Erkunden - Prozentrechnung

Größe: px
Ab Seite anzeigen:

Download "Erkunden - Prozentrechnung"

Transkript

1 Erkunden - Prozentrechnung Ziel: Sich praktisch mit den Begriffen der Prozentrechnung vertraut machen und schon erste Rechnungen damit durchführen. Du hast dich mit den grundlegenden Begriffen der Prozentrechnung bereits vertraut gemacht (zur Sicherheit findest du sie im Anhang nochmal kurz definiert, falls du nachschauen möchtest). Nun sollst du in praktischen Aufgaben die richtigen Vokabeln zuordnen und schon mal einfache Prozente berechnen. Aufgabe 1 Suche dir aus den vom Lehrer mitgebrachten Dingen drei aus und bearbeite zu jedem der Dinge folgende Aufgaben: a) Beschreibe zu jedem Ding, was dem Grundwert, und Prozentsatz entspricht. Gib jeweils ein Beispiel. b) Nimm vom Grundwert jeweils ein Viertel/Achtel/Drittel/die Hälfte. Bestimme zu jedem Teil (Viertel, ) den Prozentsatz. c) Schätze folgende Prozentsätze bei jedem Ding ab und bestimme den entsprechenden : 20%, 30%, 70% Aufgabe 2 Ausgehend von dem Grundwert zu jedem Ding überlege dir, wie viel davon 1% entspricht (). Wenn du nun also bestimmt hast, wie viel 1% davon ausmacht, errechne die e zu den in der Tabelle aufgeführten Prozentsätzen (eine Hilfe findest du im Anhang - bitte nur, wenn du sie wirklich brauchst):

2 Prozentsatz 1. Objekt 1% 10% 20% 23% 65% 71% 89% 2. Objekt 3. Objekt Aufgabe 3 Ausgehend von dem Grundwert zu jedem Ding, welches du ausgewählt hast und jeweils einem Stück davon, bzw. 200 ml oder 150 g, überlege dir, wie viel Prozent das jeweils entspricht. a. Löse die Rechenaufgabe mit dem Dreisatz (Hilfe findest du im Anhang, wenn du sie brauchst).

3 Anhang Definition Grundwert Einfach alles, also das Ganze. Z.B. wenn man eine Torte betrachtet, die ganze Torte. Wen man einen Sack mit Murmeln betrachtet, alle Murmeln zusammen gesehen,. Definition Ein Teil vom Ganzen. Der Teil vom Ganzen, der dem Prozentsatz entspricht. Z.B. wenn ich die Torte in acht Stücke aufteile und eins davon nehme. Wenn in dem Sack mit Murmeln 100 drin sind und ich 20 davon rausnehme. Definition Prozentsatz Das Ganze oder der als % ausgedrückt. Das Ganze ist dabei immer 100%, der ist variabel. Z.B. ein Stück der Torte (wenn insgesamt 8 Stück das Ganze sind) entspricht 12,5%. Nehme ich vier Stück der Torte, so entspricht das der Hälfte also 50%. 20 der 100 Murmeln entsprechen 20%. Hilfe zum Berechnen der Werte in der Tabelle in Aufgabe 2 Du kannst die Werte mit Hilfe des Dreisatzes berechnen: 100% entspricht 1 Torte = 12 Stück Torte 1% entspricht 0,12 Stück Torte 30% entspricht 0,12 30 = 3,6 Stück Torte Hilfe zum Berechnen der Werte in Aufgabe 3 Du kannst die Werte mit Hilfe des Dreisatzes berechnen: 12 Stück Torte entspricht 1 Torte 1 Stück Torte entspricht 1/12 = 0,083 der Torte 0,083 = 8,3%

4 Imaginieren - Prozentrechnung Ziel: Sich die Begriffen der Prozentrechnung vorstellen und damit rechnen Du hast dich mit den grundlegenden Begriffen der Prozentrechnung bereits vertraut gemacht (zur Sicherheit findest du sie im Anhang nochmal kurz definiert, falls du nachschauen möchtest). Nun sollst du in den folgenden Aufgaben die richtigen Vokabeln zuordnen und schon mal einfache Prozente berechnen. Aufgabe 1 Suche dir aus den folgenden Abbildungen drei aus und bearbeite zu jeder Abbildung folgende Aufgaben: 1 Liter Öl 1 kg Mehl a) Beschreibe zu jeder Abbildung was dem Grundwert, und Prozentsatz entpsricht. Gib jeweils ein Beispiel. b) Nimm vom Grundwert jeweils ein Viertel/Achtel/Drittel/die Hälfte. Bestimme zu jedem Teil (Viertel, ) den Prozentsatz. c) Schätze folgende Prozentsätze zu jeder Abbildung ab und bestimme den entsprechenden : 20%, 30%, 70%

5 Aufgabe 2 Ausgehend von dem Grundwert zu jeder Abbildung überlege dir, wie viel davon 1% entspricht (). Wenn du nun also bestimmt hast, wie viel 1% davon ausmacht, errechne die e zu den in der Tabelle aufgeführten Prozentsätzen (eine Hilfe zum Berechnen findest du im Anhang bitte zuerst allein versuchen): Prozentsatz 1. Objekt 1% 10% 20% 23% 65% 71% 89% 2. Objekt 3. Objekt Aufgabe 3 Ausgehend von dem Grundwert zu jeder Abbildung und jeweils einem Stück davon, bzw. 200 ml oder 150 g, überlege dir, wie viel Prozent das jeweils entspricht. b. Löse die Rechenaufgabe mit dem Dreisatz (Hilfe findest du im Anhang, wenn du sie brauchst).

6 Anhang Definition Grundwert Einfach alles, also das Ganze. Z.B. wenn man eine Torte betrachtet, die ganze Torte. Wen man einen Sack mit Murmeln betrachtet, alle Murmeln zusammen gesehen,. Definition Ein Teil vom Ganzen. Der Teil vom Ganzen, der dem Prozentsatz entspricht. Z.B. wenn ich die Torte in acht Stücke aufteile und eins davon nehme. Wenn in dem Sack mit Murmeln 100 drin sind und ich 20 davon rausnehme. Definition Prozentsatz Das Ganze oder der als % ausgedrückt. Das Ganze ist dabei immer 100%, der ist variabel. Z.B. ein Stück der Torte (wenn insgesamt 8 Stück das Ganze sind) entspricht 12,5%. Nehme ich vier Stück der Torte, so entspricht das der Hälfte also 50%. 20 der 100 Murmeln entsprechen 20%. Hilfe zum Berechnen der Werte in der Tabelle in Aufgabe 2 Du kannst die Werte mit Hilfe des Dreisatzes berechnen: 100% entspricht 1 Torte = 12 Stück Torte 1% entspricht 0,12 Stück Torte 30% entspricht 0,12 30 = 3,6 Stück Torte Hilfe zum Berechnen der Werte in Aufgabe 3 Du kannst die Werte mit Hilfe des Dreisatzes berechnen: 12 Stück Torte entspricht 1 Torte 1 Stück Torte entspricht 1/12 = 0,083 der Torte 0,083 = 8,3%

7 Urteilen - Prozentrechnung Ziel: Sich mit den Begriffen der Prozentrechnung vertraut machen und Prozente auf zwei verschiedene Arten berechnen. Du hast dich mit den grundlegenden Begriffen der Prozentrechnung bereits vertraut gemacht (zur Sicherheit findest du sie im Anhang nochmal kurz definiert, falls du nachschauen möchtest). Nun sollst du in folgenden Aufgaben die richtigen Vokabeln zuordnen und schon mal einfache Prozente berechnen. Dies sollst du auf zwei verschiedene Arten tun und anschließend beurteilen, welche dir einfacher fällt und welche Vor- und Nachteile sich ergeben. Die Tipps, die dir das Rechnen mit Prozenten erleichtern sollen, findest du ebenfalls im Anhang. Aufgabe 1 Suche dir aus den folgenden Abbildungen drei aus und bearbeite zu jeder Abbildung folgende Aufgaben: 1 Liter Öl 1 kg Mehl a) Beschreibe zu jeder Abbildung was dem Grundwert, und Prozentsatz entspricht. Gib jeweils ein Beispiel. b) Nimm vom Grundwert jeweils ein Viertel/Achtel/Drittel/die Hälfte. Bestimme zu jedem Teil (Viertel, ) den Prozentsatz. c) Schätze folgende Prozentsätze zu jeder Abbildung ab und bestimme den entsprechenden : 20%, 30%, 70%

8 Aufgabe 2 a. Ausgehend von dem Grundwert zu jeder Abbildung überlege dir, wie viel davon 1% entspricht (). Wenn du nun also bestimmt hast, wie viel 1% davon ausmacht, errechne die e zu den in der Tabelle aufgeführten Prozentsätzen: Prozentsatz 1. Objekt 1% 10% 20% 23% 65% 71% 89% 2. Objekt 3. Objekt Eben hast du mit Hilfe des Dreisatzes e berechnet: 100% entspricht 1 Torte = 12 Stück Torte 1% entspricht 0,12 Stück Torte 30% entspricht 0,12 30 = 3,6 Stück Torte b. Nun sollst du die obige Tabelle erneut berechnen. Diesmal lies dir bitte zuerst die Tipps im Anhang durch. Entscheide, welchen du hier anwenden musst und berechne damit alle geforderten Werte in der Tabelle. c. Welches der beiden Verfahren liegt dir mehr. Worin unterscheiden sich die Vorgehensweisen? Kannst du Ähnlichkeiten entdecken?

9 Aufgabe 3 Ausgehend von dem Grundwert zu jeder Abbildung und jeweils einem Stück davon, bzw. 200 ml oder 150 g, überlege dir, wie viel Prozent das jeweils entspricht. c. Löse die Rechenaufgabe mit dem Dreisatz. d. Wähle den geeigneten Tipp aus und berechne mit Hilfe des Tipps die geforderten Prozentsätze e. Welches der beiden Verfahren liegt dir mehr. Worin unterscheiden sich die Vorgehensweisen? Kannst du Ähnlichkeiten entdecken?

10 Anhang Definition Grundwert Einfach alles, also das Ganze. Z.B. wenn man eine Torte betrachtet, die ganze Torte. Wen man einen Sack mit Murmeln betrachtet, alle Murmeln zusammen gesehen,. Definition Ein Teil vom Ganzen. Der Teil vom Ganzen, der dem Prozentsatz entspricht. Z.B. wenn ich die Torte in acht Stücke aufteile und eins davon nehme. Wenn in dem Sack mit Murmeln 100 drin sind und ich 20 davon rausnehme. Definition Prozentsatz Das Ganze oder der als % ausgedrückt. Das Ganze ist dabei immer 100%, der ist variabel. Z.B. ein Stück der Torte (wenn insgesamt 8 Stück das Ganze sind) entspricht 12,5%. Nehme ich vier Stück der Torte, so entspricht das der Hälfte also 50%. 20 der 100 Murmeln entsprechen 20%. Tipps zum Rechnen mit Prozenten Das Wörtchen "von" Die meisten Aufgaben zur Prozentrechnung lassen sich mit den folgenden Tipps auf einfache Weise lösen. Meist ist entweder der Prozentsatz gesucht oder es soll bei gegebenem Prozentsatz und Grundwert der zugehörige bestimmt werden. Die folgende Vorgehensweise leuchtet dir bestimmt ein. Hierbei entfällt das (umständliche) Rechnen mit dem Dreisatz oder das fehlerträchtige Umformen von Formeln. Bei der Prozentrechnung begegnet uns das Wörtchen "von" in zweierlei unterschiedlichen Bedeutungen: 1. Tipp: "Von" als Abkürzung für "Vielfaches von": Die Aufgabe "Bestimme das dreifache von 5" kann jedes Grundschulkind in den mathematischen Rechenausdruck 3*5 umformen. Logischerweise ist das Multiplikationssymbol eine Abkürzung für den Ausdruck "Vielfaches von". Auf die gleiche Weise lassen sich nun Aufgaben mit gesuchtem berechnen. So besitzt das Wort "von" bei der Aufgabe "Bestimme 200% von 125" die gleiche

