Information Systems Engineering Seminar
|
|
- Agnes Kranz
- vor 2 Jahren
- Abrufe
Transkript
1 Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1
2 Planarität - Definition Ein Graph heißt planar dargestellt, wenn er ohne Kantenkreuzungen in der Ebene dargestellt werden kann. Ein Graph ist planar, wenn er planar dargestellt werden kann. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 2
3 Planaritätstest - zeichnerische Lösung kein guter Ansatz, da nur für kleine Graphen durchführbar (N=100? N=1000? N=10000?,...) - Die Visualisierung eines Graphen im Allgemeinen ist ein nicht-triviales Problem! Die planare Darstellung eines Graphen (falls sie existiert) ist sozusagen ein Spezialfall unter allen anderen möglichen Darstellungen. - Es können mehrere planare Darstellungen eines Graphen existieren. - Algorithmen, die auf einer gegebenen Darstellung eines Graphen aufsetzen (z.b. gut bekannte und schnelle Line- Intersection-Algorithmen), sind daher z.b. keine gute Wahl. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 3
4 Planaritätstest - Bessere Wahl sind Algorithmen, die unabhängig von der Darstellung des Graphen sind. Auswahl existierender Algorithmen: Algorithmus von Demoucron, Malgrange und Pertuiset (194) Algorithmus von Lempel, Even und Cederbaum (197) Algorithmus von Hopcroft und Tarjan (1974) Algorithmus von Shih und Hsu (1999) Algorithmus von Boyer und Myrvold (2004) Algorithmus von Fraysseix, Rosenstiehl und Mendez (200) FH AACHEN UNIVERSITY OF APPLIED SCIENCES 4
5 Planaritätstest - Bessere Wahl sind Algorithmen, die unabhängig von der Darstellung des Graphen sind. Auswahl existierender Algorithmen: Algorithmus von Demoucron, Malgrange und Pertuiset (194) Algorithmus von Lempel, Even und Cederbaum (197) Algorithmus von Hopcroft und Tarjan (1974) Algorithmus von Shih und Hsu (1999) Algorithmus von Boyer und Myrvold (2004) Algorithmus von Fraysseix, Rosenstiehl und Mendez (200) FH AACHEN UNIVERSITY OF APPLIED SCIENCES 5
6 und Pertuiset Eingabe: 2-fach zusammenhängender Graph G Ausgabe: planare Einbettung von G oder nicht planar Idee: Beginne mit einem beliebigen Kreis G' aus G (Ein Kreis ist immer planar). Betrachte nun die dadurch entstehenden sogenannten Fragmente, und versuche G' zu erweitern, indem Teile der Fragmente in Flächen von G' eingebettet werden, so dass G' aber planar bleibt. FH AACHEN UNIVERSITY OF APPLIED SCIENCES
7 und Pertuiset Fragment Für einen gegebenen Subgraphen G' = (V', E') von G definieren wir ein Fragment von G' in Bezug auf G als einen Subgraph S = (Vs, Es) von G, wobei S eine Zusammenhangskomponente von G \ G' mit allen Kanten und Knoten von G zwischen S und G' ist. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 7
8 und Pertuiset Fragment G FH AACHEN UNIVERSITY OF APPLIED SCIENCES 8
9 und Pertuiset Fragment G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 9
10 und Pertuiset Fragment S1 S G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 10
11 und Pertuiset Kontaktknoten Den Knoten v eines Fragmentes S nennt man Kontaktknoten, wenn v Vs und v V', er also sowohl zum Fragment S als auch zum Subgraphen G' gehört. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 11
12 und Pertuiset Kontaktknoten S1 S G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 12
13 und Pertuiset Kontaktknoten S1 S G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 13
14 und Pertuiset alpha-weg Ein α-weg ist ein Weg innerhalb eines Fragmentes, der zwei Kontaktknoten miteinander verbindet. Diese zwei Kontaktknoten sind Anfang und Ende des Pfades, und gleichzeit auch die einzigen Kontaktknoten entlang dieses Pfades. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 14
15 und Pertuiset alpha-weg S S2 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 15
16 und Pertuiset zulässige Fläche Eine zulässige Fläche eines Fragmentes S ist eine Fläche von G', die alle Kontaktknoten von S enthält. Die Menge aller zulässigen Flächen wird dabei mit F (S) = {u, v, w,...}, u, v, w V notiert, und enthält alle Knoten, die die Fläche einschließen. F (S) = {, u, v, w,...} bezeichnet dabei die äußere Fläche. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1
17 und Pertuiset zulässige Fläche 9 10 F1 (S1) = {, 1, 2, 3, 4, 5,, 7, 8} F2 (S1) = {1, 2, 3, 4, 5,, 7, 8} S G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 17
18 und Pertuiset Algorithmus 1. Wähle einen beliebigen Kreis aus G. Dieser Kreis ist ein planarer Graph G', planar eingebettet in die Ebene. 2. Berechne alle Flächen von G'. 3. Berechne die Menge alle Fragmente von G' bezogen auf G. 4. Ist die Menge aller Fragmente leer, so ist G' = G, und G ist planar eingebettet. Ende. 5. Berechne für jedes Fragment die Menge seiner zulässigen Flächen.. Gibt es ein Fragment, für das keine zulässige Fläche existiert kann G nicht planar eingebettet werden. Ende. 7. Gibt es ein Fragment S, für das nur eine einzige zulässige Fläche existiert, gehe zu Wähle ein Fragment S. 9. Wähle einen α-weg aus S und bette ihn in eine zulässige Fläche von S ein. Gehe zu 2. FH AACHEN UNIVERSITY OF APPLIED SCIENCES 18
19 und Pertuiset Beispiel G FH AACHEN UNIVERSITY OF APPLIED SCIENCES 19
20 und Pertuiset Beispiel S1 S G' FH AACHEN UNIVERSITY OF APPLIED SCIENCES 20
21 und Pertuiset Beispiel S1 8 7 G' F1 (S1) = {, 1, 2, 3, 4, 5,, 7, 8} F2 (S1) = {1, 2, 3, 4, 5,, 7, 8} Wähle alpha-weg FH AACHEN UNIVERSITY OF APPLIED SCIENCES 21
22 und Pertuiset Beispiel S1_1 S1_2 8 7 G' F1 (S1_1) = {1, 9, 10, 4, 3, 2} F1 (S1_2) = {1, 9, 10, 4, 3, 2} Wähle S1_1 und alpha-weg 9-2 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 22
23 und Pertuiset Beispiel S1_2 8 7 G' F1 (S1_2) = {2, 9, 10, 4, 3} Wähle S1_2 und alpha-weg 10-3 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 23
24 und Pertuiset Beispiel S2 8 7 G' F1 (S2) = {1, 2, 3, 4, 5,, 7, 8} Wähle alpha-weg FH AACHEN UNIVERSITY OF APPLIED SCIENCES 24
25 und Pertuiset Beispiel S2_ G' F1 (S2_1) = {3, 4, 5,, 11} Wähle alpha-weg 5-11 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 25
26 und Pertuiset Beispiel G' Algorithmus Ende FH AACHEN UNIVERSITY OF APPLIED SCIENCES 2
27 Information Systems Engineering Seminar Vielen Dank für die Aufmerksamkeit! Fragen!? FH AACHEN UNIVERSITY OF APPLIED SCIENCES 27
Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces
Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick
Praktikum Planare Graphen
1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University
Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten
Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen
Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling
Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de
Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
SS 2005 FAU Erlangen 20.6.2005. Eine Wegeplanungs-Strategie. Jeremy Constantin, Michael Horn, Björn Gmeiner
SS 2005 FAU Erlangen 20.6.2005 Voronoi Diagramm Eine Wegeplanungs-Strategie Jeremy Constantin, Michael Horn, Björn Gmeiner Grundseminar: Umgebungsexploration und Wegefindung mit Robotern am Beispiel "Katz
4.7 Der Algorithmus von Dinic für maximalen Fluss
4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik
Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes
Approximation in Batch and Multiprocessor Scheduling
Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs
Maximale s t-flüsse in Planaren Graphen
Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;
Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer
Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2 Was ist Slicing?? (I) Program
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
Customization (Zuschneiden)
Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum
Sommeraspekt (Lenne 3D für die Hochschule Anhalt (FH)) Matthias Pietsch, Dipl.Ing. M.Sc. m.pietsch@loel.hs-anhalt.de +49 (0) 3471 355-1140 René Krug, Dipl.Ing. M.A. r.krug@loel.hs-anhalt.de
Graphentheorie Mathe-Club Klasse 5/6
Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................
Informatik 11 Kapitel 2 - Rekursive Datenstrukturen
Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange
Statistische Untersuchungen zu endlichen Funktionsgraphen
C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
Erzeugung zufälliger Graphen und Bayes-Netze
Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache
Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.
Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Algorithmen und Datenstrukturen 2-2. Seminar -
Algorithmen und Datenstrukturen 2-2. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 2. Übungsserie: 3 Aufgaben, insgesamt 30 Punkte A4 Flußnetzwerk, Restgraphen
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
Eine molekulare Lösung des Hamiltonkreisproblems mit DNA
Eine molekulare Lösung des Hamiltonkreisproblems mit DNA Seminar Molecular Computing Bild: http://creatia2013.files.wordpress.com/2013/03/dna.gif Andreas Fehn 11. Juli 2013 Gliederung 1. Problemstellung
3. Musterlösung. Problem 1: Boruvka MST
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln
Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen
C + Ein sehr anwendungsnahes Forschungsgebiet, C 2 CH 2
Automatisiertes Zeichnen von Diagrammen* Petra Mutzel Max-Planck-Institut f. Informatik Im Stadtwald, D-6613 Saarbrucken eine ubersichtliche, moglichst uberkreuzungsarme Darstellung zu nden. Ein sehr anwendungsnahes
Komplexitätstheorie Einführung und Überblick (Wiederholung)
Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität
Software Engineering in der Praxis
Software Engineering in der Praxis Praktische Übungen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 26 Software-Metriken Josef Adersberger Marc Spisländer Lehrstuhl für Software Engineering
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
Das Studium im Fach Informatik
[Projekttage Studien- und Berufsorientierung der Jgst. 12] Fachbereich Informatik Fakultät für Mathematik und Informatik FernUniversität Hagen 22. Februar 2007 Was Informatik nicht ist Was ist Informatik?
Pratts Primzahlzertifikate
Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest
Inhalt Software-Metriken Software-Metriken mit Together FindBugs. Software-Metriken. Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer
Lill, Meitner, Föhrweiser, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 24 Software-Metriken Raimar Lill Matthias Meitner David Föhrweiser Marc Spisländer Lehrstuhl für Software Engineering Friedrich-Alexander-Universität
Guten Morgen und Willkommen zur Saalübung!
Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei
Die Koordinierungsstelle für das duale Studium an der FH Aachen
Die Koordinierungsstelle für das duale Studium an der FH Aachen Andreas Beumers M.A. Koordinator für die dualen Studiengänge FH AACHEN UNIVERSITY OF APPLIED SCIENCES WWW.FH-AACHEN.DE Koordinierungsstelle
AutoSPARQL. Let Users Query Your Knowledge Base
AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik
Algorithmen und Datenstrukturen Kapitel 10
Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.
Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,
SEODisc: Ansatz zur Erkennung von SEO-Attacken
: Ansatz zur Erkennung von SEO-Attacken Matthias Meyer 21. März 2011 TU Dortmund, G Data 1 / 18 Inhaltsverzeichnis 1 Einleitung Was ist SEO? SEO aus Angreifersicht SEO Techniken 2 Verfolgter Lösungsansatz
Architektur verteilter Anwendungen
Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei
3-schichtige Informationssystem-Architektur
3-schichtige Informationssystem-Architektur plattformunabhängig beliebige Endgeräte Client als Applikation & Applet XML über SOAP Standard plattformunabhängig objektorientierte Architektur multiuserfähig
Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik
Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus
Ein Algorithmus für die
VGG 1 Ein Algorithmus für die Visualisierung gerichteter Graphen in der Ebene (2D) Seminar Graph Drawing SS 2004 bei Prof. Bischof (Lehrstuhl für Hochleistungsrechnen) Gliederung VGG 2 Einleitung Motivation
Flüsse, Schnitte, bipartite Graphen
Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen
Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick
Alles zu seiner Zeit Projektplanung heute
Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
Wissensbasierte Systeme
WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?
Fully dynamic algorithms for the single source shortest path problem.
Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem
Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012
Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011
Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.
Petri-Netze / Eine Einführung (Teil 2)
Manuel Hertlein Seminar Systementwurf Lehrstuhl Theorie der Programmierung Wiederholung (1) Petri-Netz = bipartiter, gerichteter Graph Aufbau: Plätze (passive Komponenten) Transitionen (aktive Komponenten)
Theoretische Informatik
Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:
Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke
Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,
Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering
Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas
Einführung in die Informatik
Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester
Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der
Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit
Verteilte Systeme CS5001
CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:
Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.
Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten
Systematischer Entwurf von Wellendigitalstrukturen
Panreck and Dörrscheidt (Eds.): Frontiers in Simulation, ISBN 1-56555-229-6, pp. 61-66, c SCS Publishing House 2001. Systematischer Entwurf von Wellendigitalstrukturen Kurzfassung Karlheinz Ochs und Benno
6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen
6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus
Vorlesungen vom 5.Januar 2005
Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser
Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007
Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80
Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX
Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie
Periodische Fahrpläne und Kreise in Graphen
Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf
Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time
Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer
Einführung in Scheduling
Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung