zwischen den Spielern Spiele führen oftmals zu Gewinnen für beide Spieler und sind keine Nullsummenspiele. Beispiel: Joint Ventures 7 Einmalige vs wiederholte Spiele Einmaliges Spiel (one-shot game): es gibt nur eine Interaktion zwischen den Spielern Keine Information über den Gegner vorhanden Wiederholtes Spiel: wiederholte Interaktionen zwischen den Spielern Mit dem gleichen Gegner: Reputation Beispiel: langfristige Geschäftsverbindungen Mit wechselnden Gegnern: Informationen über das übliche Verhalten Beispiel: Preisverhandlungen im Türkischen Basar 4

5 .. Information Vollständige Information: Jeder Spieler verfügt über alle Informationen Beispiel: Schach Unvollständige Information Externe Unsicherheit: Es herrscht Unsicherheit über verschiedene Variablen (z.b. Wetter) Strategische Unsicherheit: über die letzten Züge des Gegners Asymmetrische Information: einige Spieler verfügen über mehr Informationen als andere Beispiel: Arbeitsmarkt 9 Kooperative vs Nichtkooperative Spiele Kooperative Spiele: die Spieler können Verträge durchsetzen Beispiele: Europäische Union Nichtkooperative Spiele: Kooperation muss sich von selbst durchsetzen, da es nicht durch eine dritte Partei durchsetzbar ist. Beispiel: Die EU und Nicht-Mitliedsstaaten

6 .. Beobachtungen und Experimente Theorie und Realität sollten sich jeweils auf einander beziehen: Die Realität sollte dabei helfen, die Theorie zu strukturieren Ergebnisse der Theorie sollten einer Überprüfung in der Realität stand halten. Überprüfung der Realität von strategischen Interaktionen durch: Beobachtungen Spezielle Experimente Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

7 .. Terminologie Strategie: vollständiger Verhaltensplan Auszahlung (Payoff): Nutzen eines Ergebnisses für einen Spieler Erwartete Auszahlung: Wahrscheinlichkeitsgewichtete durchschnittliche Auszahlung Rationalität: Ein Spieler ist in seinen Auszahlungen konsistent und wählt diejenige Strategie, die für ihn am besten ist. Das Nash-Gleichgewicht Definition: Eine Strategiekombination s*=(s *,,s m *) heißt Nash-Gleichgewicht, wenn s i * beste Antwort ist auf s -i * für alle i=,,m. Kein Spieler sollte von seiner Strategie abweichen wollen, nachdem er die Aktionen seiner Gegner beobachten konnte, d.h. die gewählte Strategie ist die beste Antwort auf die Strategien der anderen Spieler. John Nash (*9) Mathematiker & Ökonom Nobelpreis für Wirtschaftswissenschaften (994) 4 7

8 .. Spielbaum / Spielbaum: Präsentation eines Spieles in extensiver Form bestehend aus Knoten und Kanten Knoten: Punkt an dem eine Kante beginnt oder endet Kante (Ast): Jede an einem Knoten beginnende Kante präsentiert eine Strategie, die am Knoten gewählt werden kann. Endknoten: Endpunkt des Spiels, an dem keine weiteren Aktionen möglich sind und die Auszahlungen der Spieler realisiert werden. Strategie: eine Aktion an einem Knoten des Spielbaums Strategie: ein vollständiger Verhaltensplan für einen Spieler, der für jeden Knoten angibt, welche Aktion gewählt werden soll. Go Spielbaum / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down -

9 .. Teilspiele / Teilspiel ist der Restspielbaum, der von einem Knoten ausgeht, einschließlich der Bewertungen, die zu den Endknoten des Restspielbaums gehören (=ein Knoten, der kein Endknoten ist, und alle darauf folgenden Knoten) Definition: Sei Γ ein teilspiel von Γ. Dann induziert jede Strategie s vonγeine Strategie s vonγ dadurch, dass Züge von s, die sich auf Knoten in Γ beziehen übernommen werden. 7 Go Teilspiele / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down - 9

10 .. Gleichgewichte in sequentiellen Spielen / Definition: Ein Nash-Gleichgewicht heißt teilspielperfekt, wenn es auf jedem Teilspiel ein Nash-Gleichgewicht induziert. Backward Induction (Rollback): Analyse der Strategiewahl eines Spieler an jedem Knoten des Spiels, beginnend mit dem Endknoten Identifizieren und Streichen der Äste des Spielbaums, die von einem rationalen Spieler nicht gewählt werden Die Strategie (vollständiger Handlungsplan) eines Spielers, die erhalten bleiben, nachdem alle nicht gewählten Kanten gestrichen wurden, zeigt das Gleichgewicht. 9 safe Erwartete Auszahlung: =. Chris Lösen von Spielbäumen / Bad % Go risky Nature Good % - 4 Ann Stop Bob low -.7 Deb high. - Gleichgewicht: A: (Go, up) B: () C: (safe) D: (high) up 7 4 Ann down -

11 .. Beispiel : Raucher oder Nichtraucher? Entscheidung try continue not - + not try zukünftige Carmen heutige Carmen not not Gleichgewicht: heutige C: (not) zukünftige C: (continue) Vorteile der Reihenfolge First-mover advantage: es ist vorteilhaft, den ersten Zug zu haben Second-mover advantage: es ist vorteilhaft den zweiten Zug zu haben Beispiel: Preissetzung In einigen Spielen ist das Ergebnis durch den Aufbau des Spiels bestimmt und die Reihenfolge der Züge spielt keine Rolle.

12 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen a) X a b c Y Y Y d e f g h i X Y Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen b) Spieler a b Spieler Spieler c d e f S: S: S: 4

13 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen c) A a b Zufall / / B B c d e f A: B: Übung Unternehmen A kann eine Abteilung F&E aufbauen, die Mio. Euro pro Jahr kostet. Diese Entscheidung ist allgemein bekannt (common knowledge). Sie gestattet, flexibel auf den Markteintritt eines weiteren Unternehmens zu reagieren. Bleibt A allein im Markt, so macht es einen Gewinn von Mio. Euro pro Jahr (ohne Aufwendungen F&E). Entscheidet sich Unternehmen B zu einem späteren Zeitpunkt in den Markt einzutreten, so machen beide einen Gewinn von Mio. pro Jahr, falls A keine F&E- Abteilung aufgebaut hat. Falls A eine F&E-Abteilung hat, so macht A einen Gewinn von Mio. Euro (ohne F&E- Aufwendungen) und B einen Verlust von Mio. Euro. Stellen Sie die Situation als Spiel in extensiver Form dar und finden Sie das teilspielperfekte Gleichgewicht.

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Spieltheorie und Anwendungen 1. Spiele mit simultanen und sequentiellen Zügen Informationsmengen Normalform vs.

Mehr

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

Mikroökonomik B Teil II: Spieltheorie

Mikroökonomik B Teil II: Spieltheorie Mikroökonomik B Teil II: Spieltheorie Dennis L. Gärtner 19. Mai 2011 Motivation Ein Spiel Jeder von Ihnen schreibt eine ganze Zahl zwischen 0 und 100 auf. Ziel ist, 2/3 des Durchschnitts der angegebenen

Mehr

KAPITEL 2. Einführung in die Spieltheorie. Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg

KAPITEL 2. Einführung in die Spieltheorie. Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg KAPITEL 2 Einführung in die Spieltheorie Mit Anlehnungen an Folien von Andreas Diekmann und Katrin Auspurg Varianten der Rational-Choice Theorie Rational-Choice Theorie: Handlungswahl unter Annahme der

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

9.6. Spiele in extensiver Form

9.6. Spiele in extensiver Form 144 9.6. Spiele in extensiver Form Beispiele, Teilspielperfektheit (a) Darstellung Beispiel: Falkland-Krieg (1982) 1. rgentinien entscheidet Überfall ü oder Frieden f 2. GB entscheidet Kampf k oder Resignation

Mehr

3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht

3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht 3.5 Mehrstufige Spiele und Teilspiel-perfektes Gleichgewicht Von der spieltheoretischen Situation her gesehen war das Dixit-Modell von den vorangegangenen Modellen insoweit unterschiedlich, als hier eine

Mehr

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Spieltheorie Sommersemester 2007 1 3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Beispiel (Sequentieller Geschlechterkampf): Betrachten wir eine abgewandelte Geschichte des Spiels

Mehr

Anregende, ergänzende Literatur:

Anregende, ergänzende Literatur: Spieltheorie (Winter 2008/09) 1-1 Prof. Dr. Klaus M. Schmidt 1 Einführung Anregende, ergänzende Literatur: Schelling, Thomas C., The Strategy of Conflict, Cambridge (Mass.): Harvard University Press, 1960

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten

Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten Sofie Waltl Graz, 9. April 2014 1 Was ist Spieltheorie? Die Spieltheorie analysiert strategische Entscheidungssituationen,

Mehr

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info)

KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) 1 KAP 10. Teilspiele und Teilspielperfektheit (vollk. Info) In Kap. 9 gesehen: Manche Nash-GGe in extensiven Spielen erscheinen unplausibel: wenn sie unglaubwürdige Drohungen...... bzw. zeitinkonsistente

Mehr

Kapitel 12 Spieltheorie

Kapitel 12 Spieltheorie Kapitel 12 Spieltheorie Vor- und Nachbereitung: Varian, Chapter 28 und 29 Frank, Chapter 13 Übungsblatt 12 Klaus M. Schmidt, 2008 12.1 Einleitung Bisher haben wir Ein-Personen-Entscheidungsprobleme betrachtet.

Mehr

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Verlag Franz Vahlen München Inhaltsverzeichnis 1. Einleitung 1 1.1 Entscheidungstheorie und Spieltheorie 1 1.2 Präferenzen und Präferenzaxiome

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1 Spieltheorie Teil 1: Statische Spiele mit vollständiger Information Folienskriptum Spieltheorie (U. Berger, 2015) 1 Worum geht es? Wir untersuchen Entscheidungssituationen, in denen alle Entscheidungsträger

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Kapitel 4 Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form Vorlesung: Nicht-kooperative Spieltheorie Teil 5: Spiele in extensiver Form Dr. Thomas Krieger Wintertrimester 29 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie Das Steuer-Spiel nach Selten

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information Spieltheorie Winter 2013/14 Professor Dezsö Szalay 2. Dynamische Spiele mit vollständiger Information In Teil I haben wir Spiele betrachtet, in denen die Spieler gleichzeitig (oder zumindest in Unkenntnis

Mehr

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15 1. Einführung Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 1. Einführung Spieltheorie, Wintersemester 2014/15 1 / 10 1.1 Literatur Mit einem der folgenden

Mehr

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck Spieltheorie Eine Einführung Von Christian Rieck Christian Rieck Verlag Inhaltsverzeichnis 5 1. Über dieses Buch 11 1.1. Zur Didaktik des Buches 13 1.2. Ein Angebot und eine Bitte 16 2. Was ist Spieltheorie?

Mehr

Kleines Lexikon der Begriffe*

Kleines Lexikon der Begriffe* Kleines Lexikon der Begriffe* Auszahlungsfunktion (payoff function) Eine Funktion, die jedem Strategienprofil einen Auszahlungsvektor zuweist. Der Auszahlungsvektor enthält für jeden Spieler einen Wert

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 5.:

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

10. Vorlesung. 12. Dezember 2006 Guido Schäfer

10. Vorlesung. 12. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Perfekte und vollständige Information

Perfekte und vollständige Information Dynamische Spiele und unvollständige Information Mehrstufige Spiele mit beobachtbaren Handlungen: Rückwärtsinduktion und Teilspielperfektheit Wiederholte Spiele und kooperatives Verhalten Unvollständige

Mehr

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht

Dynamische Spiele mit unvollständiger Information. Perfektes Bayesianisches Gleichgewicht Dynamische Spiele mit unvollständiger Information Perfektes Bayesianisches Gleichgewicht Spieltheorie University of Bonn Dezsö Szalay Dieser Teil basiert auf Kapitel 4 "Gibbons (1992), A primer in Game

Mehr

12. Vorlesung Spieltheorie in der Nachrichtentechnik

12. Vorlesung Spieltheorie in der Nachrichtentechnik 12. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Evolutionäre Spieltheorie Hines (1987): Game theory s greatest success to date

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren.