11 Bedeutung wie im obigen Beispiel. Wir verwenden es in diesem Zusammenhang als Abkürzung für "das Zweifache von". Damit liegt das Ergebnis 250 auf der Hand. Natürlich kann man 200% durch jeden beliebigen Prozentsatz ersetzten. So entspricht die Aufgabe "Wie viel sind 20% von 125?" der Fragestellung "Wie viel ist 0,2 von 125?" oder kurz: 0,2 125=?. 2. Tipp: "Von" als Abkürzung für "Anteil von": Bei der Aufgabe "7 von 28 verstehen nichts von Prozentrechnung" macht die obige Bedeutung keinen Sinn. In diesem Fall handelt es sich um einen Anteil. Dies drücken wir mathematisch durch einen Quotienten aus. Somit liefert der Bruch 7/28=1/4=25% das Ergebnis, und 25% der Getesteten verstehen nichts vom Prozentrechnen. Auf diese Art lassen sich sämtliche Aufgaben lösen, bei denen der Prozentsatz gesucht ist, sofern und Grundwert gegeben sind.

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll.

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll. Prozentrechnung Wozu Prozentrechnung? Bei der Prozentrechnung geht es immer darum, einen Teil von einem Ganzen zu berechnen. Das Ganze stellt immer den Grundwert aller Aufgaben dar und das Ganze = der

Mehr

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH Prozentrechnung 4 verschiedene Methoden Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG

Mathematik 1 -Arbeitsblatt 1-6: Prozentrechnung und Schlussrechnung. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB PROZENTRECHNUNG PROZENTRECHNUNG Der Begriff Prozent taucht im Alltag häufig auf und wird oft intuitiv richtig verwendet. Was ist aber nun 1 Prozent (Schreibweise: %) wirklich? Dies sei nun an einem einfachen Beispiel

Mehr

Demo für Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr

Demo für  Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil : Grundlagen Datei Nr. 055 Stand 6. November 204 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 055 Prozentrechnung 2 Vorwort

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40 % ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten.

Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten. Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 1 40% (a) Benenne die Folgenden Zeichen: /5 G: Grundwert 1 G neu : neuer 1 W: Prozentwert 1 G alt : alter 1 : Prozentsatz oder -Zahl 1 (b) Jedes

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse Matheheft 7. Klasse Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Lernplan von 1 Seite Prozent- und Zinsrechnung bearbeiten am Anteile

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Dreisatz Tabelle und Graph einer Zuordnung Zueinander proportionale Größen proportionale Dreisatz bei proportionalen Zueinander antiproportionale Größen antiproportionale Dreisatz bei antiproportionalen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst?

Üben für die 1. Schularbeit Mathematik 3. Üben für die 1. Schularbeit Mathematik 3 TEIL 2. von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? Üben für die 1. Schularbeit Mathematik 3 TEIL 2 (1) Rationale Zahlen ordnen a) ANGABE: In welche Richtung musst du auf dem Zahlenstrahl gehen, wenn du von 0 nach 1,8 willst? von 2,5 nach 7,5 willst? von

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Besteht die 5-Cent-Münze eigentlich aus Kupfer?

Besteht die 5-Cent-Münze eigentlich aus Kupfer? Besteht die 5-Cent-Münze ERPROBUNGSFASSUNG eigentlich aus Kupfer? Die 5-Cent-Münze sieht aus, als ob sie aus Kupfer gefertigt ist. Aber ist sie das wirklich? Die Münze wird von einem Magneten angezogen.

Mehr

Modul «Vom Binärsystem zum Papierflieger»

Modul «Vom Binärsystem zum Papierflieger» Lösung: Binärsystem Zahlensysteme Du kannst den Zahlentrick erklären, wenn du verstehst, wie Zahlensysteme funktionieren. Im Zehnersystem ordnest du einer Zahl automatisch den richtigen Wert zu: Die Zahl

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Üben, Üben, Üben Aufgabe 1 Das Sieb des Eratosthenes Zerlegen in Faktoren Eratosthenes von Kyrene war ein griechischer Gelehrter und lebte von ca. 275 v. Chr. bis ca. 194 v. Chr. Nach ihm ist ein Verfahren

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Klasse 5/6: Anbindungsmöglichkeiten WAG Mathematik

Klasse 5/6: Anbindungsmöglichkeiten WAG Mathematik Klasse 5/6: Anbindungsmöglichkeiten WAG Mathematik bewerten verschiedene Einkaufsstätten nach unterschiedlichen Kriterien. können produktbezogene Informationen beschaffen und bewerten. können Produkte

Mehr

Kosten und Umsatzfunktionen

Kosten und Umsatzfunktionen In den folgenden Abschnitten wenden wir gelegentlich Anwendungen aus der Wirtschaft behandeln. Wir stellen deshalb einige volks- und betriebswirtschaftliche Funktionen vor. Dabei handelt es sich stets

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Jahresplanung 2.Klasse 100% Mathematik

Jahresplanung 2.Klasse 100% Mathematik Jahresplanung 2.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der 5. Schulstufe 2 1 Eigenschaften 3 1 Eigenschaften 4

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

Klausur zur Pozent- und Zinsrechnung

Klausur zur Pozent- und Zinsrechnung Name: Aufgabe 1 2 3 4 Bonus Gesamtpunkte a b c d e a b c a b c d e f a b c d 5 10 5 5 3 5 5 2 2 2 2 2 2 2 5 2 2 3 erreicht: Gesamt von 20 12 12 12 Punkte: Note: Klausur zur Pozent- und Zinsrechnung Im

Mehr

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf: 1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,

Mehr

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler?

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler? Copyright - Spiele Bad Rodach 2013 Rechenkönig Wer ist der beste Rechenkünstler? Eine Lernspiele-Sammlung rund um das Rechnen im Zahlenraum von 1 bis 20. Enthalten sind sieben Spielideen in unterschiedlichen

Mehr

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7 Prozente und Zinsen Arithmetik/Algebra Ordnen: Rationale Zahlen ordnen, vergleichen Operieren: Grundrechenarten für rationale Zahlen ausführen Prozente Vergleiche werden einfacher Prozentsatz Prozentwert

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96)

Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1. Modul 8. Prozentrechnen (Seiten 86 96) Buch: Einblicke Mathematik 8 Klett ISBN 3-12-745580-1 Modul 8 Prozentrechnen (Seiten 86 96) 1) Vergleichen von Anteilen über Prozentsätze Als erstes soll man auf den Unterschied zwischen dem absoluten

Mehr

4 Dreisatzrechnung. 188 Dreisatzrechnung. 4.1 Proportionale Zuordnungen

4 Dreisatzrechnung. 188 Dreisatzrechnung. 4.1 Proportionale Zuordnungen 188 Dreisatzrechnung 4 Dreisatzrechnung Tina soll für ihre Mutter 5 Brötchen beim Bäcker besorgen. Die Kundin vor Tina muss für 3 Brötchen 0,75 bezahlen. Tina überlegt, wie viel sie wohl bezahlen muss.

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

42 Prozentrechnung. c) Es werden Veränderungen betrachtet (Steigerung, Senkung um... auf, prozentuale Veränderung,

42 Prozentrechnung. c) Es werden Veränderungen betrachtet (Steigerung, Senkung um... auf, prozentuale Veränderung, 42 Prozentrechnung 5 Prozentrechnung 5.1 Ausgewählte Probleme Bedeutung und Aspekte des Prozentbegriffes Infolge der großen Bedeutung und vielfachen, z. T. auch missbräuchlichen Verwendung von Prozentangaben

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 2 1 Der Taschenrechner 3 1.1 Erste Rechnungen.................................. 3 1.2 Bearbeiten und Löschen der Eingaben....................... 4 1.3 Mehrere

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Das weiß ich schon! Das will ich wissen?

Das weiß ich schon! Das will ich wissen? Das weiß ich schon! Das will ich wissen? 1 Schreibe zum Thema Längen : 1. Das weiß ich schon: 2. Das will ich wissen: Bringe Material oder Bücher zum Thema für unseren Thementisch mit! Wer ist der Größte?

Mehr

Prozent (pro cento) - ganz einfach

Prozent (pro cento) - ganz einfach Prozent (pro cento) - ganz einfach p p% 100 Übungen: 7% 12,5% 25% 100% 7 100 0,07 12,5 125 100 1000 25 1 0,25 100 4 100 1 100 0,125 p% ist nur eine andere Schreibweise für p 100 oder p:100 Übung zu Prozentzahlen:

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen D Rechnen mit natürlichen Zahlen 15. Dividieren natürlicher Zahlen 1 Führe die Divisionen mit den Bohnen durch. (Material: trockene Bohnen Teile 2 Bohnen auf 8 Schülerinnen auf. Teile 20 Bohnen auf 4 Schüler

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Hauptschule Klasse Mathematik - Lernen und Lösen - Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Hauptschule Klasse Mathematik - Lernen und Lösen - Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Hauptschule Klasse 7 + 8 - Mathematik - Lernen und Lösen - Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de

Mehr

1 für ein Drittel, Teilt man ein Ganzes in 2, 3, 4, 5, 6,, n gleich große Teile, dann entstehen : 3 2

1 für ein Drittel, Teilt man ein Ganzes in 2, 3, 4, 5, 6,, n gleich große Teile, dann entstehen : 3 2 B Bruchzahlen Bruchteile und Anteile Wir schreiben für ein Halbes, für ein Drittel, für zwei Drittel, für drei Viertel usw. ; ; ; ; nennt man Brüche. Zähler Bruchstrich Nenner Teilt man ein Ganzes in,,,,

Mehr

Vorschlag für eine Jahresplanung

Vorschlag für eine Jahresplanung Vorschlag für eine Jahresplanung A Natürliche Zahlen und Dezimalzahlen 1 Teilbarkeit 2 Der größte gemeinsame Teiler das kleinste gemeinsame Vielfache Kennen und Anwenden wichtiger Teilbarkeitsregeln. Erkennen

Mehr

Hier ist eine Zahlenmauer abgebildet, die aus drei Schichten aufgebaut ist. Überprüfe die oben beschriebene Bauvorschrift.

Hier ist eine Zahlenmauer abgebildet, die aus drei Schichten aufgebaut ist. Überprüfe die oben beschriebene Bauvorschrift. 1 Einführung Mauern bestehen aus Steinen. Bei einer Zahlenmauer steht jeder Stein für eine Zahl. Später verwenden wir statt Zahlen auch Variablen. Wenn nicht anders angegeben verwenden wir meist die Zahlen

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 8 Gymnasium Schuljahr 2009/2010 Fach Mathematik ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

Komplexität statt Prozentsatz

Komplexität statt Prozentsatz Komplexität statt Prozentsatz 4.0 3.0 2.0 1.0 0.0 Zielbild übertroffen Zielbild das Wesentliche vom Zielbild Wesentliches in Teilen oder nur mit Hilfestellung weniger als 1.0 Du kannst über das Zielbild

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Tim und Tom und die Mathematik Klasse 9

Tim und Tom und die Mathematik Klasse 9 Tim und Tom und die Mathematik Klasse 9 Hallo, ich bin Tom. Ich bin nicht gerade eine Leuchte in Mathematik. Aber das ist gar nicht so schlimm. Ich habe nämlich einen guten Kumpel, den Tim. Der erklärt

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi. Copyright Francesco Grassi

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi.  Copyright Francesco Grassi Prozentrechnung Theorie und Aufgaben von Francesco Grassi www.educationalapps.ch Inhaltsverzeichnis VORWORT...3 KAP.1 Prozentanteil... 4 KAP.2 Prozentuelle Änderung...23 VORWORT Mit ProzenTutor kann man

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

Regelmäßige Kurzwiederholungen in der Hauptschule

Regelmäßige Kurzwiederholungen in der Hauptschule Regelmäßige Kurzwiederholungen in der Hauptschule Schule: Robert-Schuman-Schule Frankenthal Zusammenstellung und Erprobung: Edgar Hoffmann, Paul Müller, Helene Sohns Im Folgenden sind sechs Arbeitsblätter

Mehr

Zahlen und Größen Beitrag 10 Textaufgaben 1 von 18. Ein Blauwal auf der Waage keine Angst vor Textaufgaben! Franz-Michael Becker, Dreieich VORANSICHT

Zahlen und Größen Beitrag 10 Textaufgaben 1 von 18. Ein Blauwal auf der Waage keine Angst vor Textaufgaben! Franz-Michael Becker, Dreieich VORANSICHT I Zahlen und Größen Beitrag 10 Textaufgaben 1 von 18 Ein Blauwal auf der Waage keine Angst vor Textaufgaben! Franz-Michael Becker, Dreieich Wie viel wiegt ein Blauwal? Mit den richtigen Strategien fällt

