Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Größe: px
Ab Seite anzeigen:

Download "Spieltheorie mit. sozialwissenschaftlichen Anwendungen"

Transkript

1 .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

2 .. Motivation: Warum Spieltheorie? Spiele in vielen Situationen des täglichen Lebens WGs und Familien Professoren und Studenten Verabredungen Weitere Anwendungsgebiete Politik und Wirtschaft Konfliktbewältigung Evolutionäre Biologie Sport Der Beginn der Spieltheorie 944 Theory of Games and Economic Behavior Oskar Morgenstern & John Neumann 4

3 .. Entscheidungen vs Spiele Entscheidung: eine Situation in der eine Person zwischen verschiedenen Alternativen wählt ohne die Reaktion Dritter zu berücksichtigen Spiel: eine strategische Entscheidungssituation, d.h. Das Ergebnis hängt von den Entscheidungen mehrerer Entscheidungsträger ab, so dass ein einzelner das Ergebnis nicht unabhängig von der Wahl der anderen bestimmen kann. Jeder Entscheidungsträger ist sich dieser Interdependenz bewusst und geht davon aus, dass sich alle anderen ebenfalls der Interdependenzen bewusst sind. Jeder berücksichtigt die gegenseitigen Abhängigkeiten bei seiner Entscheidung. Spiele mit sequentiellen und simultanen Zügen Sequentielle Spiele (Spiele in extensiver Form): die Spieler ziehen nacheinander Beispiel: Schach Spiele mit simultanen Zügen (Matrixspiele, Spiele in Normalform): Die Spieler ziehen gleichzeitig ohne die Züge der anderen Spieler zu beobachten. Beispiel: Entwicklung neuer Medikamente in der Pharmaindustrie

4 .. Interessenskonflikte der Spieler Nullsummenspiel: ein Spieler gewinnt den Verlust des anderen Vollständiger Interessenskonflikt zwischen den Spielern Spiele führen oftmals zu Gewinnen für beide Spieler und sind keine Nullsummenspiele. Beispiel: Joint Ventures 7 Einmalige vs wiederholte Spiele Einmaliges Spiel (one-shot game): es gibt nur eine Interaktion zwischen den Spielern Keine Information über den Gegner vorhanden Wiederholtes Spiel: wiederholte Interaktionen zwischen den Spielern Mit dem gleichen Gegner: Reputation Beispiel: langfristige Geschäftsverbindungen Mit wechselnden Gegnern: Informationen über das übliche Verhalten Beispiel: Preisverhandlungen im Türkischen Basar 4

5 .. Information Vollständige Information: Jeder Spieler verfügt über alle Informationen Beispiel: Schach Unvollständige Information Externe Unsicherheit: Es herrscht Unsicherheit über verschiedene Variablen (z.b. Wetter) Strategische Unsicherheit: über die letzten Züge des Gegners Asymmetrische Information: einige Spieler verfügen über mehr Informationen als andere Beispiel: Arbeitsmarkt 9 Kooperative vs Nichtkooperative Spiele Kooperative Spiele: die Spieler können Verträge durchsetzen Beispiele: Europäische Union Nichtkooperative Spiele: Kooperation muss sich von selbst durchsetzen, da es nicht durch eine dritte Partei durchsetzbar ist. Beispiel: Die EU und Nicht-Mitliedsstaaten

6 .. Beobachtungen und Experimente Theorie und Realität sollten sich jeweils auf einander beziehen: Die Realität sollte dabei helfen, die Theorie zu strukturieren Ergebnisse der Theorie sollten einer Überprüfung in der Realität stand halten. Überprüfung der Realität von strategischen Interaktionen durch: Beobachtungen Spezielle Experimente Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

7 .. Terminologie Strategie: vollständiger Verhaltensplan Auszahlung (Payoff): Nutzen eines Ergebnisses für einen Spieler Erwartete Auszahlung: Wahrscheinlichkeitsgewichtete durchschnittliche Auszahlung Rationalität: Ein Spieler ist in seinen Auszahlungen konsistent und wählt diejenige Strategie, die für ihn am besten ist. Das Nash-Gleichgewicht Definition: Eine Strategiekombination s*=(s *,,s m *) heißt Nash-Gleichgewicht, wenn s i * beste Antwort ist auf s -i * für alle i=,,m. Kein Spieler sollte von seiner Strategie abweichen wollen, nachdem er die Aktionen seiner Gegner beobachten konnte, d.h. die gewählte Strategie ist die beste Antwort auf die Strategien der anderen Spieler. John Nash (*9) Mathematiker & Ökonom Nobelpreis für Wirtschaftswissenschaften (994) 4 7