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Spieltheorie Winter 2013/14 Professor Dezsö Szalay 3. Wiederholte Spiele Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Eine Klasse von Spielen, die man jedoch relativ gut versteht

Mehr

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele Prof. Dr. Karl Morasch, Dipl.Vw. Florian Bartholomae und Dipl.Vw. Marcus Wiens, Universität der Bundeswehr München Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Mehr

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Literatur: Tadelis Chapter 7 und 8 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 6.: Nash Gleichgewicht und

Mehr

VWL Grundzüge Mikroökonomie

VWL Grundzüge Mikroökonomie VWL Grundzüge Mikroökonomie Wintersemester 2011/12 Christian Bauer Christian Bauer WS 11/12 Grundzüge: Mikroökonomie 1 Süßigkeiten Spiele Christian Bauer WS 11/12 Grundzüge: Mikroökonomie 2 John Forbes

Mehr

Geometrie in der Spieltheorie

Geometrie in der Spieltheorie Evolutionäre Spieltheorie November 3, 2011 Evolution der Spieltheorie John von Neumann, Oskar Morgenstern 1944: The Theory of Games and Economic Behavior John Nash 1950: Non-cooperative Games Nash Gleichgewicht:

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Strategische Züge 1. Einführung: Strategische Züge 2. Bedingungslose Züge 3. Bedingte Züge Drohung Versprechen

Mehr

Konzepte und Umsetzung von strategischen Spielen

Konzepte und Umsetzung von strategischen Spielen Seminarausarbeitung: Konzepte und Umsetzung von strategischen Spielen Markus Knödler, 45478 Michael Mader, 45633 Nico Meier, 41828 Stefan Wehrenberg, 42261 Sommersemester 2015 Inhaltsverzeichnis 1 Einführung

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information Spieltheorie Teil 1: Statische Spiele mit vollständiger Information 1 Worum geht es? Wir untersuchen Situationen, in denen alle Entscheidungsträger (Agenten, Spieler) rational sind, jeder Spieler eine

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

1928 John von Neumann Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100:

1928 John von Neumann Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100: Spieltheorie 1928 John von Neumann Zur Theorie der Gesellschaftsspiele, Mathematische Annalen 100:295 320 1944 John von Neumann & Oskar Morgenstern The Theory of Games and Economic Behavior, Princeton

Mehr

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08 2. Grundzüge der Mikroökonomik 2.10 Einführung in die Spieltheorie 1 Spieltheorie befasst sich mit strategischen Entscheidungssituationen, in denen die Ergebnisse von den Entscheidungen mehrerer Entscheidungsträger

Mehr

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht . Einführung: Idee, Beispiele, formale Darstellung 2. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Darstellung von Spielen: Extensivform versus Normalform

Darstellung von Spielen: Extensivform versus Normalform Spieltheorie Sommersemester 2007 1 Darstellung von Spielen: Extensivform versus Normalform Wir haben zwei Arten kennen gelernt, ein Spiel zu beschreiben: die Normalform, oder auch strategische Form und

Mehr

Teilspielperfektes Gleichgewicht

Teilspielperfektes Gleichgewicht 35 15Juli06 Teilspielperfektes Gleichgewicht (subgame perfect equilbrium) Ermittlung i.a. durch Rückwärtsinduktion möglich. DN, Prinzip 1: Looking forward, reason back Strengeres Konzept als das Nash-GG:

Mehr

1. Was ist Spieltheorie?

1. Was ist Spieltheorie? . Was ist Spieltheorie? (a) Wie kommt es zum Namen? Geburtsstunde Spieltheorie 9: John von Neumann und Oskar Morgenstern: "The Theory of Games and Economic Behavior". (Es gab eine Reihe von Vorläufern.)

Mehr

1. Einführung. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15. LMU München

1. Einführung. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15. LMU München 1. Einführung Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 1. Einführung Spieltheorie, Wintersemester 2014/15 1 / 10 1.1 Literatur Mit einem der folgenden

Mehr

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3 Übersicht Teil : Spiele mit simultanen Spielzügen und reinen : Diskrete Sequentielle Spiele (Kapitel 3) Teil Diskrete () Reine Simultane Spiele Stetige (Kapitel 5) Gemischte (Kapitle 7 & 8) Kapitel 6 Übersicht

Mehr

Lösungen zum Übungsblatt 1

Lösungen zum Übungsblatt 1 Lösungen zum Übungsblatt 1 Die Aufgabenlösungen wurden wie folgt bewertet: Aufgabe 1: Diese Aufgabe sollte schon (weitgehend) gelöst worden sein, um einen Punkt zu erzielen. Aufgabe 2: Die vorgeschlagene

Mehr

6. Dynamische Spiele mit unvollständiger Information

6. Dynamische Spiele mit unvollständiger Information 6. Dynamische Spiele mit unvollständiger Information Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 6. Dynamische Spiele mit unvollständiger Information

Mehr

Spieltheorie Übungsblatt 5

Spieltheorie Übungsblatt 5 Spieltheorie Übungsblatt 5 Tone Arnold Universität des Saarlandes 16. Juni 2008 Tone Arnold (Universität des Saarlandes) Musterlösung Übungsblatt 5 16. Juni 2008 1 / 19 Aufgabe 1 (a) Betrachten Sie das

Mehr

IV. Spieltheoretisches Repetitorium

IV. Spieltheoretisches Repetitorium Institut WiOR Universität Karlsruhe 1 IV. Spieltheoretisches Repetitorium 1. Nichtkooperative Spiele in Normalform Beschreibung eines Normalformspiels G: G = (Σ 1,..., Σ n ; H 1,..., H n ) mit n... Zahl

Mehr

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI)

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Ireneusz (Irek) Iwanowski 20. Januar 2005 Motivation Was ist das Wesen der Spieltheorie? Die

Mehr

Daniel Krähmer, Lennestr. 43, 4. OG, rechts. WWW: Übungsleiter: Matthias Lang,

Daniel Krähmer, Lennestr. 43, 4. OG, rechts. WWW:  Übungsleiter: Matthias Lang, 1 SPIELTHEORIE Daniel Krähmer, Lennestr. 43, 4. OG, rechts. kraehmer@hcm.uni-bonn.de Sprechstunde: Mi, 13:30-14:30 Uhr WWW: http://www.wiwi.uni-bonn.de/kraehmer/ Übungsleiter: Matthias Lang, lang@uni-bonn.de

Mehr

Auktionen als Anwendung der Spieltheorie

Auktionen als Anwendung der Spieltheorie Auktionen als Anwendung der Spieltheorie Vitali Gretschko Zaferna 2010 Universität zu Köln Vitali Gretschko Zaferna 2010 1 Agenda 1. Wozu Spieltheorie? 2. Einfache Gleichgewichtskonzepte 3. Auktionen als

Mehr

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen AVWL I (Mikro) 5-30 Prof. Dr. K. Schmidt 5.7 Einfuhrung in die Spieltheorie Ein \Spiel" besteht aus: einer Menge von Spielern einer Menge von moglichen Strategien fur jeden Spieler, einer Auszahlungsfunktion,

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2006 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für die Beantwortung

Mehr

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein mark.kirstein@tu-dresden.de Dresden,

Mehr

Graduiertenseminar Spieltheorie

Graduiertenseminar Spieltheorie Syddansk Universitet 6. 8. Mai 2009 Informationen 1 Einführung, Motivation Koordinaten Phone: +45 6550 2152 E-mail: psu@sam.sdu.dk URL: http://www.sam.sdu.dk/staff/psu Auf meiner Homepage unter dem Link

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

... sondern auch von den Entscheidungen anderer Akteure

... sondern auch von den Entscheidungen anderer Akteure 1 Was ist Spieltheorie? Spieltheorie untersucht Situationen, in denen ökonomische Akteure miteinander interagieren Das bedeutet: Die Konsequenzen einer Entscheidung für mich hängen nicht nur von meiner

Mehr

1 Einleitung Spiele in Normalforrn

1 Einleitung Spiele in Normalforrn Inhaltsverzeichnis 1 Einleitung 1 1.1 Der Ursprung der Spieltheorie 1 1.2 Entwicklungsetappen der Spieltheorie 3 1.3 Personenkult in der Spieltheorie 8 2 Spiele in Normalforrn 11 2.1 Grundlegende Konzepte

Mehr

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6.

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Nullsummenspiele 1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Einige Sätze 1. Nullsummenspiele Nullsummenspiele

Mehr

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Das Gefangenendilemma (Prisoner s Dilemma)

Das Gefangenendilemma (Prisoner s Dilemma) SPIELTHEORIE Das Gefangenendilemma (Prisoner s Dilemma) 2 Zwei Herren (Braun und Blau) haben eine Bank überfallen. Der Sheriff hat sie gefasst, kann aber nur ein minder schweres Verbrechen nachweisen (unerlaubter

Mehr

Teil IV. Spiel- und Oligopoltheorie

Teil IV. Spiel- und Oligopoltheorie 1 Teil IV Spiel- und Oligopoltheorie 15. Einführung in die Spieltheorie Literatur Holler, M.J., G. Illing (1991): a.a.o. Kreps, D.M. (1990), a.a.o. Rauhut, urkhard, N. Schmitz, E.-W. Zachow (1979): Spieltheorie

Mehr

Extensive Spiele mit perfekter Information

Extensive Spiele mit perfekter Information Seminarvortrag Extensive Spiele mit perfekter Information Michael Fleermann 05.06.2012 1 Einführung und Definition Ein extensives Spiel ist eine explizite Beschreibung der sequenziellen Struktur eines

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

SPIELTHEORIE. Modellbildung zur strategischen Entscheidungsfindung Im Spannungsfeld zwischen Kooperation und Wettbewerb

SPIELTHEORIE. Modellbildung zur strategischen Entscheidungsfindung Im Spannungsfeld zwischen Kooperation und Wettbewerb SPIELTHEORIE Modellbildung zur strategischen Entscheidungsfindung Im Spannungsfeld zwischen Kooperation und Wettbewerb Mathematisches Institut, LMU München München, 12. Juli 2007 - Studienstiftung Inhalt

Mehr

MATHE-BRIEF. März 2012 Nr. 23 SPIELTHEORIE

MATHE-BRIEF. März 2012 Nr. 23 SPIELTHEORIE MATHE-BRIEF März 2012 Nr. 23 Herausgegeben von der Österreichischen Mathematischen Gesellschaft http: // www.oemg.ac.at / Mathe Brief mathe brief@oemg.ac.at SPIELTHEORIE Die Spieltheorie beschäftigt sich

Mehr

Christian Rieck. Spieltheorie. Einführung für Wirtschaftsund SozialwissenschaftIer GABLER

Christian Rieck. Spieltheorie. Einführung für Wirtschaftsund SozialwissenschaftIer GABLER Rieck. Spieltheorie Christian Rieck Spieltheorie Einführung für Wirtschaftsund SozialwissenschaftIer GABLER Christi an Rieck war wissenschaftlicher Mitarbeiter an der Professur für Wirtschaftstheorie der

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3 Inhaltsverzeichnis 1 Einleitung 1 I Allgemeines zur Spieltheorie 3 2 Gegenstand der Spieltheorie 3 3 Geschichte der Spieltheorie 4 4 Anwendungen der Spieltheorie 9 II Theoretische Grundlagen der Spieltheorie

Mehr

Spieltheorie. Yves Breitmoser, EUV Frankfurt (Oder)

Spieltheorie. Yves Breitmoser, EUV Frankfurt (Oder) Spieltheorie Yves Breitmoser, EUV Frankfurt (Oder) Was ist Spieltheorie? Was ist Spieltheorie? Analyse strategischer Interaktionen Was ist Spieltheorie? Analyse strategischer Interaktionen Das heißt insbesondere

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.

Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6. 6. Algorithmische Spieltheorie Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.5 Auktionen 561 6.1 Einleitung Übliche Modelle:

Mehr

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 1 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 1 20. März 2008 1 / 123 Einführung Die Spieltheorie ist eine mathematische

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau Workshop2 Experimentelle Ökonomie, Verhaltensökonomie und angewandte Spieltheorie Zu Beginn ihres Vortrages gibt Dr. Glätzle-Rützler eine Einführung in die Begriffe Verhaltensökonomie, Spieltheorie und

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Mikroökonomik II/Makroökonomik II

Mikroökonomik II/Makroökonomik II Mikroökonomik II/Makroökonomik II Prof. Dr. Maik Heinemann Universität Lüneburg Institut für Volkswirtschaftslehre Wirtschaftstheorie und Makroökonomik heinemann@uni-lueneburg.de Wintersemester 2007/2008

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

Spieltheorie, A. Diekmann Musterlösungen

Spieltheorie, A. Diekmann Musterlösungen Spieltheorie, A. iekmann Musterlösungen Übungsblatt 1 Aufgabe 1 c) Geben Sie Pareto-optimale Strategienprofile an. Lösung: (Steal, Split), (Split, Split), (Split, Steal) d) Geben Sie das oder die Nash-Gleichgewichte

Mehr

Eine spieltheoretische Betrachtung des Pokerspiels

Eine spieltheoretische Betrachtung des Pokerspiels Eine spieltheoretische Betrachtung des Pokerspiels Seminar TUD Computer Poker Challenge Stefan Lück & Claudio Weck 8. April 2008 Fachbereich Informatik KE S. Lück & C. Weck 1 Agenda Spieltheoretische Grundlagen

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Zahlreiche weitere Textelemente entstammen WIKIPEDIA http://de.wikipedia.org/wiki/spieltheorie

Mehr