Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Größe: px
Ab Seite anzeigen:

Download "Spieltheorie mit. sozialwissenschaftlichen Anwendungen"

Transkript

1 .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

2 .. Motivation: Warum Spieltheorie? Spiele in vielen Situationen des täglichen Lebens WGs und Familien Professoren und Studenten Verabredungen Weitere Anwendungsgebiete Politik und Wirtschaft Konfliktbewältigung Evolutionäre Biologie Sport Der Beginn der Spieltheorie 944 Theory of Games and Economic Behavior Oskar Morgenstern & John Neumann 4

3 .. Entscheidungen vs Spiele Entscheidung: eine Situation in der eine Person zwischen verschiedenen Alternativen wählt ohne die Reaktion Dritter zu berücksichtigen Spiel: eine strategische Entscheidungssituation, d.h. Das Ergebnis hängt von den Entscheidungen mehrerer Entscheidungsträger ab, so dass ein einzelner das Ergebnis nicht unabhängig von der Wahl der anderen bestimmen kann. Jeder Entscheidungsträger ist sich dieser Interdependenz bewusst und geht davon aus, dass sich alle anderen ebenfalls der Interdependenzen bewusst sind. Jeder berücksichtigt die gegenseitigen Abhängigkeiten bei seiner Entscheidung. Spiele mit sequentiellen und simultanen Zügen Sequentielle Spiele (Spiele in extensiver Form): die Spieler ziehen nacheinander Beispiel: Schach Spiele mit simultanen Zügen (Matrixspiele, Spiele in Normalform): Die Spieler ziehen gleichzeitig ohne die Züge der anderen Spieler zu beobachten. Beispiel: Entwicklung neuer Medikamente in der Pharmaindustrie

4 .. Interessenskonflikte der Spieler Nullsummenspiel: ein Spieler gewinnt den Verlust des anderen Vollständiger Interessenskonflikt zwischen den Spielern Spiele führen oftmals zu Gewinnen für beide Spieler und sind keine Nullsummenspiele. Beispiel: Joint Ventures 7 Einmalige vs wiederholte Spiele Einmaliges Spiel (one-shot game): es gibt nur eine Interaktion zwischen den Spielern Keine Information über den Gegner vorhanden Wiederholtes Spiel: wiederholte Interaktionen zwischen den Spielern Mit dem gleichen Gegner: Reputation Beispiel: langfristige Geschäftsverbindungen Mit wechselnden Gegnern: Informationen über das übliche Verhalten Beispiel: Preisverhandlungen im Türkischen Basar 4

5 .. Information Vollständige Information: Jeder Spieler verfügt über alle Informationen Beispiel: Schach Unvollständige Information Externe Unsicherheit: Es herrscht Unsicherheit über verschiedene Variablen (z.b. Wetter) Strategische Unsicherheit: über die letzten Züge des Gegners Asymmetrische Information: einige Spieler verfügen über mehr Informationen als andere Beispiel: Arbeitsmarkt 9 Kooperative vs Nichtkooperative Spiele Kooperative Spiele: die Spieler können Verträge durchsetzen Beispiele: Europäische Union Nichtkooperative Spiele: Kooperation muss sich von selbst durchsetzen, da es nicht durch eine dritte Partei durchsetzbar ist. Beispiel: Die EU und Nicht-Mitliedsstaaten

6 .. Beobachtungen und Experimente Theorie und Realität sollten sich jeweils auf einander beziehen: Die Realität sollte dabei helfen, die Theorie zu strukturieren Ergebnisse der Theorie sollten einer Überprüfung in der Realität stand halten. Überprüfung der Realität von strategischen Interaktionen durch: Beobachtungen Spezielle Experimente Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen

7 .. Terminologie Strategie: vollständiger Verhaltensplan Auszahlung (Payoff): Nutzen eines Ergebnisses für einen Spieler Erwartete Auszahlung: Wahrscheinlichkeitsgewichtete durchschnittliche Auszahlung Rationalität: Ein Spieler ist in seinen Auszahlungen konsistent und wählt diejenige Strategie, die für ihn am besten ist. Das Nash-Gleichgewicht Definition: Eine Strategiekombination s*=(s *,,s m *) heißt Nash-Gleichgewicht, wenn s i * beste Antwort ist auf s -i * für alle i=,,m. Kein Spieler sollte von seiner Strategie abweichen wollen, nachdem er die Aktionen seiner Gegner beobachten konnte, d.h. die gewählte Strategie ist die beste Antwort auf die Strategien der anderen Spieler. John Nash (*9) Mathematiker & Ökonom Nobelpreis für Wirtschaftswissenschaften (994) 4 7

8 .. Spielbaum / Spielbaum: Präsentation eines Spieles in extensiver Form bestehend aus Knoten und Kanten Knoten: Punkt an dem eine Kante beginnt oder endet Kante (Ast): Jede an einem Knoten beginnende Kante präsentiert eine Strategie, die am Knoten gewählt werden kann. Endknoten: Endpunkt des Spiels, an dem keine weiteren Aktionen möglich sind und die Auszahlungen der Spieler realisiert werden. Strategie: eine Aktion an einem Knoten des Spielbaums Strategie: ein vollständiger Verhaltensplan für einen Spieler, der für jeden Knoten angibt, welche Aktion gewählt werden soll. Go Spielbaum / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down -

9 .. Teilspiele / Teilspiel ist der Restspielbaum, der von einem Knoten ausgeht, einschließlich der Bewertungen, die zu den Endknoten des Restspielbaums gehören (=ein Knoten, der kein Endknoten ist, und alle darauf folgenden Knoten) Definition: Sei Γ ein teilspiel von Γ. Dann induziert jede Strategie s vonγeine Strategie s vonγ dadurch, dass Züge von s, die sich auf Knoten in Γ beziehen übernommen werden. 7 Go Teilspiele / Ann Stop safe Chris Bad % risky Natur Good % - 4 Bob low -.7 Deb high. - up 7 4 Ann down - 9

10 .. Gleichgewichte in sequentiellen Spielen / Definition: Ein Nash-Gleichgewicht heißt teilspielperfekt, wenn es auf jedem Teilspiel ein Nash-Gleichgewicht induziert. Backward Induction (Rollback): Analyse der Strategiewahl eines Spieler an jedem Knoten des Spiels, beginnend mit dem Endknoten Identifizieren und Streichen der Äste des Spielbaums, die von einem rationalen Spieler nicht gewählt werden Die Strategie (vollständiger Handlungsplan) eines Spielers, die erhalten bleiben, nachdem alle nicht gewählten Kanten gestrichen wurden, zeigt das Gleichgewicht. 9 safe Erwartete Auszahlung: =. Chris Lösen von Spielbäumen / Bad % Go risky Nature Good % - 4 Ann Stop Bob low -.7 Deb high. - Gleichgewicht: A: (Go, up) B: () C: (safe) D: (high) up 7 4 Ann down -

11 .. Beispiel : Raucher oder Nichtraucher? Entscheidung try continue not - + not try zukünftige Carmen heutige Carmen not not Gleichgewicht: heutige C: (not) zukünftige C: (continue) Vorteile der Reihenfolge First-mover advantage: es ist vorteilhaft, den ersten Zug zu haben Second-mover advantage: es ist vorteilhaft den zweiten Zug zu haben Beispiel: Preissetzung In einigen Spielen ist das Ergebnis durch den Aufbau des Spiels bestimmt und die Reihenfolge der Züge spielt keine Rolle.

12 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen a) X a b c Y Y Y d e f g h i X Y Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen b) Spieler a b Spieler Spieler c d e f S: S: S: 4

13 .. Übung Bestimmen Sie die Gleichgewichte in den folgenden Spielen c) A a b Zufall / / B B c d e f A: B: Übung Unternehmen A kann eine Abteilung F&E aufbauen, die Mio. Euro pro Jahr kostet. Diese Entscheidung ist allgemein bekannt (common knowledge). Sie gestattet, flexibel auf den Markteintritt eines weiteren Unternehmens zu reagieren. Bleibt A allein im Markt, so macht es einen Gewinn von Mio. Euro pro Jahr (ohne Aufwendungen F&E). Entscheidet sich Unternehmen B zu einem späteren Zeitpunkt in den Markt einzutreten, so machen beide einen Gewinn von Mio. pro Jahr, falls A keine F&E- Abteilung aufgebaut hat. Falls A eine F&E-Abteilung hat, so macht A einen Gewinn von Mio. Euro (ohne F&E- Aufwendungen) und B einen Verlust von Mio. Euro. Stellen Sie die Situation als Spiel in extensiver Form dar und finden Sie das teilspielperfekte Gleichgewicht.

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Spieltheoretischer Ansatz für selbstorganisierende Systeme

Spieltheoretischer Ansatz für selbstorganisierende Systeme Spieltheoretischer Ansatz für selbstorganisierende Systeme Institut für Informatik 27. Juni 2006 Inhaltsverzeichnis 1 Ziel des Aufsatz 2 Geschichte 3 Einführung 4 Das Spiel Experiment 5 Konzepte zur Lösung

Mehr

Kapitel 12 Spieltheorie

Kapitel 12 Spieltheorie Kapitel 12 Spieltheorie Vor- und Nachbereitung: Varian, Chapter 28 und 29 Frank, Chapter 13 Übungsblatt 12 Klaus M. Schmidt, 2008 12.1 Einleitung Bisher haben wir Ein-Personen-Entscheidungsprobleme betrachtet.

Mehr

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Verlag Franz Vahlen München Inhaltsverzeichnis 1. Einleitung 1 1.1 Entscheidungstheorie und Spieltheorie 1 1.2 Präferenzen und Präferenzaxiome

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form Vorlesung: Nicht-kooperative Spieltheorie Teil 5: Spiele in extensiver Form Dr. Thomas Krieger Wintertrimester 29 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie Das Steuer-Spiel nach Selten

Mehr

10. Vorlesung. 12. Dezember 2006 Guido Schäfer

10. Vorlesung. 12. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit

Mehr

Konzepte und Umsetzung von strategischen Spielen

Konzepte und Umsetzung von strategischen Spielen Seminarausarbeitung: Konzepte und Umsetzung von strategischen Spielen Markus Knödler, 45478 Michael Mader, 45633 Nico Meier, 41828 Stefan Wehrenberg, 42261 Sommersemester 2015 Inhaltsverzeichnis 1 Einführung

Mehr

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15

1. Einführung. 1.1 Literatur. Klaus M. Schmidt. Spieltheorie, Wintersemester 2014/15 1. Einführung Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 1. Einführung Spieltheorie, Wintersemester 2014/15 1 / 10 1.1 Literatur Mit einem der folgenden

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

12. Vorlesung Spieltheorie in der Nachrichtentechnik

12. Vorlesung Spieltheorie in der Nachrichtentechnik 12. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Evolutionäre Spieltheorie Hines (1987): Game theory s greatest success to date

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Strategische Züge 1. Einführung: Strategische Züge 2. Bedingungslose Züge 3. Bedingte Züge Drohung Versprechen

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3 Übersicht Teil : Spiele mit simultanen Spielzügen und reinen : Diskrete Sequentielle Spiele (Kapitel 3) Teil Diskrete () Reine Simultane Spiele Stetige (Kapitel 5) Gemischte (Kapitle 7 & 8) Kapitel 6 Übersicht

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

... sondern auch von den Entscheidungen anderer Akteure

... sondern auch von den Entscheidungen anderer Akteure 1 Was ist Spieltheorie? Spieltheorie untersucht Situationen, in denen ökonomische Akteure miteinander interagieren Das bedeutet: Die Konsequenzen einer Entscheidung für mich hängen nicht nur von meiner

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele Prof. Dr. Karl Morasch, Dipl.Vw. Florian Bartholomae und Dipl.Vw. Marcus Wiens, Universität der Bundeswehr München Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information Spieltheorie Teil 1: Statische Spiele mit vollständiger Information 1 Worum geht es? Wir untersuchen Situationen, in denen alle Entscheidungsträger (Agenten, Spieler) rational sind, jeder Spieler eine

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6.

1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Nullsummenspiele 1. Was sind Nullsummenspiele? 2. Dominante Strategien 3. Sattelpunkt 4. Spiele ohne Sattelpunkt: Gemischte Strategien 5. Beispiele 6. Einige Sätze 1. Nullsummenspiele Nullsummenspiele

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 1 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 1 20. März 2008 1 / 123 Einführung Die Spieltheorie ist eine mathematische

Mehr

Lösungen zum Übungsblatt 1

Lösungen zum Übungsblatt 1 Lösungen zum Übungsblatt 1 Die Aufgabenlösungen wurden wie folgt bewertet: Aufgabe 1: Diese Aufgabe sollte schon (weitgehend) gelöst worden sein, um einen Punkt zu erzielen. Aufgabe 2: Die vorgeschlagene

Mehr

Mikroökonomik II/Makroökonomik II

Mikroökonomik II/Makroökonomik II Mikroökonomik II/Makroökonomik II Prof. Dr. Maik Heinemann Universität Lüneburg Institut für Volkswirtschaftslehre Wirtschaftstheorie und Makroökonomik heinemann@uni-lueneburg.de Wintersemester 2007/2008

Mehr

Klausur zur Spieltheorie Musterlösung

Klausur zur Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten

Mehr

Nomen (non) est omen oder: Sind Computerspiele überhaupt Spiele?

Nomen (non) est omen oder: Sind Computerspiele überhaupt Spiele? Nomen (non) est omen oder: Sind Computerspiele überhaupt Spiele? Eigentlich eine blöde Frage, oder? Steckt doch schon im Namen drin: ComputerSPIELE Trotzdem sehen viele dies anders! Ein Name muss ja nicht

Mehr

Spieltheorie. Der Einzelne entscheidet nicht als Einziger

Spieltheorie. Der Einzelne entscheidet nicht als Einziger 2 Spieltheorie Der Einzelne entscheidet nicht als Einziger John und Mary überlegen, wie sie ihren Freitagabend verbringen wollen. John würde lieber daheim bleiben und Videospiele spielen. Mary würde lieber

Mehr

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3

Inhaltsverzeichnis. I Allgemeines zur Spieltheorie 3. II Theoretische Grundlagen der Spieltheorie 10. 1 Einleitung 1. 2 Gegenstand der Spieltheorie 3 Inhaltsverzeichnis 1 Einleitung 1 I Allgemeines zur Spieltheorie 3 2 Gegenstand der Spieltheorie 3 3 Geschichte der Spieltheorie 4 4 Anwendungen der Spieltheorie 9 II Theoretische Grundlagen der Spieltheorie

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

Fiktives Spiel und Verlustminimierung. Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008

Fiktives Spiel und Verlustminimierung. Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008 Fiktives Spiel und Verlustminimierung Seminarvortrag von Alexander Marinc zur TUD Computer Poker Challenge 2008 Dezimierung Übersicht Fiktives Spiel Verlustminimierung Splines Seite 2/30 Inhalt Einführung

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Übersicht Teil 2 Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Kapitel 5 1 Kapitel 5 Übersicht Teil 2 2 Übersicht Reine Strategien als stetige Variablen

Mehr

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau Workshop2 Experimentelle Ökonomie, Verhaltensökonomie und angewandte Spieltheorie Zu Beginn ihres Vortrages gibt Dr. Glätzle-Rützler eine Einführung in die Begriffe Verhaltensökonomie, Spieltheorie und

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Rauschen und Master-Slave-Strategien im Gefangenendilemma. Simon Steeg. Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503

Rauschen und Master-Slave-Strategien im Gefangenendilemma. Simon Steeg. Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503 Rauschen und Master-Slave-Strategien im Gefangenendilemma Simon Steeg Algorithm Engineering Report TR06-2-011 Dezember 2006 ISSN 1864-4503 Universität Dortmund Fachbereich Informatik Algorithm Engineering

Mehr

wie in statischen Bayesianischen Spielen... doch dann ziehen die Spieler sequentiell

wie in statischen Bayesianischen Spielen... doch dann ziehen die Spieler sequentiell KAP 18. Dynamische Spiele unter unvollständiger Information Betrachten nun folgende Situation: wie in statischen Bayesianischen Spielen...... wählt zunächst Natur die Typen der Spieler doch dann ziehen

Mehr

Mehrstufige Spiele mit beobachtbaren Handlungen. Rückwärtsinduktion und Teilspielperfektheit. 3.2 Wiederholte Spiele und kooperatives Verhalten

Mehrstufige Spiele mit beobachtbaren Handlungen. Rückwärtsinduktion und Teilspielperfektheit. 3.2 Wiederholte Spiele und kooperatives Verhalten . Einführung: Idee, Beispiele, formale Darstellung. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information Mehrstufige

Mehr

Intelligente Spiele. Prof. Rolf Haenni. Master-Vorlesung SS 2006. http://www.iam.unibe.ch/ run/teachss06.html

Intelligente Spiele. Prof. Rolf Haenni. Master-Vorlesung SS 2006. http://www.iam.unibe.ch/ run/teachss06.html c by Rolf Haenni (2006) Seite 1 Intelligente Spiele Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland Master-Vorlesung

Mehr

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch 2. Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n ist die Nutzenfunktion für Spieler i.

Mehr

Mikroökonomik. Spieltheorie. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49

Mikroökonomik. Spieltheorie. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49 Mikroökonomik Spieltheorie Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49 Gliederung Einführung Haushaltstheorie Unternehmenstheorie Vollkommene Konkurrenz und

Mehr

Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit

Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit Sequentielle Spiele, Glaubwürdigkeit von Drohungen und Teilspielperfektheit I. Chickenspiel in Normalform: Anwendung Kubakrise II. Extensivform, Informationsbezirk, Strategien, Teilspielperfektheit III.

Mehr

Einführung. Spieltheorie

Einführung. Spieltheorie Einführung in die Spieltheorie von Prof. Dr. Wolfgang Leininger und PD Dr. Erwin Amann Lehrstuhl Wirtschaftstheorie Universität Dortmund Postfach 500500 D-44 Dortmund To be literate in the modern age,

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Glück im Spiel. Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee?

Glück im Spiel. Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee? Glück im Spiel Warum lande ich bei Monopoly häufiger auf dem Opernplatz als auf der Schlossallee? Vortrag zum Moonlight Mathematikum Langenfeld 24.11.2011 Jörg Bewersdorff www.bewersdorff-online.de Glück

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

5. Spiele mit unvollständiger Information

5. Spiele mit unvollständiger Information 5. Spiele mit unvollständiger Information 5.. Grundlegende Konzepte Bisher haben wir immer angenommen, dass alle Daten des Spiels Common knowledge sind, d. h., dass alle Spielerinnen sie kennen, wissen,

Mehr

Eine Laudatio in fünf Sätzen

Eine Laudatio in fünf Sätzen Reinhard Selten Eine Laudatio in fünf Sätzen Erster Satz: Wanderschaft Reinhard Selten wurde 1930 in Breslau geboren. Seine Kindheit war nicht einfach. Bereits 1942 verstarb sein Vater. Reinhard selbst

Mehr

Multiagent Interactions

Multiagent Interactions Veranstaltung: Agentensysteme SS0 Veranstalter: Alexa Breuing Julia Tolksdorf Vortragende: Florian Follmer Thomas Schöpping Übersicht Motivation Definitionen Spieltheoretische Ansätze Beispiel: Prisoner

Mehr

11. Rent-Seeking 117

11. Rent-Seeking 117 117 Definitionen Gewinnstreben: Vorhandene Ressourcen werden so eingesetzt, dass Einkommen entsteht und die Differenz aus Einkommen und Kosten maximal wird. Rent-Seeking: Vorhandene Ressourcen werden eingesetzt,

Mehr

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 Theorie des Konsumentenverhaltens Aufgabe 1 Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 ) x 1 + x

Mehr

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN 1. Die Effizienz von Märkten a) Partialanalytische Betrachtung Effizienz = genau das wird produziert, was es wert

Mehr

Vahlens Kurzlehrbücher. Spieltheorie. von Thomas Riechmann. 3., vollständig überarbeitete Auflage

Vahlens Kurzlehrbücher. Spieltheorie. von Thomas Riechmann. 3., vollständig überarbeitete Auflage Vahlens Kurzlehrbücher Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Spieltheorie Riechmann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

Mehr

LMU München - SS04 - Spieltheorie

LMU München - SS04 - Spieltheorie LMU München - SS04 - Spieltheorie Studenten des Kurses, Prof. Schottenloher 7. Juni 2004 Inhaltsverzeichnis 4 Erweiterung des Strategiekonzepts: Gemischte Strategien, beste Antwort und der Existenzsatz

Mehr

Der Beginn der Formalen Spieltheorie: Zermelo (1913)

Der Beginn der Formalen Spieltheorie: Zermelo (1913) Der Beginn der Formalen Spieltheorie: Zermelo (1913) Christoph Eichhorn 21. Juni 2004 1 Einleitung Zermelo (1913) wird oft als Beginn der formalen Spieltheorie bezeichnet. Über das von ihm behauptete/bewiesene

Mehr

The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games

The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games Experimentelle Wirtschaftsforschung, Sommersemester 8 Zusatzaufgabe The Effects of Within-Group Communication on Group Decision and Individual Choice in the Assurance and Chicken Team Games Gary Bornstein,

Mehr

1.5 Experimentelle Methoden. Die experimentelle Wirtschaftsforschung. Vorteile der experimentellen Methode

1.5 Experimentelle Methoden. Die experimentelle Wirtschaftsforschung. Vorteile der experimentellen Methode 1.5 Experimentelle Methoden Die experimentelle Wirtschaftsforschung Theoretische Methoden: z.b. Spieltheorie, Evolutionäre (Spiel)Theorien, Simulationen Empirische Methoden: z.b. Fragebögen, Feldstudien,

Mehr

Spiele aus mathematischer Sicht

Spiele aus mathematischer Sicht Spiele aus mathematischer Sicht (garantiert ohne Formeln) 3. Deutsche Spielautorentage Weilburg 14.-16.03.2008 Jörg Bewersdorff www.bewersdorff-online.de Gewidmet Prof. Dr. Hans-Werner Bewersdorff * Neuwied,

Mehr

Das Zahlenwahlspiel. Inhaltsverzeichnis. 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3

Das Zahlenwahlspiel. Inhaltsverzeichnis. 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3 Europa Universität Viadrina Seminar: Spieltheorie und Verhalten Dozent: Prof. Dr. Bolle WS 2008/09 Inhaltsverzeichnis 1. Einleitung: Vorstellung des Spiels und Aufbau der Arbeit..S. 3 2. Theoretischer

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

Spieltheorie Überblick, Beispiele, Anwendungen. Andreas Diekmann ETH Zürich

Spieltheorie Überblick, Beispiele, Anwendungen. Andreas Diekmann ETH Zürich Spieltheorie Überblick, Beispiele, Anwendungen Andreas Diekmann ETH Zürich Einführung mit Beispielen I. 1. Anwendungen 2. Was ist ein Spiel? 3. Entscheidungen unter Sicherheit/Risiko/Unsicherheit I. Nullsummenspiele:

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg.

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg. Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre Spieltheorie Prof. Dr. Gernot Sieg Übungsaufgaben Wintersemester 2002/2003 III Inhaltsverzeichnis 1 Statische

Mehr

2. Spielbäume und Intelligente Spiele

2. Spielbäume und Intelligente Spiele 2. Spielbäume und Intelligente Spiele Arten von Spielen 2. Spielbäume und Intelligente Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch

Mehr

Ein Transfer-Paradoxon bei besteuerten Matrixspielen

Ein Transfer-Paradoxon bei besteuerten Matrixspielen Ein Transfer-Paradoxon bei besteuerten Matrixspielen Diplomarbeit zur Erlangung des akademischen Grades Diplom-Mathematikerin Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik

Mehr

Übungen zu Kapitel 4: Einführung in die Spieltheorie

Übungen zu Kapitel 4: Einführung in die Spieltheorie Universität Erfurt Lehrstuhl für Mikroökonomie Prof Dr Bettina Rockenbach Übungen zu Kapitel 4: Einführung in die Spieltheorie Aufgabe 41 Spieler B Spieler A B1 B2 A1 5, 6 7, 2 A2 4, 5 9, 1 Im obigen Spiel

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Ist das Leben ein Spiel? angestrebter akademischer Grad. Magister der Naturwissenschaften (Mag. rer.nat.

DIPLOMARBEIT. Titel der Diplomarbeit. Ist das Leben ein Spiel? angestrebter akademischer Grad. Magister der Naturwissenschaften (Mag. rer.nat. DIPLOMARBEIT Titel der Diplomarbeit Ist das Leben ein Spiel? Spieltheorie für den Mathematikunterricht der Sekundarstufe II mit besonderer Berücksichtigung der extensiven Spielform angestrebter akademischer

Mehr

Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory

Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory Algorithmic Balancing of Symmetric Strategy Games Using Methods of Game Theory Nico Grupp Betreuer: Paul Harrenstein, Axel Hoppe Verantw. Hochschullehrer: Prof. Andreas Butz DA Antrittsvortrag Nico Grupp

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Anne Neumann 21. Oktober 2015 Anne Neumann EWF 21. Oktober 2015 1 / 9 Inhaltsverzeichnis 1 Grobgliederung 2 Grundlagen Anne Neumann EWF 21. Oktober 2015 2 / 9 Grobgliederung

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2013 12.8.2013 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: MUSTERLÖSUNG Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten.

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling

Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling Bakkalaureatsstudium Betriebswirtschaft Kostenmanagement und Controlling KUC Thema Grundlagen der Entscheidungstheorie, Überblick Kostenmanagement und Controlling, einfache Kennzahlen und Kennzahlensysteme

Mehr

3 Dynamische Spiele mit vollständiger Information. 3.1 Rückwärtsinduktion. Literaturhinweise zu Kapitel 3:

3 Dynamische Spiele mit vollständiger Information. 3.1 Rückwärtsinduktion. Literaturhinweise zu Kapitel 3: Spieltheorie (Winter 009/0) 3- Prof. Dr. Ana B. Ania 3 Dynamische Spiele mit vollständiger Information Literaturhinweise zu Kapitel 3: Osborne (004), Kapitel 5-7 Gibbons (99), Kapitel MasColell, Whinston,

Mehr

PPP Verschönerung oder Ausverkauf? Spieltheoretische Analyse und Wege aus dem Dilemma

PPP Verschönerung oder Ausverkauf? Spieltheoretische Analyse und Wege aus dem Dilemma Spieltheoretische Analyse und Wege aus dem Dilemma Aufbau der Präsentation 1. Einführung 2. 3. Public Private Partnership 4. Spieltheorietische Ansätze für Public Private Partnership 5. Controlling 6.

Mehr

Das griechische Dilemma: Eine spieltheoretische Betrachtung

Das griechische Dilemma: Eine spieltheoretische Betrachtung Das griechische Dilemma: Eine spieltheoretische Betrachtung Kristin Berthold European University Viadrina Frankfurt (Oder) Department of Business Administration and Economics Discussion Paper No. 370 June

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

10. Vorlesung Spieltheorie in der Nachrichtentechnik

10. Vorlesung Spieltheorie in der Nachrichtentechnik 10. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Kooperative Spiele - Stabile Paarungen Wir studieren Märkte mit zweiseitigen

Mehr

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40 Spieltheorie Miriam Polzer 16.7.2013 Miriam Polzer Spieltheorie 16.7.2013 1 / 40 1 Grundlagen 2 Minimax und Alpha-Beta-Pruning 3 Nim-Spiele 4 Josephus-Problem Miriam Polzer Spieltheorie 16.7.2013 2 / 40

Mehr

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Prof. Dr. Michel Clement Universität Hamburg Prof. Dr. Jan Becker KLU Prof. Dr. Markus Nöth Universität Hamburg Prof. Dr. Michel Clement

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

Mehr als virtuelle Klausuren. Dr. Sabine Hemsing

Mehr als virtuelle Klausuren. Dr. Sabine Hemsing Online- Assessment Mehr als virtuelle Klausuren Dr. Sabine Hemsing Der VCRP Initiierung und Förderung Support und Beratung Information und Ressourcen Technologie und Service Entwicklung und Politik Koordination

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität

Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Aufgabenblatt 4: Der Trade-off zwischen Bankenwettbewerb und Bankenstabilität Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe

Mehr

Strategien bei der Entwicklung und Modellierung von Poker-Agenten

Strategien bei der Entwicklung und Modellierung von Poker-Agenten Strategien bei der Entwicklung und Modellierung von Poker-Agenten Andreas Eismann TU Darmstadt Technische Universität Darmstadt Fachbereich Informatik Knowledge Engineering 31.3.2008 1 1. Einleitung /

Mehr

Seminararbeit aus dem Fach Mathematik

Seminararbeit aus dem Fach Mathematik Städt. Heinrich-Heine-Gymnasium Seminararbeit aus dem Fach Mathematik Thema: Einführung in die kombinatorische Spieltheorie mit anschließender Betrachtung von Lösungsalgorithmen am Beispiel Vier gewinnt

Mehr

Dies ist die entscheidende Erkenntnis, um die es in diesem Buch geht. Nach Abschluss der Lektüre werden Sie verstehen, was genau ich damit meine.

Dies ist die entscheidende Erkenntnis, um die es in diesem Buch geht. Nach Abschluss der Lektüre werden Sie verstehen, was genau ich damit meine. Das Geheimnis der Spitzenspieler Das Spiel der Quoten No-Limit Hold em ist ein Spiel der Quoten. Liegen Sie mit Ihren Quoten grundlegend falsch, können Sie trotz noch so großem Engagement kein Gewinner

Mehr

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in

Mehr

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2 Was ist Slicing?? (I) Program

Mehr

Intelligente Agenten

Intelligente Agenten Intelligente Agenten Einige einfache Überlegungen zu Agenten und deren Interaktionsmöglichkeiten mit ihrer Umgebung. Agent benutzt: Sensoren Aktuatoren (Aktoren; Effektoren) zum Beobachten/Mess seiner

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2014 4.8.2014 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Vom Amateur zum Großmeister

Vom Amateur zum Großmeister Vom Amateur zum Großmeister - von Spielbäumen und anderen Wäldern - ProInformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 1 Übersicht zum Inhalt 1) Es war einmal... Tic-Tac-Toe! 2) Das unbesiegbare

Mehr