8 .. Spielbaum / Spielbaum: Präsentation eines Spieles in extensiver Form bestehend aus Knoten und Kanten Knoten: Punkt an dem eine Kante beginnt oder endet Kante (Ast): Jede an einem Knoten beginnende Kante präsentiert eine Strategie, die am Knoten gewählt werden kann. Endknoten: Endpunkt des Spiels, an dem keine weiteren Aktionen möglich sind und die Auszahlungen der Spieler realisiert werden. Strategie: eine Aktion an einem Knoten des Spielbaums Strategie: ein vollständiger Verhaltensplan für einen Spieler, der für jeden Knoten angibt, welche Aktion gewählt werden soll. Go Spielbaum / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down -

9 .. Teilspiele / Teilspiel ist der Restspielbaum, der von einem Knoten ausgeht, einschließlich der Bewertungen, die zu den Endknoten des Restspielbaums gehören (=ein Knoten, der kein Endknoten ist, und alle darauf folgenden Knoten) Definition: Sei Γ ein teilspiel von Γ. Dann induziert jede Strategie s vonγeine Strategie s vonγ dadurch, dass Züge von s, die sich auf Knoten in Γ beziehen übernommen werden. 7 Go Teilspiele / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down - 9

10 .. Gleichgewichte in sequentiellen Spielen / Definition: Ein Nash-Gleichgewicht heißt teilspielperfekt, wenn es auf jedem Teilspiel ein Nash-Gleichgewicht induziert. Backward Induction (Rollback): Analyse der Strategiewahl eines Spieler an jedem Knoten des Spiels, beginnend mit dem Endknoten Identifizieren und Streichen der Äste des Spielbaums, die von einem rationalen Spieler nicht gewählt werden Die Strategie (vollständiger Handlungsplan) eines Spielers, die erhalten bleiben, nachdem alle nicht gewählten Kanten gestrichen wurden, zeigt das Gleichgewicht. 9 safe Erwartete Auszahlung: =. Chris Lösen von Spielbäumen / Bad % Go risky Nature Good % - 4 Ann Stop Bob low -.7 Deb high. - Gleichgewicht: A: (Go, up) B: () C: (safe) D: (high) up 7 4 Ann down -

11 .. Beispiel : Raucher oder Nichtraucher? Entscheidung try continue not - + not try zukünftige Carmen heutige Carmen not not Gleichgewicht: heutige C: (not) zukünftige C: (continue) Vorteile der Reihenfolge First-mover advantage: es ist vorteilhaft, den ersten Zug zu haben Second-mover advantage: es ist vorteilhaft den zweiten Zug zu haben Beispiel: Preissetzung In einigen Spielen ist das Ergebnis durch den Aufbau des Spiels bestimmt und die Reihenfolge der Züge spielt keine Rolle.

12 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen a) X a b c Y Y Y d e f g h i X Y Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen b) Spieler a b Spieler Spieler c d e f S: S: S: 4

13 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen c) A a b Zufall / / B B c d e f A: B: Übung Unternehmen A kann eine Abteilung F&E aufbauen, die Mio. Euro pro Jahr kostet. Diese Entscheidung ist allgemein bekannt (common knowledge). Sie gestattet, flexibel auf den Markteintritt eines weiteren Unternehmens zu reagieren. Bleibt A allein im Markt, so macht es einen Gewinn von Mio. Euro pro Jahr (ohne Aufwendungen F&E). Entscheidet sich Unternehmen B zu einem späteren Zeitpunkt in den Markt einzutreten, so machen beide einen Gewinn von Mio. pro Jahr, falls A keine F&E- Abteilung aufgebaut hat. Falls A eine F&E-Abteilung hat, so macht A einen Gewinn von Mio. Euro (ohne F&E- Aufwendungen) und B einen Verlust von Mio. Euro. Stellen Sie die Situation als Spiel in extensiver Form dar und finden Sie das teilspielperfekte Gleichgewicht.

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Kapitel 12 Spieltheorie

Kapitel 12 Spieltheorie Kapitel 12 Spieltheorie Vor- und Nachbereitung: Varian, Chapter 28 und 29 Frank, Chapter 13 Übungsblatt 12 Klaus M. Schmidt, 2008 12.1 Einleitung Bisher haben wir Ein-Personen-Entscheidungsprobleme betrachtet.

Mehr

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Verlag Franz Vahlen München Inhaltsverzeichnis 1. Einleitung 1 1.1 Entscheidungstheorie und Spieltheorie 1 1.2 Präferenzen und Präferenzaxiome

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Konzepte und Umsetzung von strategischen Spielen

Konzepte und Umsetzung von strategischen Spielen Seminarausarbeitung: Konzepte und Umsetzung von strategischen Spielen Markus Knödler, 45478 Michael Mader, 45633 Nico Meier, 41828 Stefan Wehrenberg, 42261 Sommersemester 2015 Inhaltsverzeichnis 1 Einführung

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

12. Vorlesung Spieltheorie in der Nachrichtentechnik

12. Vorlesung Spieltheorie in der Nachrichtentechnik 12. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Evolutionäre Spieltheorie Hines (1987): Game theory s greatest success to date

Mehr

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele Prof. Dr. Karl Morasch, Dipl.Vw. Florian Bartholomae und Dipl.Vw. Marcus Wiens, Universität der Bundeswehr München Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6.

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Nullsummenspiele 1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Einige Sätze 1. Nullsummenspiele Nullsummenspiele

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 1 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 1 20. März 2008 1 / 123 Einführung Die Spieltheorie ist eine mathematische

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Lösungen zum Übungsblatt 1

Lösungen zum Übungsblatt 1 Lösungen zum Übungsblatt 1 Die Aufgabenlösungen wurden wie folgt bewertet: Aufgabe 1: Diese Aufgabe sollte schon (weitgehend) gelöst worden sein, um einen Punkt zu erzielen. Aufgabe 2: Die vorgeschlagene

Mehr

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3 Inhaltsverzeichnis 1 Einleitung 1 I Allgemeines zur Spieltheorie 3 2 Gegenstand der Spieltheorie 3 3 Geschichte der Spieltheorie 4 4 Anwendungen der Spieltheorie 9 II Theoretische Grundlagen der Spieltheorie

Mehr

Klausur zur Spieltheorie Musterlösung

Klausur zur Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten

Mehr

Spieltheorie. Der Einzelne entscheidet nicht als Einziger

Spieltheorie. Der Einzelne entscheidet nicht als Einziger 2 Spieltheorie Der Einzelne entscheidet nicht als Einziger John und Mary überlegen, wie sie ihren Freitagabend verbringen wollen. John würde lieber daheim bleiben und Videospiele spielen. Mary würde lieber

Mehr

Rauschen und Master-Slave-Strategien im Gefangenendilemma. Simon Steeg. Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503

Rauschen und Master-Slave-Strategien im Gefangenendilemma. Simon Steeg. Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503 Rauschen und Master-Slave-Strategien im Gefangenendilemma Simon Steeg Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503 Universität Dortmund Fachbereich Informatik Algorithm Engineering

Mehr

Fiktives Spiel und Verlustminimierung. Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008

Fiktives Spiel und Verlustminimierung. Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008 Fiktives Spiel und Verlustminimierung Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008 Dezimierung Übersicht Fiktives Spiel Verlustminimierung Splines Seite 2/30 Inhalt Einführung

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit

Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit I. Chickenspiel in Normalform: Anwendung Kubakrise II. Extensivform, Informationsbezirk, Strategien, Teilspielperfektheit III.

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch 2. Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n ist die Nutzenfunktion für Spieler i.

Mehr

Einführung. Spieltheorie

Einführung. Spieltheorie Einführung in die Spieltheorie von Prof. Dr. Wolfgang Leininger und PD Dr. Erwin Amann Lehrstuhl Wirtschaftstheorie Universität Dortmund Postfach 500500 D-44 Dortmund To be literate in the modern age,

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau Workshop2 Experimentelle Ökonomie, Verhaltensökonomie und angewandte Spieltheorie Zu Beginn ihres Vortrages gibt Dr. Glätzle-Rützler eine Einführung in die Begriffe Verhaltensökonomie, Spieltheorie und

Mehr

Spieltheorie Überblick, Beispiele, Anwendungen. Andreas Diekmann ETH Zürich

Spieltheorie Überblick, Beispiele, Anwendungen. Andreas Diekmann ETH Zürich Spieltheorie Überblick, Beispiele, Anwendungen Andreas Diekmann ETH Zürich Einführung mit Beispielen I. 1. Anwendungen 2. Was ist ein Spiel? 3. Entscheidungen unter Sicherheit/Risiko/Unsicherheit I. Nullsummenspiele:

Mehr

Vahlens Kurzlehrbücher. Spieltheorie. von Thomas Riechmann. 3., vollständig überarbeitete Auflage

Vahlens Kurzlehrbücher. Spieltheorie. von Thomas Riechmann. 3., vollständig überarbeitete Auflage Vahlens Kurzlehrbücher Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Spieltheorie Riechmann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

Mehr

Intelligente Spiele. Prof. Rolf Haenni. Master-Vorlesung SS 2006. http://www.iam.unibe.ch/ run/teachss06.html

Intelligente Spiele. Prof. Rolf Haenni. Master-Vorlesung SS 2006. http://www.iam.unibe.ch/ run/teachss06.html c by Rolf Haenni (2006) Seite 1 Intelligente Spiele Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland Master-Vorlesung

Mehr

LMU München - SS04 - Spieltheorie

LMU München - SS04 - Spieltheorie LMU München - SS04 - Spieltheorie Studenten des Kurses, Prof. Schottenloher 7. Juni 2004 Inhaltsverzeichnis 4 Erweiterung des Strategiekonzepts: Gemischte Strategien, beste Antwort und der Existenzsatz

Mehr

2. Spielbäume und Intelligente Spiele

2. Spielbäume und Intelligente Spiele 2. Spielbäume und Intelligente Spiele Arten von Spielen 2. Spielbäume und Intelligente Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch

Mehr

5. Spiele mit unvollständiger Information

5. Spiele mit unvollständiger Information 5. Spiele mit unvollständiger Information 5.. Grundlegende Konzepte Bisher haben wir immer angenommen, dass alle Daten des Spiels Common knowledge sind, d. h., dass alle Spielerinnen sie kennen, wissen,

Mehr

Der Beginn der Formalen Spieltheorie: Zermelo (1913)

Der Beginn der Formalen Spieltheorie: Zermelo (1913) Der Beginn der Formalen Spieltheorie: Zermelo (1913) Christoph Eichhorn 21. Juni 2004 1 Einleitung Zermelo (1913) wird oft als Beginn der formalen Spieltheorie bezeichnet. Über das von ihm behauptete/bewiesene

Mehr

1.5 Experimentelle Methoden. Die experimentelle Wirtschaftsforschung. Vorteile der experimentellen Methode

1.5 Experimentelle Methoden. Die experimentelle Wirtschaftsforschung. Vorteile der experimentellen Methode 1.5 Experimentelle Methoden Die experimentelle Wirtschaftsforschung Theoretische Methoden: z.b. Spieltheorie, Evolutionäre (Spiel)Theorien, Simulationen Empirische Methoden: z.b. Fragebögen, Feldstudien,

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Spiele aus mathematischer Sicht

Spiele aus mathematischer Sicht Spiele aus mathematischer Sicht (garantiert ohne Formeln) 3. Deutsche Spielautorentage Weilburg 14.-16.03.2008 Jörg Bewersdorff www.bewersdorff-online.de Gewidmet Prof. Dr. Hans-Werner Bewersdorff * Neuwied,

Mehr

The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games

The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games Experimentelle Wirtschaftsforschung, Sommersemester 8 Zusatzaufgabe The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games Gary Bornstein,

Mehr

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg.

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg. Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre Spieltheorie Prof. Dr. Gernot Sieg Übungsaufgaben Wintersemester 2002/2003 III Inhaltsverzeichnis 1 Statische

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

Glück im Spiel. Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee?

Glück im Spiel. Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee? Glück im Spiel Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee? Vortrag zum Moonlight Mathematikum Langenfeld 24.11.2011 Jörg Bewersdorff www.bewersdorff-online.de Glück

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Ist das Leben ein Spiel? angestrebter akademischer Grad. Magister der Naturwissenschaften (Mag. rer.nat.

DIPLOMARBEIT. Titel der Diplomarbeit. Ist das Leben ein Spiel? angestrebter akademischer Grad. Magister der Naturwissenschaften (Mag. rer.nat. DIPLOMARBEIT Titel der Diplomarbeit Ist das Leben ein Spiel? Spieltheorie für den Mathematikunterricht der Sekundarstufe II mit besonderer Berücksichtigung der extensiven Spielform angestrebter akademischer

Mehr

Das Zahlenwahlspiel. Inhaltsverzeichnis. 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3

Das Zahlenwahlspiel. Inhaltsverzeichnis. 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3 Europa Universität Viadrina Seminar: Spieltheorie und Verhalten Dozent: Prof. Dr. Bolle WS 2008/09 Inhaltsverzeichnis 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3 2. Theoretischer

Mehr

Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory

Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory Nico Grupp Betreuer: Paul Harrenstein, Axel Hoppe Verantw. Hochschullehrer: Prof. Andreas Butz DA Antrittsvortrag Nico Grupp

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Ein Transfer-Paradoxon bei besteuerten Matrixspielen

Ein Transfer-Paradoxon bei besteuerten Matrixspielen Ein Transfer-Paradoxon bei besteuerten Matrixspielen Diplomarbeit zur Erlangung des akademischen Grades Diplom-Mathematikerin Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

PPP Verschönerung oder Ausverkauf? Spieltheoretische Analyse und Wege aus dem Dilemma

PPP Verschönerung oder Ausverkauf? Spieltheoretische Analyse und Wege aus dem Dilemma Spieltheoretische Analyse und Wege aus dem Dilemma Aufbau der Präsentation 1. Einführung 2. 3. Public Private Partnership 4. Spieltheorietische Ansätze für Public Private Partnership 5. Controlling 6.

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2013 12.8.2013 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2014 4.8.2014 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: MUSTERLÖSUNG Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten.

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN 1. Die Effizienz von Märkten a) Partialanalytische Betrachtung Effizienz = genau das wird produziert, was es wert

Mehr

Multiagent Interactions

Multiagent Interactions Veranstaltung: Agentensysteme SS0 Veranstalter: Alexa Breuing Julia Tolksdorf Vortragende: Florian Follmer Thomas Schöpping Übersicht Motivation Definitionen Spieltheoretische Ansätze Beispiel: Prisoner

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:

Mehr

Vom Amateur zum Großmeister

Vom Amateur zum Großmeister Vom Amateur zum Großmeister - von Spielbäumen und anderen Wäldern - ProInformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 1 Übersicht zum Inhalt 1) Es war einmal... Tic-Tac-Toe! 2) Das unbesiegbare

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Anne Neumann 21. Oktober 2015 Anne Neumann EWF 21. Oktober 2015 1 / 9 Inhaltsverzeichnis 1 Grobgliederung 2 Grundlagen Anne Neumann EWF 21. Oktober 2015 2 / 9 Grobgliederung

Mehr

Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling

Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling KUC Thema Grundlagen der Entscheidungstheorie, Überblick Kostenmanagement und Controlling, einfache Kennzahlen und Kennzahlensysteme

Mehr

11. Rent-Seeking 117

11. Rent-Seeking 117 117 Definitionen Gewinnstreben: Vorhandene Ressourcen werden so eingesetzt, dass Einkommen entsteht und die Differenz aus Einkommen und Kosten maximal wird. Rent-Seeking: Vorhandene Ressourcen werden eingesetzt,

Mehr

Seminararbeit aus dem Fach Mathematik

Seminararbeit aus dem Fach Mathematik Städt. Heinrich-Heine-Gymnasium Seminararbeit aus dem Fach Mathematik Thema: Einführung in die kombinatorische Spieltheorie mit anschließender Betrachtung von Lösungsalgorithmen am Beispiel Vier gewinnt

Mehr

Das griechische Dilemma: Eine spieltheoretische Betrachtung

Das griechische Dilemma: Eine spieltheoretische Betrachtung Das griechische Dilemma: Eine spieltheoretische Betrachtung Kristin Berthold European University Viadrina Frankfurt (Oder) Department of Business Administration and Economics Discussion Paper No. 370 June

Mehr

Entscheidungsbaum und Rollback-Verfahren

Entscheidungsbaum und Rollback-Verfahren Entscheidungen unter Unsicherheit 1 Sequentielle (Investitions-)Entscheidungen Normative Entscheidungstheorie und Rollback-Verfahren Entscheidungen unter Unsicherheit 2 Normative Entscheidungstheorie Ein

Mehr

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Prof. Dr. Michel Clement Universität Hamburg Prof. Dr. Jan Becker KLU Prof. Dr. Markus Nöth Universität Hamburg Prof. Dr. Michel Clement

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Spieltheorie. PD Dr. M. Pasche. Friedrich-Schiller-Universität Jena. Creative Commons Namensnennung 2.0 Deutschland Lizenz 2007

Spieltheorie. PD Dr. M. Pasche. Friedrich-Schiller-Universität Jena. Creative Commons Namensnennung 2.0 Deutschland Lizenz 2007 S.1 Spieltheorie PD Dr. M. Pasche Friedrich-Schiller-Universität Jena Creative Commons Namensnennung 2.0 Deutschland Lizenz 2007 Fehlerreport bitte an: markus@pasche.name S.2 Üersicht: 1. Einführung: Spieltheorie

Mehr

KI und Sprachanalyse (KISA)

KI und Sprachanalyse (KISA) Folie 1 KI und Sprachanalyse (KISA) Studiengänge DMM, MI (B. Sc.) Sommer Semester 15 Prof. Adrian Müller, PMP, PSM1, CSM HS Kaiserslautern e: adrian.mueller@ hs-kl.de Folie 2 ADVERSIALE SUCHE Spiele: Multi-Agenten

Mehr

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09.

Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09. Abstract zum Thema Handelssysteme Erfolg und Vermögensrückgänge angefertigt im Rahmen der Lehrveranstaltung Nachrichtentechnik von: Eric Hansen, eric-hansen@gmx.de am: 07.09.01 Einleitung: Handelssysteme

Mehr

Dies ist die entscheidende Erkenntnis, um die es in diesem Buch geht. Nach Abschluss der Lektüre werden Sie verstehen, was genau ich damit meine.

Dies ist die entscheidende Erkenntnis, um die es in diesem Buch geht. Nach Abschluss der Lektüre werden Sie verstehen, was genau ich damit meine. Das Geheimnis der Spitzenspieler Das Spiel der Quoten No-Limit Hold em ist ein Spiel der Quoten. Liegen Sie mit Ihren Quoten grundlegend falsch, können Sie trotz noch so großem Engagement kein Gewinner

Mehr

Proseminar: Geschichte des Computers Schachprogrammierung Die Digitale Revolution

Proseminar: Geschichte des Computers Schachprogrammierung Die Digitale Revolution Die Digitale Revolution Internet 3D-Drucker Quants Singularität 27.02.14 Johannes Polster Das Spiel der Könige Sehr altes Spiel: Entstehung vor 1500 Jahren Weltberühmt Strategisches Spiel Kein Glück, Intelligenz,

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Strategien bei der Entwicklung und Modellierung von Poker-Agenten

Strategien bei der Entwicklung und Modellierung von Poker-Agenten Strategien bei der Entwicklung und Modellierung von Poker-Agenten Andreas Eismann TU Darmstadt Technische Universität Darmstadt Fachbereich Informatik Knowledge Engineering 31.3.2008 1 1. Einleitung /

Mehr

Gewinnbeteiligung und Betriebsgröße: Welche Rolle spielt die Teamproduktion? John S. Heywood* und Uwe Jirjahn**

Gewinnbeteiligung und Betriebsgröße: Welche Rolle spielt die Teamproduktion? John S. Heywood* und Uwe Jirjahn** Gewinnbeteiligung und Betriebsgröße: Welche Rolle spielt die Teamproduktion? John S. Heywood* und Uwe Jirjahn** * University of Wisconsin-Milwaukee ** Leibniz Universität Hannover Gliederung 1. Motivation

Mehr

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40 Spieltheorie Miriam Polzer 16.7.2013 Miriam Polzer Spieltheorie 16.7.2013 1 / 40 1 Grundlagen 2 Minimax und Alpha-Beta-Pruning 3 Nim-Spiele 4 Josephus-Problem Miriam Polzer Spieltheorie 16.7.2013 2 / 40

Mehr

Ökonomische Analyse des Unternehmensverhaltens

Ökonomische Analyse des Unternehmensverhaltens Ökonomische Analyse des Unternehmensverhaltens M. Sc. Kernfeld Modul fld d l Unternehmensstrategie und Markterfolg Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie und Wettbewerbspolitik

Mehr

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft?

Übungsaufgabe 7: Ziele der BWL. a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? Übungsaufgabe 7: Ziele der BWL a) Welche Ziele hat die Betriebswirtschaftslehre als Wissenschaft? b) Kosiol und Gutenberg vertreten verschiedene Auffassungen, wie ein Betrieb zu kennzeichnen ist. Hat dies

Mehr

WWW.INFINITYTHEGAME.COM WWW.ULISSES-SPIELE.DE

WWW.INFINITYTHEGAME.COM WWW.ULISSES-SPIELE.DE Eskalationsliga Regeln & spiele 1 bis 5 WWW.INFINITYTHEGAME.COM WWW.ULISSES-SPIELE.DE : ESKALATIONSLIGA Die folgenden Regeln gelten für Spiele, für die ein Classic League Pack, ein Lowcost League Pack

Mehr

Mikroökonomik 11. Vorlesungswoche

Mikroökonomik 11. Vorlesungswoche Mikroökonomik 11. Vorlesungswoche Tone Arnold Universität des Saarlandes 6. Januar 2008 Tone Arnold (Universität des Saarlandes) Mikroökonomik 11. Vorlesungswoche 6. Januar 2008 1 / 67 Oligopoltheorie

Mehr

Mehr als virtuelle Klausuren. Dr. Sabine Hemsing

Mehr als virtuelle Klausuren. Dr. Sabine Hemsing Online- Assessment Mehr als virtuelle Klausuren Dr. Sabine Hemsing Der VCRP Initiierung und Förderung Support und Beratung Information und Ressourcen Technologie und Service Entwicklung und Politik Koordination

Mehr

Zusammenfassung Strategisches Management By Fabian Flohrmann

Zusammenfassung Strategisches Management By Fabian Flohrmann Zusammenfassung Strategisches Management By Fabian Flohrmann 2. Zielsetzung Umweltanalyse: externe Sicht / Informationen werden gegeben Chance & Risiken Unternehmensanalyse: interne Sicht / Informationen

Mehr

Rationale und irrationale Entscheidungen

Rationale und irrationale Entscheidungen Rationale und irrationale Entscheidungen Martina Klein Die von Daniel Kahneman und Amos Tversky i entwickelte Prospect Theorie widmet sich der Beschreibung von Entscheidungssituationen. Es wurde dabei

Mehr

Klausur Basismodul Einführung in die Volkswirtschaftslehre

Klausur Basismodul Einführung in die Volkswirtschaftslehre Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Volkswirtschaftslehre Makroökonomik PD Dr. Markus Pasche Klausur Basismodul Einführung in die Volkswirtschaftslehre

Mehr

Nachweis über die Fähigkeit, selbständig eine wissenschaftliche Fragestellung unter Benutzung der einschlägigen Literatur zu lösen und darzustellen.

Nachweis über die Fähigkeit, selbständig eine wissenschaftliche Fragestellung unter Benutzung der einschlägigen Literatur zu lösen und darzustellen. Das Verfassen einer Hausarbeit Ziel einer Hausarbeit: Nachweis über die Fähigkeit, selbständig eine wissenschaftliche Fragestellung unter Benutzung der einschlägigen Literatur zu lösen und darzustellen.

Mehr

10. Vorlesung Spieltheorie in der Nachrichtentechnik

10. Vorlesung Spieltheorie in der Nachrichtentechnik 10. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spiele - Stabile Paarungen Wir studieren Märkte mit zweiseitigen

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Offenlegungsbericht gemäß Instituts-Vergütungsverordnung (InstitutsVergV) für das Geschäftsjahr 2014/2015. der ODDO SEYDLER BANK AG

Offenlegungsbericht gemäß Instituts-Vergütungsverordnung (InstitutsVergV) für das Geschäftsjahr 2014/2015. der ODDO SEYDLER BANK AG gemäß (InstitutsVergV) für das Geschäftsjahr 2014/2015 der ODDO SEYDLER BANK AG Stand: Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Geschäftsmodell... 3 3. Angaben zur Einhaltung der

Mehr

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie INSTITUT FÜR ANGEWANDTE SYSTEMFORSCHUNG UND OPERATIONS RESEARCH (IASFOR) STUDENTENPROTOKOLLE zum Oberseminar im Anwendungsfach Anwendungen der Spieltheorie Herausgeber: Rudolf Avenhaus Fritz Lehmann Andreas

Mehr

2. Spiele in Normalform mit vollständiger Information

2. Spiele in Normalform mit vollständiger Information 2. Spiele in Normalform mit vollständiger Information Zunächst müssen wir klären, wie wir ein Spiel formal beschreiben. Für nichtkooperative Spiele gibt es (im wesentlichen) zwei Möglichkeiten dies zu

Mehr