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

02 Vergleichen von Anteilen der Prozentbegriff

02 Vergleichen von Anteilen der Prozentbegriff Prozente 3 02 Vergleichen von Anteilen der Prozentbegriff A2 Stationenlauf Vergleichen von Anteilen Tragt die jeweiligen Ergebnisse in die nachfolgende Tabelle ein und vergleicht eure Vorgehensweisen beim

Mehr

Themen: Zusammengesetzte Zuordnungen Prozentrechnung

Themen: Zusammengesetzte Zuordnungen Prozentrechnung Klasse 7b Mathematik Vorbereitung zur Klassenarbeit Nr. 2 am 5.12.2016 Themen: Zusammengesetzte Zuordnungen Prozentrechnung Checkliste Was ich alles können soll Ich kann Dreisatzaufgaben lösen, in denen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Kap. I Arithmetik Prozentrechnung Umwandlung von Brüchen Dezimalbrüchen Prozentzahlen Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Berechnen von Prozentwert Prozentsatz

Mehr

Lernpfad Bruchzahlen (Brüche und Dezimalzahlen) Allgemeine Informationen.

Lernpfad Bruchzahlen (Brüche und Dezimalzahlen) Allgemeine Informationen. Allgemeine Informationen Link: Lernpfad erstellt und betreut von: Mag. Mone Crillovich-Cocoglia E-Mail: mone@crillovich-cocoglia.at Homepage: http://mone.crillovich-cocoglia.at Kurs-Informationen: Dieser

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung

2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung 2008.II.2.Verbesserung Haushaltsplan einer Familie UE zur Prozentrechnung 1. Sachanalyse zu Prozentrechnung Die Prozentrechnung ist ein Anwendungsgebiet der Bruchrechnung. Zur erfolgreichen Bewältigung

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Prozent- und Zinsrechnung: Regeln Aufgaben Lösungen

Prozent- und Zinsrechnung: Regeln Aufgaben Lösungen Naturwissenschaft Wolfgang Göbels Prozent- und Zinsrechnung: Regeln Aufgaben Lösungen Wolfgang Göbels Prozent- und Zinsrechnung Regeln Aufgaben Lösungen Tipps zum Training mit diesem Buch In diesem Buch

Mehr

darzustellen! 10 Dabei ist p der Zähler des Prozentsatzes P. Bedenken Sie: P = 10% = 100

darzustellen! 10 Dabei ist p der Zähler des Prozentsatzes P. Bedenken Sie: P = 10% = 100 11.04.2016 Prozentrechnung - Worum geht es? In der Prozentrechnung geht es immer darum, den Bruch Prozentwert Grundwert darzustellen! 10 Dabei ist p der Zähler des Prozentsatzes P. Bedenken Sie: P = 10%

Mehr

Auto-Service. a) Berechne die fehlenden Zahlenwerte und trage sie in die Tabelle ein. Platz für Rechnungen:

Auto-Service. a) Berechne die fehlenden Zahlenwerte und trage sie in die Tabelle ein. Platz für Rechnungen: Auto-Service Tanjas Vater will in der Autowerkstatt neue Reifen aufziehen lassen. Tanja hat sich im Internet nach den Preisen erkundigt und mit dem Computer eine Tabelle angelegt: a) Berechne die fehlenden

Mehr

Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott.

Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott. Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die. Vielen Dank, lieber Gott. Bei gibt es drei wichtige Begriffe, die man errechnen muss: ) die Definitionsmenge 2) den Hauptnenner

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt 1 In diesem Modul werden alle Spielarten des es behandelt Inhalt: 1... 1 1.1 Der normale... 2 1.1.1 Erstes direktes Berechnen... 2 1.1.2 Berechnung mittels Schema... 3 1.1.3 Lösen als Tabelle... 4 Seite

Mehr

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille?

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 1 RE 8.711 Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 8,02% 80,2 2 Spannungsverbrauch Auf einer mit Gleichspannung betriebenen

Mehr

Proportionalität und Antiproportionalität

Proportionalität und Antiproportionalität Proportionalität und Antiproportionalität 1 In diesem Kapitel»Je mehr desto mehr«und»je mehr desto weniger«zuordnungsvorschriften verstehen Darstellungsformen von Proportionalität und Antiproportionalität

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr