Vorkurs Informatik WiSe 16/17

Größe: px
Ab Seite anzeigen:

Download "Vorkurs Informatik WiSe 16/17"

Transkript

1 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, Technische Universität Braunschweig, IPS

2 Inhaltsverzeichnis Vorüberlegungen Ameisen-Prinzip Dijkstra-Algorithmus Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 2

3 Einführung Routenplaner Wie finde ich den günstigsten Weg? Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 3

4 Einführung Routenplaner Wie finde ich den günstigsten Weg? Eine Möglichkeit: Alle Weg durchprobieren Kürzesten Weg wählen Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 3

5 Einführung Routenplaner Wie finde ich den günstigsten Weg? Eine Möglichkeit: Alle Weg durchprobieren Kürzesten Weg wählen Bei Computern heißt dieser Ansatz Brute-Force : Rechner haben keine Intelligenz Müssen alle Möglichkeiten durchprobieren Menschen können absurde und unwahrscheinliche Möglichkeiten verwerfen Hier schon viele Möglichkeiten, man denke an Karten mit 1000 Städten Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 3

6 Überblick Vorüberlegungen Ameisen-Prinzip Dijkstra-Algorithmus Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 4

7 Vorüberlegungen Methode der Abstraktion Wie kommt man in der Informatik zu einer besseren Lösung? Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 5

8 Vorüberlegungen Methode der Abstraktion Wie kommt man in der Informatik zu einer besseren Lösung? In zur Verfügung stehender Informationen stecken sowohl relevante als auch unwesentliche Anteile. Durch Abstraktion reduzieren Sie die Informationen auf das für die aktuelle Problemlösung Wesentliche: Dadurch können Sie sich besser auf die Aufgabe konzentrieren Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 5

9 Vorüberlegungen Informationen der Karte Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 6

10 Vorüberlegungen Informationen der Karte Namen der Städte Position der Städte Größe der Städte Verlauf der Straßen Länge der Straßen Namen und Nummern der Straßen Straßentyp Straße führt von... nach Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 6

11 Vorüberlegungen Informationen der Karte Name der Städte Position der Städte Größe der Städte Verlauf der Straßen Länge der Straßen Namen und Nummern der Straßen Straßentyp Straße führt von... nach... Wenn man nicht weiß, welche Stadt wie heißt, kann auch nicht der kürzeste Weg zwischen Imstadt und Oppenheim bestimmt werden. Es ist uns egal, wo sich die Städte genau befinden. Relevant sind nur die Straßen zwischen den Städten. Kommt in unserer Aufgabenstellung nirgendwo vor. Es kommt nur auf die Länge der Strecke an, nicht auf den Verlauf. Um die Reisestrecke zu bestimmen, brauchen wir die einzelnen Strecken zwischen den Orten. Zumindest zur Bestimmung der kürzesten Strecke irrelevant. Da es nur auf die Entfernungen, nicht auf die Zeit ankommt, ist es egal, ob Autobahn oder Feldweg gefahren wird. Wir benötigen die Informationen, von welcher Stadt zu welcher anderen eine Straße führt.

12 Vorüberlegungen Informationen der Karte Name der Städte Position der Städte Größe der Städte Verlauf der Straßen Länge der Straßen Namen und Nummern der Straßen Straßentyp Straße führt von... nach... Wenn man nicht weiß, welche Stadt wie heißt, kann auch nicht der kürzeste Weg zwischen Imstadt und Oppenheim bestimmt werden. Es ist uns egal, wo sich die Städte genau befinden. Relevant sind nur die Straßen zwischen den Städten. Kommt in unserer Aufgabenstellung nirgendwo vor. Es kommt nur auf die Länge der Strecke an, nicht auf den Verlauf. Um die Reisestrecke zu bestimmen, brauchen wir die einzelnen Strecken zwischen den Orten. Zumindest zur Bestimmung der kürzesten Strecke irrelevant. Da es nur auf die Entfernungen, nicht auf die Zeit ankommt, ist es egal, ob Autobahn oder Feldweg gefahren wird. Wir benötigen die Informationen, von welcher Stadt zu welcher anderen eine Straße führt.

13 Vorüberlegungen Abstrakte Form der Landkarte Karte wurde anhand der relevanten Daten neu gezeichnet. Die Städte wurden der Übersicht wegen durch deren Anfangsbuchstaben ersetzt. Jedoch noch Spezialitäten vorhanden: An vier Stellen kreuzen sich die Straßen, ohne Auf- und Abfahrten (Bogen) An drei Stellen schneiden sich die Straßen mit Auf- und Abfahrten (Punkt) Ein Problem sollte möglichst gleichförmig sein, um das Denken zu erleichtern Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 8

14 Vorüberlegungen Methode der Gleichformung Versuchen Sie, die verschiedenen Facetten eines Problems auf die gleichen Grundelemente zurückzuführen. Dadurch wird einerseits das Problem übersichtlicher und andererseits benötigt man weniger Lösungsansätze: Für gleichförmige Teilprobleme kann der gleiche Lösungsansatz verwendet werden Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 9

15 Vorüberlegungen Gleichformung Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 10

16 Vorüberlegungen Gleichformung Auf der Karte sind Städte als Kreise eingezeichnet. Hier kann man offenbar problemlos von einer Straße auf eine angrenzende Straße wechseln. Genau das soll auch an den mit einem Punkt gekennzeichneten Stellen möglich sein. Also tun wir einfach so, als wenn sich dort auch Städte befinden. Um eine Verwechselung mit den anderen Städten zu vermeiden, kennzeichnen wir sie mit X, Y und Z. An allen anderen Stellen ist ein Wechsel nicht möglich, daher kann auch die Kennzeichnung durch einen Bogen entfallen Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 10

17 Vorüberlegungen Gleichformung Sehen wir uns noch einmal die Tabelle mit den ursprünglich vorhandenen Informationen an Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 10

18 Vorüberlegungen Informationen der Karte Name der Städte Position der Städte Größe der Städte Verlauf der Straßen Länge der Straßen Namen und Nummern der Straßen Straßentyp Straße führt von... nach... Wenn man nicht weiß, welche Stadt wie heißt, kann auch nicht der kürzeste Weg zwischen Imstadt und Oppenheim bestimmt werden. Es ist uns egal, wo sich die Städte genau befinden. Relevant sind nur die Straßen zwischen den Städten. Kommt in unserer Aufgabenstellung nirgendwo vor. Es kommt nur auf die Länge der Strecke an, nicht auf den Verlauf. Um die Reisestrecke zu bestimmen, brauchen wir die einzelnen Strecken zwischen den Orten. Zumindest zur Bestimmung der kürzesten Strecke irrelevant. Da es nur auf die Entfernungen, nicht auf die Zeit ankommt, ist es egal, ob Autobahn oder Feldweg gefahren wird. Wir benötigen die Informationen, von welcher Stadt zu welcher anderen eine Straße führt.

19 Vorüberlegungen Gleichformung Die Städte sind immer noch an ihrer geographischen Position eingezeichnet: Ballungszentren vorhanden Straßenführung wird unübersichtlich Wir haben die Position der Städte jedoch als irrelevant eingestuft: Karte kann daher entzerrt werden Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 12

20 Vorüberlegungen Entzerrte Landkarte Es wurde lediglich die Darstellung geändert. Die Verbindungen zwischen den Städten und deren Längenangaben bleiben unverändert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 13

21 Überblick Vorüberlegungen Ameisen-Prinzip Dijkstra-Algorithmus Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 14

22 Ameisen-Prinzip Lernen von der Natur Wie kommen wir denn nun zum kürzesten Weg von Imstadt nach Oppenheim? Der direkte Ansatz, alle vollständigen Wege zu betrachten, ist ja bereits gescheitert. Vielleicht können wir von der Natur lernen: Ein Stamm Ameisen hat auf der Suche nach Futter ein ähnliches Problem: Eine Kundschafterin findet ein großes Stück Fleisch. Welchen Weg sollen die Arbeiterinnen nehmen, um die Beute am schnellsten zu sichern? Setzen wir also den Stamm Ameisen auf unseren Ausgangspunkt Imstadt (I): Fünf Wege führen von dort weg, also teilen sich unzählige Ameisen auf, um diese zu erkunden Wir nehmen an, dass alle Ameisen gleich schnell sind: Gedopt schaffen sie einen km pro Minute Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 15

23 Ameisen-Prinzip Der Aufbruch Auf der Landkarte verfolgen wir den Weg der Ameisen: Nach 34 Minuten haben sie B erreicht. Was haben wir dadurch gelernt? Um von I nach B zu kommen, gibt es garantiert keinen günstigeren Weg als den mit 34 km. Denn die Ameisen haben ja sämtliche bisher für sie möglichen Wege ausprobiert und sind nach 34 km zuerst bei B angekommen Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 16

24 Ameisen-Prinzip Die Erkundung geht weiter Wie geht es jetzt weiter? Die Ameisen, die bisher nirgendwo angekommen sind, setzen ihren Weg fort. Die Ameisen bei B teilen sich erneut auf: wieder sind fünf Wege möglich. Den Erfolg dokumentieren sie, indem sie den bisherigen Weg markieren und die Entfernung notieren Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 17

25 Ameisen-Prinzip Ameisen auf Kollisionskurs Nach 40 Minuten kommt ein Trupp bei C an: Sie sind die Ersten. Daher: Strecke markieren, Entfernung notieren und auf die weiteren Wege aufteilen. In der 43. Minute kommt der Trupp auch als Erster bei M an: Somit stehen die kürzesten Strecken zu B, C und M fest. Die Ameisen sind sowohl von M als auch von C unterwegs und somit auf Kollisionskurs. Bringt ihnen das etwas für ihr Ziel, das Gelände zu erkunden? Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 18

26 Ameisen-Prinzip Erste Trupps kehren zurück Der Trupp von C weiß, dass dieses Ziel bereits erreicht ist, die kürzeste Strecke also schon feststeht. Der Trupp von M weiß das Gleiche von seinem Ausgangspunkt zu berichten: Also wird die Strecke als unbrauchbar markiert. Die Ameisen können zurück zu ihrem Stamm, da es sinnlos wäre noch weiter zu marschieren Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 19

27 Ameisen-Prinzip Und es geht weiter Als nächstes kommen zwei Trupps gleichzeitig an: In der 55. Minute erreichen sie P und X: Wieder teilen sie sich auf. Von X gibt es nur einen Erfolg versprechenden Weg. Bei den anderen Treffen sie recht schnell auf Kameraden. Die von P ausgehenden Strecken sind alle noch nicht als unbrauchbar markiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 20

28 Ameisen-Prinzip Idee Statt immer nur einen Weg auszuprobieren und wieder zu verwerfen, wenn sich ein besserer gefunden hat, erkunden die Ameisen gleichzeitig alle sich bietenden Möglichkeiten. Kommen sie bei einer Stadt als Erste an, wissen sie, dass der genommene Weg der kürzeste ist, denn sonst wäre ja schon ein anderer Trupp da. Treffen die Ameisen irgendwo auf Artgenossen, wissen sie, dass ihre Reise zu Ende ist. Andere haben also das Ziel früher erreicht. Am Ende des Verfahrens erhalten wir die folgende Karte Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 21

29 Ameisen-Prinzip Vollständig erschlossene Karte Was für Informationen haben wir dadurch eigentlich gewonnen? Um von Imstadt zu einem beliebigen anderen Ort zu kommen, folgen sie dem Pfad der Ameisen. Von Imstadt nach Oppenheim kommt man so am günstigsten über Pappstadt, Krupsing und Flughafen (123km). Es wurde nicht nur die ursprüngliche Aufgabe gelöst, sondern auch die kürzesten Wege von Imstadt zu allen anderen Städten ermittelt Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 22

30 Ameisen-Prinzip Zusammenfassung Warum ist das Ameisen-Prinzip für einen Informatiker interessant? Es führt in absehbarer Zeit zum Ziel. Da die Ameisen ständig in Bewegung sind und keine Wege doppelt gehen, müssen sie recht bald alle Wege erkundet haben (maximal nach der Zeit, die dem kürzesten Weg zur am weitesten entfernten Stadt entspricht) Es werden immer wieder die gleichen, sehr einfachen Anweisungen benutzt, um die Ameisen zu steuern: 1. Teile den Trupp auf und folge allen Routen 2. Wenn ein Ort erreicht wird: günstigste Strecke dorthin gefunden, weiter bei Wenn man einem anderen Trupp begegnet: Strecke verwerfen. Ende Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 23

31 Ameisen-Prinzip Übertragung auf den Computer Wie könnten also unsere Routenplaner im Auto das Problem des kürzesten Weges lösen? Ein Simulieren der vorgestellten Vorgehensweise wäre gegenüber der Brute-Force-Methode von Vorteil. Trotzdem ist der Informatiker hier gefragt, das gefundene Verfahren für den Computer zu optimieren. Überlegen Sie, welche Teile des Ameisenprinzips für die Problemlösung relevant sind Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 24

32 Überblick Vorüberlegungen Ameisen-Prinzip Dijkstra-Algorithmus Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 25

33 Dijkstra-Algorithmus Erste Schritt Die Ameisen liefen in alle direkt erreichbaren Städte, um zu ermitteln, wie lange sie unterwegs sind: Ein Computer muss diese Zeiten nicht ermitteln. Er kennt sie bereits, da die Längen zwischen den Strecken an den Pfaden verzeichnet sind. Um die Entfernung zuordnen zu können, wird die dazugehörige Strecke markiert. Die Ameisen, die zuerst bei einer Stadt ankamen, markierten die Strecke als günstig und teilten sich auf: Der Computer muss nur die Stadt mit der kleinsten Zahl bestimmen Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 26

34 Dijkstra-Algorithmus Fortsetzung (1) In diesem Beispiel also B: Von B aus werden alle Entfernungen zu allen Nachbarn bestimmt. Über B wurden schon 34 km zurückgelegt, daher müssen diese dazu addiert werden. Bei H steht schon ein Wert. Von I direkt sind es 65, über B jedoch nur 64 km. Der Ameisen Trupp über B würde also zuerst ankommen. Daher gilt für das Dijkstra-Verfahren: Wenn die neue Zahl kleiner ist, wird die alte durch diese ersetzt und der Weg entsprechend markiert. Wenn die neue Zahl größer ist, passiert nichts Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 27

35 Dijkstra-Algorithmus Fortsetzung (2) Wie geht es nun weiter? Prinzipiell wie am Anfang: Aus allen mit Zahlen markierten Städten, die noch nicht von Ameisen besucht wurden, wird die mit der kleinsten Zahl herausgesucht. Dort kommen die Ameisen als Nächstes an. In diesem Fall ist das C Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 28

36 Dijkstra-Algorithmus Fortsetzung (3) Von C werden wieder alle benachbarten Städte betrachtet: Nach M käme man in 71 km, nach X in 63 km. Beides wird jedoch von der bereits vorhandenen Zahl unterboten, also passiert nichts Die nächste nicht markierte Stadt mit der kleinsten Zahl wird gesucht Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 29

37 Dijkstra-Algorithmus Fortsetzung (4) Jetzt also M: Es werden wieder alle benachbarten Städte betrachtet. Hier zeigt sich, dass sowohl die Strecke zu A als auch zu X kürzer ist. Die alten Markierungen und Entfernungen werden gestrichen. Die neuen Wege und Entfernungen markiert bzw. notiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 30

38 Dijkstra-Algorithmus Fortsetzung (5) Die Stadt mit der kleinsten Zahl ist jetzt P: Es gibt Verbindungen zu H, K, F und O. Bei K, F und O wird jeweils wieder die Summe der Entfernungen notiert und die Strecke markiert. Bei H steht schon eine Entfernung kleiner der Summe von I zu P zu H. Daher passiert hier nichts Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 31

39 Dijkstra-Algorithmus Fortsetzung (6) Nun ist X die Stadt mit der kleinsten Zahl: Wieder werden die Entfernungen zu den Nachbarstädten ermittelt. C und B sind bereits markiert, die kürzesten Wege dorthin sind also bereits gefunden. Strecke zu N wird markiert und die Entfernung notiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 32

40 Dijkstra-Algorithmus Fortsetzung (7) Die noch nicht markierte Stadt mit der kleinsten Zahl ist jetzt H: Nachbarstädte I und P sind bereits markiert. Die Zahl an K ist kleiner als die Summe der Entfernungen von B aus. Die Strecken L und Z werden markiert und die Entfernung notiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 33

41 Dijkstra-Algorithmus Fortsetzung (8) Jetzt folgt Y: Die Summe der Entfernungen zu L und Z sind kleiner als die bisherigen. Daher Streichung der bisherigen Markierungen und Zahlen. Neue Strecken werden markiert bzw. deren Entfernungen notiert. Da die bisherige Summe bei N kleiner ist, passiert hier nichts Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 34

42 Dijkstra-Algorithmus Fortsetzung (9) Die nächste nicht markierte Stadt mit der kleinsten Zahl ist A: Die Nachbarstadt B ist schon markiert. Stadt D und N haben kleinere Zahlen, hier passiert nichts Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 35

43 Dijkstra-Algorithmus Fortsetzung (10) Nun wird K markiert: Summe der Entfernungen über K zu F ist kleiner als die bisherige. Strecke zu F wird markiert und die neue Zahl notiert. Strecken zu den Nachbarstädten G und E werden markiert und deren Zahlen zugewiesen. Nachbarstadt Z hat schon eine Zahl kleiner der Summe der Entfernungen über K, daher passiert hier nichts Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 36

44 Dijkstra-Algorithmus Fortsetzung (11) Jetzt ist N die Stadt mit der kleinsten Zahl: Nachbarstädte A und Y sind bereits markiert. Zahl von D ist kleiner als die Summe der Entfernungen über N Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 37

45 Dijkstra-Algorithmus Fortsetzung (12) Als nächstes folgt Z: H und K sind schon markiert. Summe der Entfernungen über Z zu G ist jedoch kleiner als die bisherige. Strecke wird markiert und die neue Zahl notiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 38

46 Dijkstra-Algorithmus Fortsetzung (13) Nun wird die Stadt D markiert: Nachbarstädte A und N sind bereits markiert. L hat eine kleinere Zahl als die von D aus berechnete Entfernung Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 39

47 Dijkstra-Algorithmus Fortsetzung (14) Die nächste noch unmarkierte Stadt mit der kleinsten Zahl ist L: Nachbarstädte D, H und Y sind bereits markiert. Summe der Entfernungen zu G ist jedoch größer als die bisher notierte Summe Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 40

48 Dijkstra-Algorithmus Fortsetzung (15) Nun kommt F an die Reihe: Nachbarstadt P ist schon markiert. bei E ist die bisherige Summe kleiner. bei O ist die Summe der Entfernungen kleiner als die bisherige und wird daher ersetzt und die Strecke zu O markiert Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 41

49 Dijkstra-Algorithmus Fortsetzung (16) Jetzt ist E die noch nicht markierte Stadt mit der kleinsten Summe: In diesem Schritt ändert sich nichts. F ist schon markiert. Summe der Entfernungen von G und O ist kleiner Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 42

50 Dijkstra-Algorithmus Fortsetzung (17) Die noch nicht markierte Stadt mit der kleinsten Summe ist G: Alle Nachbarstädte sind schon markiert. Hier passiert nichts weiter Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 43

51 Dijkstra-Algorithmus Ende Die letzte unmarkierte Stadt ist O: Alle Nachbarstädte sind schon markiert Hier passiert also nichts mehr Und da es keine verbliebenen Städte mehr gibt, ist hier der Algorithmus zu Ende. Der kürzeste Weg von Imstadt nach Oppenheim führt also über Pappheim, Krupsing und Flughafen und ist 123 km lang Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 44

52 Dijkstra-Algorithmus Edsger Wybe Dijkstra Geboren 1930 in Rotterdam Professor an der Universität in Eindhoven Vorstellung des Algorithmus zur Berechnung des kürzesten Weges in einem Graphen im Jahr 1959 Wechsel an die Universität von Texas im Jahr 1984 Beitrag zur Einführung der strukturierten Programmierung Erhielt den Turing-Preis 1972 Verstarb 2002 in seiner Heimat Nuenen Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 45

53 Dijkstra-Algorithmus Algorithmus Markiere die Startstadt rot, weise ihr die Kennzahl 0 zu. Bezeichne diese als aktuelle Stadt. Gehe von der aktuellen Stadt zu allen direkt erreichbaren Nachbarstädten... führe das Folgende für jede Nachbarstadt durch: Errechne die Summe aus der Kennzahl an der aktuellen Stadt und der Länge der Strecke dorthin - ist die Nachbarstadt bereits rot markiert, mache nichts. - hat die Nachbarstadt keine Kennzahl, weise ihr die Summe als Kennzahl zu. Markiere die Strecke zur aktuellen Stadt. - hat die Nachbarstadt eine Kennzahl kleiner der Summe, mache nichts. - hat die Nachbarstadt eine Kennzahl größer der Summe, streiche die dortige Kennzahl sowie die Markierung. Weise ihr danach die Summe als neue Kennzahl zu. Markiere die Strecke zur aktuellen Stadt Betrachte alle Städte, die zwar eine Kennzahl haben, aber noch nicht rot markiert sind. Suche die Stadt mit der kleinsten Kennzahl. Bezeichne diese als aktuelle Stadt. Weisen mehrere Städte die kleinste Kennzahl auf, wähle eine beliebige davon als aktuelle Stadt. Markiere die aktuelle Stadt rot, zeichne die dort markierte Strecke in rot ein. Falls es noch Städte gibt, die nicht rot markiert sind weiter bei (1.) Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 46

54 Zusammenfassung Finden bester Wege Einführung in Graphenalgorithmen Dijkstra-Algorithmus Morgen: Graphenalgorithmen (Weiterführung) Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 47

55 Danke Vielen Dank für Ihre Aufmerksamkeit! Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe Seite 48

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

Erkunden - Prozentrechnung

Erkunden - Prozentrechnung Erkunden - Prozentrechnung Ziel: Sich praktisch mit den Begriffen der Prozentrechnung vertraut machen und schon erste Rechnungen damit durchführen. Du hast dich mit den grundlegenden Begriffen der Prozentrechnung

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen:

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen: Fachbereich Mathematik Tag der Mathematik 10. November 01 Klassenstufen 7, 8 Aufgabe 1 (4+4+6+4+ Punkte). Ihr kennt vermutlich schon Dreieckszahlen: n+1 n D 1 = 1 D = 3 D 3 = 6 D 4 = 10 D n = n (n+1) Wir

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Java 1 Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 12.10.2015 Technische Universität Braunschweig, IPS Überblick Organisatorisches Arbeitsablauf Hello! 12.10.2015 Dr. Werner Struckmann / Stephan

Mehr

Lehrerbildungszentrum Informatik an der Universität Göttingen

Lehrerbildungszentrum Informatik an der Universität Göttingen Lehrerbildungszentrum Informatik an der Universität Göttingen Lehrermaterial: Graphen zum Themenschwerpunkt 2, Zentralabitur Niedersachsen 2010 / 2011 1. Graphen als Modellierungswerkzeug Im ersten Beispiel

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst

Mehr

03 Brüche und gemischte Zahlen

03 Brüche und gemischte Zahlen Brüche 7 0 Brüche und gemischte Zahlen A5 Stelle eines der beiden Tiere selbst her. (Welches Tier du herstellen sollst, erkennst du an der Farbe des Papiers, das du von deinem Lehrer oder deiner Lehrerin

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Station Trigonometrie Teil 1. Hilfeheft

Station Trigonometrie Teil 1. Hilfeheft Station Trigonometrie Teil 1 Hilfeheft Liebe Schülerinnen und Schüler! Dies ist das Hilfeheft zur Station Trigonometrie Teil 1. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Voransicht. Prozente Wann rechne ich mit welcher Formel?

Voransicht. Prozente Wann rechne ich mit welcher Formel? 7 Zusatzunterricht/Prozentrechnen Prozente Wann rechne ich mit welcher Formel? Material: Taschenrechner 1 Bearbeite die Aufgaben. Gehe so vor: (1) Überlege zuerst, ob der Prozentwert P, der Grundwert G

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Zirkel Duden. Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher, dass du die Aufgabenstellung verstehst.

Zirkel Duden. Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher, dass du die Aufgabenstellung verstehst. Name Datum Anzahl Punkte Erreichte Punkte Fach Mathematik Note Erlaubte Hilfsmittel: Taschenrechner Formelsammlung Geodreieck Zirkel Duden Lies dir zunächst alle Aufgaben gründlich durch, und stelle sicher,

Mehr

Prüfungsklausur Operations Research,

Prüfungsklausur Operations Research, HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Operations Research, 10.7.2008 A Name, Vorname Matr. Nr. Aufgabe 1 : In drei Porzellanwerken W 1, W 2 und W 3 werden Speiseservice hergestellt,

Mehr

Lineare Gleichungssysteme mit zwei Variablen, lineare Funktionen. Zeit-Weg-Diagramme, Textgleichungen

Lineare Gleichungssysteme mit zwei Variablen, lineare Funktionen. Zeit-Weg-Diagramme, Textgleichungen MATHEMATIK Unterrichtsfach Themenbereich/e Schulstufe (Klasse) Fachliche Vorkenntnisse Sprachliche Kompetenzen Zeitbedarf Material- und Medienbedarf Sozialform/en Methodische Tools Hinweise zur Durchführung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN Beispiel: Wenn zwei Röhren gleichzeitig geöffnet sind, kann ein Wasserbecken in 40 Minuten gefüllt werden. Fließt das Wasser

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,

Mehr

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Ziele Erklären können, warum es Tag und Nacht gibt Die Drehbewegungen der Erde erläutern können Über das Gradnetz

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

von Zahlenfolgen, die bei Gebietsteilungsproblemen

von Zahlenfolgen, die bei Gebietsteilungsproblemen Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Kosmologische Entfernungen Samstag, 07. März Das heißt, dass sich

Kosmologische Entfernungen Samstag, 07. März Das heißt, dass sich Reiner Guse Astro-Stammtisch Peine Kosmologische Entfernungen Samstag, 07. März 2015 Amateurastronomie in 360 Planetarium Wolfsburg 1. Die Expansion des Universums und ihre Folgen Hubble stellte 1929 fest,

Mehr

100 Aufgaben für die Hundertertafel

100 Aufgaben für die Hundertertafel 100 Aufgaben für die Hundertertafel Die Schwierigkeitsgrade der Aufgaben sind unterschiedlich und eignen sich für die ersten drei Schuljahre. Wenn die Aufgaben auf Spielkarten geschrieben werden, können

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

3 Mit Programmen und Fenstern

3 Mit Programmen und Fenstern 34 MIT PROGRAMMEN UND FENSTERN ARBEITEN 3 Mit Programmen und Fenstern arbeiten In dieser Lektion lernen Sie wie Sie Programme starten und wieder beenden wie Sie mit Fenstern arbeiten Ein Programm starten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Proportionalität und Antiproportionalität

Proportionalität und Antiproportionalität Proportionalität und Antiproportionalität 1 In diesem Kapitel»Je mehr desto mehr«und»je mehr desto weniger«zuordnungsvorschriften verstehen Darstellungsformen von Proportionalität und Antiproportionalität

Mehr

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1

Trage die Ergebnisse in die nachfolgende Tabelle ein. A 3. Größe der Fläche A 1 Aufgabe: Bestimme die Flächeninhalte A 1, A 2 und A 3. Trage die Ergebnisse in die nachfolgende Tabelle ein. A 1 A 2 A 3 des Winkels Fläche A 1 Fläche A 2 Fläche A 3 1. Dreieck (Ausgangsdreieck) Vergleiche

Mehr

Organisieren lernen von Fischen und Ameisen: Programmierte Tiere im Computer

Organisieren lernen von Fischen und Ameisen: Programmierte Tiere im Computer Organisieren lernen von Fischen und Ameisen: Programmierte Tiere im Computer Michael Sonnenschein Ute Vogel Universität Oldenburg Abteilung Umweltinformatik Organisation klare Sache! Chef 1. Unterchef

Mehr

KAPITEL III DAS InFORMATIK- KOCHSTUDIO

KAPITEL III DAS InFORMATIK- KOCHSTUDIO Das Informatik- Kochstudio KAPITEL III 48 Das Informatik-Kochstudio Algorithmen Algorithmen III Sortieren Ordnung ist das halbe Leben. Mit diesem Spruch nerven seit Generationen Eltern ihre Kinder. Aber

Mehr

Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner

Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb

Mehr

Mathematik Anders Machen. Eine Initiative zur Lehrerfortbildung. Materialien zum Kurs. Knowledge Maps. Referenten

Mathematik Anders Machen. Eine Initiative zur Lehrerfortbildung. Materialien zum Kurs. Knowledge Maps. Referenten Eine Initiative zur Lehrerfortbildung Materialien zum Kurs Knowledge Maps Referenten Dr. Astrid Brinkmann Dr. Ulrike Limke Projektleiter: Prof. Dr. Günter Törner Fachbereich Mathematik Universität Duisburg-Essen

Mehr

Skript Bruchrechnung. Erstellt: 2014/15 Von:

Skript Bruchrechnung. Erstellt: 2014/15 Von: Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...

Mehr

Arbeitsblatt Mathematik: Bewegungsaufgaben

Arbeitsblatt Mathematik: Bewegungsaufgaben Arbeitsblatt Mathematik: Bewegungsaufgaben Seite 1 von 12 Arbeitsblatt Mathematik: Bewegungsaufgaben Bewegungsaufgaben enthalten Angaben zu mindestens einem Objekt, das entlang einer Bahn bewegt wird bzw.

Mehr

( 3 4. Original-Aufgabe 21. Aufgabenstellung/Erwartungshorizont

( 3 4. Original-Aufgabe 21. Aufgabenstellung/Erwartungshorizont Original-Aufgabe 21 Aufgabenstellung Original-Aufgabe 21 Aufgabenstellung/Erwartungshorizont Original-Aufgabe 21 Fachgebiet Thema Fragestellung Analytische eometrie/lineare Algebra eraden und Ebenen Untersuchung

Mehr

9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet

9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet 9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet Autoren Michael Behrisch, Humboldt-Universität zu Berlin Amin Coja-Oghlan, Humboldt-Universität zu Berlin, Humboldt-Universität

Mehr

Koordinatensystem, Strecken, Geraden

Koordinatensystem, Strecken, Geraden Koordinatensystem, Strecken, Geraden Zeichne eine Rechts- und eine Hochachse und trage folgende Punkte ein: P(2 1), Q(10 1), R(10 9), S(2 9), T(4 3), U(8 3), V(8 7), W(4 7). Zeichne die Strecken PQ QR

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

Schnelle und genaue Routenplanung

Schnelle und genaue Routenplanung Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Uni für Einsteiger, 22. November

Mehr

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen?

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen? STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme 1 Kurze Wiederholung Warum nur zwei grafische Darstellungsformen? Im Rahmen der Vorlesungen haben wir kurz eine ganze Reihe grafischer Darstellungsformen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Materialien zur Visualisierung 2002/03 Die Meisterschaft des 1. FC Holzbein eine Einführung in die Vektorrechnung

Materialien zur Visualisierung 2002/03 Die Meisterschaft des 1. FC Holzbein eine Einführung in die Vektorrechnung Materialien zur Visualisierung 22/3 Die Meisterschaft des 1. FC Holzbein eine Einführung in die Vektorrechnung Anpfiff! Soeben hatte die 2. Halbzeit im entscheidenden Meisterschaftsspiel zwischen dem 1.

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz 2009 Zusammenfassung Wenn es dich schon immer interessiert

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Arbeitsblatt: Tiere und Heimat

Arbeitsblatt: Tiere und Heimat Aufgabe a Manche Tiere nehmen lange Wege und damit auch große Gefahren auf sich, um einen bestimmten Ort zu erreichen. Dort fühlen sie sich wohl und sicher. Doch: Wer wandert wohin? Lies zuerst den blau

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Eingangstest Mathematik Jgst.11

Eingangstest Mathematik Jgst.11 SINUS-Set Projekt F3 Erfinden Sie zu dem abgebildeten Graphen eine Sachsituation, die durch den Graphen dargestellt wird. Gehen Sie dabei auch auf den Verlauf des Graphen ein! Zeit in F4 In der Abbildung

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

15. Algorithmus der Woche Das Rucksackproblem Die Qual der Wahl bei zu vielen Möglichkeiten

15. Algorithmus der Woche Das Rucksackproblem Die Qual der Wahl bei zu vielen Möglichkeiten 15. Algorithmus der Woche Das Rucksackproblem Die Qual der Wahl bei zu vielen Möglichkeiten Autoren Rene Beier, MPI Saarbrücken Berthold Vöcking, RWTH Aachen In zwei Monaten startet die nächste Rakete

Mehr

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT SQL SQL SELECT Anweisung Mit der SQL SELECT-Anweisung werden Datenwerte aus einer oder mehreren Tabellen einer Datenbank ausgewählt. Das Ergebnis der Auswahl ist erneut eine Tabelle, die sich dynamisch

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Hauptschule Klasse Mathematik - Lernen und Lösen - Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Hauptschule Klasse Mathematik - Lernen und Lösen - Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Hauptschule Klasse 5 + 6 - Mathematik - Lernen und Lösen - Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de

Mehr

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung Vektorrechnung als Teil der Linearen Algebra - Einleitung www.mathebaustelle.de. Einführungsbeispiel Archäologen untersuchen eine neu entdeckte Grabanlage aus der ägyptischen Frühgeschichte. Damit jeder

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

14. Polarpunktberechnung und Polygonzug

14. Polarpunktberechnung und Polygonzug 14. Polarpunktberechnung und Polygonzug An dieser Stelle sei noch einmal auf das Vorwort zu Kapitel 13 hinsichtlich der gekürzten Koordinatenwerte hingewiesen. 14.1. Berechnungen bei der Polaraufnahme

Mehr

Kapitel 5 Zustand eines Objekts

Kapitel 5 Zustand eines Objekts Kapitel 5 Zustand eines Objekts Seite 1 / 6 Kapitel 5 Zustand eines Objekts Lernziel: Bedingte Anweisung in Java Objektzustand 5.1 Unverwundbar soll sichtbar sein Die Methode VerwundbarSetzen sorgt dafür,

Mehr

Softwareentwicklungspraktikum Nebenfach

Softwareentwicklungspraktikum Nebenfach PD Dr. Ulrich Schöpp Ludwig-Maximilians-Universität München Dr. Steffen Jost Institut für Informatik Stephan Barth WS 2016/17 Softwareentwicklungspraktikum Nebenfach Blatt 3 Dieses Arbeitsblatt ist innerhalb

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis) .5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................

Mehr

Näherungsverfahren zur Berechnung von PI

Näherungsverfahren zur Berechnung von PI 2009 Näherungsverfahren zur Berechnung von PI Patrick Ulmann Thierry Altermat David Heller KP-E2 26.02.2009 2 Inhaltsverzeichnis Tittelblatt... 1 Inhaltsverzeichnis... 2 Zusammenfassung... 3 Aufgabenstellung

Mehr

Peripheriewinkelsatz (auch Umfangswinkelsatz)

Peripheriewinkelsatz (auch Umfangswinkelsatz) Peripheriewinkelsatz (auch Umfangswinkelsatz) Für die Einführung des Peripheriewinkelsatzes (auch Umfangwinkelsatz) machen wir uns mit dem Satz des Thales vertraut. Der Satz des Thales besagt, dass Dreiecke,

Mehr

2. Teil: Programmierung der Roboter

2. Teil: Programmierung der Roboter ,, 2. Teil: Programmierung der Lego Mindstorms Schulprojekt der Technischen Universität Dänemark Technische Universität Dänemark Institut für Mathematik Januar 2008 , Der Labyrinth- Wettbewerb Lego Mindstorms

Mehr

Wie löst man Treffpunktaufgaben?

Wie löst man Treffpunktaufgaben? Wie löst man Treffpunktaufgaben? Grundsätzlich gibt es zwei Typen von Treffpunktaufgaben. Beim ersten Typ fahren die Personen vom gleichen Startpunkt los, aber dann meist zeitverzögert und mit unterschiedlichen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen

Mathematik Lineare Gleichungssysteme Grundwissen und Übungen Mathematik Lineare Gleichungsssteme Grundwissen und Übungen Stefan Gärtner 00-00 Gr Mathematik Lineare Gleichungsssteme Seite Lineare Gleichung: a + b c ( a,b R) ist eine lineare Gleichung mit zwei Variablen

Mehr

Übung zu Einführung in die Informatik # 11

Übung zu Einführung in die Informatik # 11 Übung zu Einführung in die Informatik # 11 Tobias Schill tschill@techfak.uni-bielefeld.de 29. Januar 2016 Aktualisiert am 29. Januar 2016 um 10:53 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Zusatztutorium

Mehr

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie)

2.8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) .8 Trigonometrische Funktionen (Thema aus dem Bereich Analysis/Geometrie) Inhaltsverzeichnis Repetition und Einleitung Verhältnisse beim Kreis mit Radius r 3 3 Die Graphen der Sinus- und der Cosinusfunktion

Mehr

1 Warum die Routensuche so ist wie sie ist

1 Warum die Routensuche so ist wie sie ist 1 Für die Routenberechnung ist die hinterlegte Geschwindigkeit der Straßen von Bedeutung. Welche Geschwindigkeit hinter den einzelnen Straßentypen stehen ist jedoch nicht so einfach zu beantworten. Der

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Gruppenunterricht zum Thema: Sortierverfahren. Berufsschule / Gymnasium

Gruppenunterricht zum Thema: Sortierverfahren. Berufsschule / Gymnasium Gruppenunterricht zum Thema: Sortierverfahren Fach: Schultyp: Schulstufe: Informatik Berufsschule / Gymnasium Grundkurs Informatik Vorkenntnisse: Grundkenntnisse in einer Programmiersprache (nicht unbedingt

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek Gegeben ist ein und ein. Der wird auf eine gezeichnet, der unterhalb von dieser in einiger Entfernung und mittig. Parallel zur wird der eingezeichnet. Dieser befindet sich in Augenhöhe. Üblicherweise wird

Mehr

Nichtrealistische Darstellung von Gebirgen mit OpenGL

Nichtrealistische Darstellung von Gebirgen mit OpenGL Nichtrealistische Darstellung von Gebirgen mit OpenGL Großer Beleg Torsten Keil Betreuer: Prof. Deussen Zielstellung Entwicklung eines Algorithmus, der die 3D- Daten einer Geometrie in eine nichtrealistische

Mehr

Damit ich die Prüfungen ständig verbessern kann, bin ich auf deine Rückmeldung angewiesen.

Damit ich die Prüfungen ständig verbessern kann, bin ich auf deine Rückmeldung angewiesen. Lösung Selbsttest Karte / Kompass Damit ich die Prüfungen ständig verbessern kann, bin ich auf deine Rückmeldung angewiesen. Falls bei der einen oder anderen Prüfungsaufgabe Probleme aufgetaucht sind,

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

Beispiellösungen zu Blatt 7

Beispiellösungen zu Blatt 7 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Die handelsüblichen Papierformate DIN A0, DIN A usw. haben folgende praktische

Mehr

Paper Computer Science Experiment. Automation (Netzwerke)

Paper Computer Science Experiment. Automation (Netzwerke) Paper Computer Science Experiment Great Principles of Computing Automation (Netzwerke) Thema Kürzester Weg (Graphentheorie) Unterrichtsform Lernen am Modell Voraussetzung Durch die Beschäftigung mit (isomorphen)

Mehr

Welche Strecke legt der Mond insgesamt zurück, wenn er die Erde einmal vollständig umläuft?

Welche Strecke legt der Mond insgesamt zurück, wenn er die Erde einmal vollständig umläuft? Aufgabe 1 Der Mond Der Mond legt stündlich 3 680 km zurück, während er die Erde umkreist. Welche Strecke legt der Mond insgesamt zurück, wenn er die Erde einmal vollständig umläuft? Wie groß ist die Strecke,

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

vitamin de DaF Arbeitsblatt - Thema zum Sprache Thema Schule Jugend auf dem Lande

vitamin de DaF Arbeitsblatt - Thema zum Sprache Thema Schule Jugend auf dem Lande Fotos: Hans Peter Merten/DZT, Jens Görlich/Lufthansa 1. Gruppenarbeit. Sie haben 1000 Euro in der Lotterie gewonnen. Jetzt planen Sie eine Reise nach Deutschland. Schreiben Sie auf: a) Welche Städte, Sehenswürdigkeiten

Mehr

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 32621 Optimierungsmethoden des Operations Research Termin:

Mehr

1. Beispiel 1, die Tabelle Daten 1

1. Beispiel 1, die Tabelle Daten 1 Nachdem ich im letzten Newsletter einige Funktionen vorgestellt habe, biete ich im Newsletter vom März praktische Anwendungsbeispiele dazu an. Im ersten Beispiel in der Tabelle Daten1 geht es darum, gezielt

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Dr. Tom Kamphans 1. Vorlesung 12.10.2016 1 Organisatorisches Vorlesung: Mittwochs 14:00 15:30, Raum F 201 Übung: Mittwochs 15:45 19:00, Raum F 225 Übung: alle zwei Wochen

Mehr

Arbeiten im Team. Präsentationen per verschicken. Übung 1: Präsentation an eine anhängen

Arbeiten im Team. Präsentationen per  verschicken. Übung 1: Präsentation an eine  anhängen 13 Arbeiten im Team Lernziele Präsentationen versenden Präsentationen überarbeiten Präsentationen vergleichen und zusammenführen Kommentare einfügen und bearbeiten Präsentationen per E-Mail verschicken

Mehr