Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu Satz Hier stehen die Mehrheiten beider Seiten.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 1 40% G neu : neuer Preis 1. G alt : alter Preis 1. G alt = G neu 100 2. 1. Satz Hier stehen die Mehrheiten beider Seiten."

Transkript

1 Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 1 40% (a) Benenne die Folgenden Zeichen: /5 G: Grundwert 1 G neu : neuer 1 W: Prozentwert 1 G alt : alter 1 : Prozentsatz oder -Zahl 1 (b) Jedes der in (a) aufgeführten Zeichen kann durch die anderen berechnet werden. Nenne hierzu die jeweilige Formel! /10 ) G neu = G alt G= W ( ± W= G ( ) G alt = G neu ± = W G (c) Beschreibe die Sätze des Dreisatzes in eigenen Worten und vollständigen Sätzen. /5 1. Satz Hier stehen die Mehrheiten beider Seiten. 1. Satz Beide Seiten werden durch die Zahl der linken Salte im ersten Satz geteilt. 3. Satz Beide Seiten werden mit die Zahl der linken Salte des dritten Satzes multiliziert. (d) Benenne die folgenden Zeichen /5 Z: (Jahres-)Zins 1 Z m : Monatszins 1 %: Zinssatz des Kaitals 1 Z t : Tageszins 1 K: Kaital 1 (e) Gebe eine Formel für die folgenden Zeichen an. /3 Z= K 1 Z m = K m 1 1 Z t = K t Seite 1von 5

2 Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe Prozentrechnung 0% (a) Berechne die jeweils leere Zelle der Tabelle mit den Formeln aus Aufgabe 1 zur Prozentrechnung. /5 G 49,95 64, m 99,95 0% 5,4% 15,34% 1 400% 1 10% W 9,99 1 3, m 10 1 (b) Berechne die jeweils leere Zelle der nachstehenden Tabelle mit den Formeln zum neuen und alten Grundreis. /5 G alt 49,95 3,3 1 09, ,95-0% +5,4% +10% +13,% +10% G neu 39,96 1 3, , ,95 1 (c) Löse die folgende Textaufgabe. Notiere dabei Deine Rechnung und schreibe einen Antwortsatz. / Du nimmst einen Kredit in Höhe von auf. Die Finanzierung lanst du innerhalb von 1 Monaten geleistet zu haben. D.h. du zahlst ro Monat 8, 3% deines Kredites zurück. Wie viele Euros sind dies ro Monat? Lösung: Zunächst listen wir die gegebenen und gesuchten Dinge auf: Gegeben: Kredit = Grundwert = G Pozentsatz 8, 3% = Damit lässt sich die Formel für den Prozentwert anwenden: Gesucht: Die entsrechende Anzahl an Euros des Prozentsatzen, also: W W = G = 00 8, 3 = 833, 3 1 Antwort: Die 8, 3% entsrechen einer monatlichen Rate von 833, 3. 1 Seite von 5

3 Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 3 Dreisatz 0% Berechne die folgenden Textaufgaben und trage in das dafür vorgesehen Feld die Lösung ein. Es ist kein Antwortsatz nötig! (a) 6kg Rinderlet kosten 119,70. Wie viel kosten,5kg? Rinderlet Satz 1: 6 kg 119,70 :6 :6 Satz : 1 kg 19,95,5,5 Satz 3:,5 kg 49,88 Lösung: 49,88 / (b) 9kg Clementinen kosten 19,53. Wie viel kosten 5kg? Clementinen Satz 1: 9 kg 19,53 :9 :9 Satz : 1 kg, Satz 3: 5 kg 10,85 Lösung: 10,85 / (c) 70 Tafeln Schokolade kosten 56,00. Wie viel kosten 54 Tafeln? Schoko.tafeln Satz 1: :70 :70 Satz : 1 0, Satz 3: 54 43,0 Lösung: 43,0 / (d) 35 Flaschen Wein kosten 304,50. Wie viel kostet ein Karton mit 1 Flaschen? Weinaschen Satz 1: ,50 :35 :35 Satz : 1 8, Satz 3: 1 104,40 Lösung: 104,40 / (e) 6 Flaschen Orangensaft kosten 7,74. Wie viel kosten 5 Kästen, wenn in einem Kasten 10 Flaschen sind? 5 Kästen mit je 10 Flaschen sind insgesamt 50 Flaschen. O.Saftaschen Satz 1: 6 7,74 :6 :6 Satz : 1 1, Satz 3: 50 64,50 Lösung: 64,50 / (f) Sido möchte ein neues Album aufnehmen. Er rechnet mit einem Verkaufsreis der CD von 15,99. Jeder Track soll als MP3-download 0,99 kosten. Als Paketreis für das komlette MP3 Album veranschlagt er 10. Damit gewährt er einen nachlass von ca. 30%. Wieviele Lieder sind auf dem Album? Prozentsatz Satz 1: 70 % 10 :70 :70 Satz : 1 % 0,14 Satz 3: % 14,9 Lösung: 14 / Da ein Lied als MP3-Download 0,99 kostet, sind 14,43 Lieder, also 14 Songs auf dem Album. Seite 3von 5

4 Grundkometenzen der Mathematik Bei Christoher Schael Aufgabe 4 Zinsrechnung 0% (a) Berechne das jeweils freie Feld der nachfolgenden Tabelle anhand der Formeln in Aufgabe 1 zur Zinsrechnung und der nachfolgenden Formel: /5 = Z K = Z m 1 = Z t 360 K m K t K = Z = Z m 1 m = Z t 360 t (Bemerkung: Es sind tatsächlich drei verschiedene Formeln, jeweils eine für Z m, Z t und Z, um und K zu berechnen.) K ,61 1 1, ,4% 4,6% 7% 13,4% 5,01% 1 Z m ,50 8, , m (b) Ein Kaital von 500 wird zu einem Zinssatz von 7,5% angelegt. Wie hoch ist der Zins nach 9 Monaten und 10 Tagen? / 1. Lösungsstrategie: Zunächst rechnen wir 9 Monate in Tage um. Ein Bankmonat besteht aus exakt 30 Tagen. Also ergeben 9 Monate umgerechnet 9 30 = 70 Tage. Nun können wir den Tageszins berechnen: 500 7, 5 80 Z t = = 131, ) Lösungstrategie: Wir berechnen den Monats- und Tageszins getrennt: Z m = 500 7, 5 9. = 165, 63 1 Z t = 500 7, = 46, Nun addieren wir beide Werte: Z m + Z t = 165, , 88 = 131, Bis auf eine kleine Rundungsungenauigkeit stimmen beide Ergebnisse überein. Antwort: Der Zins beträgt nach 9 Monaten und 10 Tagen 131,5. 1 (c) Das Haus der Familie Müller ist mit einer Hyothek belastet. Familie Müller zahlt bei einem Zinssatz von 8,5 % monatlich 637,50 Zinsen. Wie hoch ist die Hyothek? / Zinssatz Wert Alternativ: Satz 1: 8,5 % 637,50 :8,5 :8,5 Satz : 1 % 75 Satz 3: % K = Z m 1 m = 637, , 5 1 Antwort: Die Hyothek der Familie Müller beträgt = (d) Ein Sarer erhält für sein Kaital von 4500 bei einem Zinssatz von 6,5% 55,50 ausgezahlt. Wie lange war das Kaital angelegt? /3 Aus der Formel zum Tageszins lässt sich die Formel für die Anlagedauer herleiten. Wie im Unterricht gesehen, lässt sich dies durch sog. Äquivalenzumformungen bewerkstelligen. Z t = K t 360 / ( 360) Z t 360 = K t / : (K ) Z t 360 = t K Einsetzen obiger Werte liefert: t = 55, , 5 = 70 Antwort: Das Kaital war 70 Tage angelegt. 1 Seite 4von 5

5 Grundkometenzen der Mathematik Bei Christoher Schael Bonus Gemischte Aufgaben 10% Bearbeite eine der folgenden Aufgaben und kennzeichne, welche du bearbeitest. Nur eine Aufgabe wird bewertet. (a) Für die Finanzierung der Garage musste Herr Wagemut sein Haus mit einer Hyothek belasten. Er zahlt dafür vier Prozent Zinsen im Jahr, das sind 03. Wie hoch ist die Hyothek? /4 1. Lösungsansatz: Über den Dreisatz. Zinsen Wert Satz 1: 4 % 03 :4 :4 Satz : 1 % 508 Satz 3: % Antwort: Die Hyothek von Herrn Wagemut beläuft sich auf Lösungsansatz: Direkt über die Formeln. geg.: ges.: Prozentsatz: 4%=% Hyothek Grundwert Prozentwert: 03 =W G = W = 03 4 = (b) Familie M. engagiert einen Malereibetrieb für die Renovierung des Eigentumshauses. Der Betrieb hat die Wahl der Familie entweder 5 Maler oder 10 Maler zur Verfügung zu stellen. Dafür muss die Firma jedoch wissen, was günstiger ist. 5 Maler benötigen für die 0m Wohnäche ca. 8 Tage. Wie viele Tage brauchen dann 10 Maler? Lösung durch den ungeraden Dreisatz. / Maler Tage Satz 1: 5 8 : Satz : 1 40 :10 Satz 3: 10 4 Antwort: 10 Maler benötigen 4 Tage für die selbe Arbeit. Der Malereibetrieb veranschlagt ro Maler ro Tag 10 Gehalt. Die Einnahmen für die Renovierungstätigkeit wurde mit der Familie M. auf einen Fixreis von 000 festgelegt. Wie viele Maler sollte der Betrieb entsenden, um den maximalen Gewinn einzuholen? / Zunächst berechnen wir, wie viel Geld 5 und 10 Maler ro Tag für den Malerbetrieb kosten. 5 Maler kosten 5 10 = 600 ro Tag. 10 Maler kosten = 100 am Tag. Nun berechnen wir die Gesamtkosten für die Arbeitsdauer: 5 Maler kosten über einen Zeitraum von 8 Tagen = Maler kosten über einen Zeitraum von 4 Tagen = Abschlieÿend vergleichen wir beide Werte. Beide sind gleich. Antwort: Da die kosten für den Betrieb identisch sind, macht es keinen Unterschied, wie viele Maler entsendet werden. 1 (c) Leite die Formel des Grundwertes durch die ausschlieÿliche Verwendung des Dreisatzes her. /4 Lösung: Um den Grundwert zu berechnen werden der Prozentwert und Prozentsatz benötigt. Der Prozentwert entsricht immer dem Gegenwert des Prozentsatzes. Der Grundwert entsricht stets einem Prozentsatz von %. Folglich ergibt sich der Dreisatz wie folgt: Prozentsatz Prozentwert Satz 1: % W : : W Satz : 1 % Satz 3: % G = W 4 Seite 5von 5

Klausur zur Pozent- und Zinsrechnung

Klausur zur Pozent- und Zinsrechnung Name: Aufgabe 1 2 3 4 Bonus Gesamtpunkte a b c d e a b c a b c d e f a b c d 5 10 5 5 3 5 5 2 2 2 2 2 2 2 5 2 2 3 erreicht: Gesamt von 20 12 12 12 Punkte: Note: Klausur zur Pozent- und Zinsrechnung Im

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Übungsaufgaben zur Zinsrechnung

Übungsaufgaben zur Zinsrechnung Seite 1 von 5 a.) Jemand legt heute 4.000.- zu 4,8% Zinsen an. Nach wie vielen Jahren wird sein Guthaben auf 5.056,69 angewachsen sein? 4.000 1,048 x = 5.056,69 : 4.000 1,048 x = 1,64175 lg x = lg 1,64175

Mehr

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit

Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit Übungsaufgaben zur Zinsrechnung aus einer Klassenarbeit 1. Aufgabe Ein Kapital in Höhe von 1500 wird zunächst drei Jahre lang mit 5% verzinst und dann mit 6,2% verzinst. Das Kapital beträgt dann 2.645,64.

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH

Prozentrechnung. Prozent- und einfache Zinsrechnung Der MATHE COACH Prozentrechnung Prozent- und einfache Zinsrechnung Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll.

nennt man Prozentsatz. Der Prozentsatz gibt an, welcher Teil von dem Ganzen berechnet werden soll. Prozentrechnung Wozu Prozentrechnung? Bei der Prozentrechnung geht es immer darum, einen Teil von einem Ganzen zu berechnen. Das Ganze stellt immer den Grundwert aller Aufgaben dar und das Ganze = der

Mehr

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat.

1 Die hier benutzten Werte sind Werte eines Schülers, der nicht mitgeschrieben hat. 0.2.2003 Klassenarbeit 2 Klasse 7k Mathematik Lösung Teil Öffne die Datei Aufgabe und 2 auf deiner CD. Dort findest du diese beiden Texte, allerdings sind dort die richtigen Werte eingesetzt und nicht

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Das Thema verlangt von dir die Berechnung von Preisauf- bzw. Preisabschlägen, Mehrwertsteuerberechnungen usw. Vom Prinzip ist dieses Kapitel der Prozentrechnung zuzuordnen. Du musst hierbei

Mehr

7 Prozent- und Zinsrechnung

7 Prozent- und Zinsrechnung 45 Lösungen zum Schülerband 7 Prozent- und Zinsrechnung 9 9 400 Zinsen 560 kostet der Kredit bei einer Laufzeit von Monaten (zuzüglich der geliehenen Summe) Summe gesetzlicher Abzüge: 5,7 Netto: 767,6

Mehr

Erkunden - Prozentrechnung

Erkunden - Prozentrechnung Erkunden - Prozentrechnung Ziel: Sich praktisch mit den Begriffen der Prozentrechnung vertraut machen und schon erste Rechnungen damit durchführen. Du hast dich mit den grundlegenden Begriffen der Prozentrechnung

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH

Prozentrechnung. 4 verschiedene Methoden Der MATHE COACH Prozentrechnung 4 verschiedene Methoden Was bedeutet Prozent? Hundertstel von Hundert der hundertste Teil Was beschreiben wir mit Prozenten? Anteile Verhältnisse Zusammenhänge Elemente der Prozentrechnung

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40% ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10

Basiswissen Prozentrechnen Seite 1 von 6 0,1= 1 10 = 10 Basiswissen Prozentrechnen Seite von 6 Nenne die Dezimalzahlen 0,; 0,2; 0,3; bis in der Prozentschreibweise. 0,= 0 = 0 00 =0 00 =0% 0,2=20% ; 0,3=30% ; 0,4=40 % ;0,5=50%; 0,6=60% ; 0,7=70 % ;... 0.9=90%

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit. 51 722 Elementarmathematik (LH) und Fehlerfreiheit 30 % 25 % 37 % Universität Regensburg 4. Prozent-, Promille- und Zinsrechnung 4.1. Grundbegriffe der Prozentrechnung Die Prozent, Promille- und Zinsrechnung ist ein Teil der Bruchrechnung mit dem vorgegebenen

Mehr

Auto-Service. a) Berechne die fehlenden Zahlenwerte und trage sie in die Tabelle ein. Platz für Rechnungen:

Auto-Service. a) Berechne die fehlenden Zahlenwerte und trage sie in die Tabelle ein. Platz für Rechnungen: Auto-Service Tanjas Vater will in der Autowerkstatt neue Reifen aufziehen lassen. Tanja hat sich im Internet nach den Preisen erkundigt und mit dem Computer eine Tabelle angelegt: a) Berechne die fehlenden

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die

Mehr

Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung 12. 6 Terme/Gleichungen 13

Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung 12. 6 Terme/Gleichungen 13 Inhaltsverzeichnis Rationale Zahlen Zuordnungen Geometrie 5 4 Prozentrechnung 9 5 Zinsrechnung 6 Terme/Gleichungen 7 Wahrscheinlichkeitsrechnung 5 Rationale Zahlen ddition/ Subtraktion negativer Zahlen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 15.02.2013 SEK I Lösungen zur Prozentrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Prozenten I Prozentrechenaufgaben zur Vorbereitung

Mehr

Grundwissen Mathematik 6. Jahrgangsstufe Flächen und Prozentrechnung. StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11.

Grundwissen Mathematik 6. Jahrgangsstufe Flächen und Prozentrechnung. StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11. Flächen und Prozentrechnung StR Markus Baur Werdenfels-Gymnasium Garmisch-Partenkirchen 11. April 2015 1 Inhaltsverzeichnis 1 Der Flächeninhalt von Figuren 3 1.1 Das Parallelogramm...........................

Mehr

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt

1 Dreisatz In diesem Modul werden alle Spielarten des Dreisatzes behandelt 1 In diesem Modul werden alle Spielarten des es behandelt Inhalt: 1... 1 1.1 Der normale... 2 1.1.1 Erstes direktes Berechnen... 2 1.1.2 Berechnung mittels Schema... 3 1.1.3 Lösen als Tabelle... 4 Seite

Mehr

Ein Prozent ist ein Hundertstel, also der hundertste Teil einer Grösse (X : 100)

Ein Prozent ist ein Hundertstel, also der hundertste Teil einer Grösse (X : 100) Anhang Prozentrechnen Prozentrechnen Ein Prozent ist ein Hundertstel, also der hundertste Teil einer Grösse (X : 100) "Prozent" wird in der Schrift mit dem Zeichen % ausgedrückt. Im Prozentrechnen gibt

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg

5/27/09. 1.5 Anwendungen der Bruchzahlen. Prozentrechnung. Zwei Möglichkeiten zum Einstieg 5/27/09 1.5 Anwendungen der Bruchzahlen Sachaufgaben im 6. und 7. Schuljahr a) Prozentrechnung b) Zinsrechnung c) Zinseszinsrechnung Prozentrechnung Zwei Möglichkeiten zum Einstieg I. Man geht von Prozentangaben

Mehr

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600. Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %

, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 % Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites

Mehr

1.5 Gleichungen I. 1 Gleichungen 1.Grades mit einer Unbekannten 2. 2 allgemeingültige und nichterfüllbare Gleichungen 4

1.5 Gleichungen I. 1 Gleichungen 1.Grades mit einer Unbekannten 2. 2 allgemeingültige und nichterfüllbare Gleichungen 4 1.5 Gleichungen I Inhaltsverzeichnis 1 Gleichungen 1.Grades mit einer Unbekannten 2 2 allgemeingültige und nichterfüllbare Gleichungen 4 3 Einschub: Rechnen mit physikalischen Zeichen 5 4 Auflösen von

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit 4. Prozent-, Promille- und Zinsrechnung 4.1. Grundbegriffe der Prozentrechnung Die Prozent, Promille- und Zinsrechnung ist ein Teil der Bruchrechnung mit dem vorgegebenen Nenner 100 bzw. 1000. Wir legen

Mehr

B) Die Lösung der Aufgaben durch einfache Multiplikation mit der entsprechenden Dezimalzahl (Seite 2)

B) Die Lösung der Aufgaben durch einfache Multiplikation mit der entsprechenden Dezimalzahl (Seite 2) Mathematik Prozent-Rechnung Seite von 5 Hier wird die Lösung von Prozent-Aufgaben gezeigt: A) Was bedeuten die Prozentzahlen? (Seite ) B) Die Lösung der Aufgaben durch einfache Multiplikation mit der entsprechenden

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Aufgabensammlung für interessierte Bewerber/innen des Berufs. Chemielaborant/in

Aufgabensammlung für interessierte Bewerber/innen des Berufs. Chemielaborant/in Aufgabensammlung für interessierte Bewerber/innen des Berufs Chemielaborant/in Hier die von uns gewünschten Kenntnisse der Mathematik. Bitte keinen Taschenrechner oder andere Hilfsmittel benutzen! Die

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Themen: Zusammengesetzte Zuordnungen Prozentrechnung

Themen: Zusammengesetzte Zuordnungen Prozentrechnung Klasse 7b Mathematik Vorbereitung zur Klassenarbeit Nr. 2 am 5.12.2016 Themen: Zusammengesetzte Zuordnungen Prozentrechnung Checkliste Was ich alles können soll Ich kann Dreisatzaufgaben lösen, in denen

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

DOWNLOAD. Mein Taschengeld. Mathe-Aufgaben aus dem Alltag. Karin Schwacha. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Mein Taschengeld. Mathe-Aufgaben aus dem Alltag. Karin Schwacha. Downloadauszug aus dem Originaltitel: DOWNLOAD Karin Schwacha Mein Taschengeld Mathe-Aufgaben aus dem Alltag 7 8 Downloadauszug aus dem Originaltitel: Taschengeld Katrin und Simon sind befreundet und gehen in dieselbe Klasse. Sie verbringen

Mehr

Zinsrechnung K leicht 1

Zinsrechnung K leicht 1 Zinsrechnung K leicht 1 Berechne jeweils das Kapital im Kopf! (Zeitraum: 1 Jahr) a) K = 3 000 a) Zinsen: 30 b) K = 7 500 c) K = 100 000 d) K = 20 Zinssatz: 000 1 % b) Zinsen: 150 Zinssatz: 2 % c) Zinsen:

Mehr

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille?

Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 1 RE 8.711 Srassensteigung Eine Strasse steigt auf einer Länge von 2,68 km um 215 m. Wie gross ist die Steigung in Prozent und Promille? 8,02% 80,2 2 Spannungsverbrauch Auf einer mit Gleichspannung betriebenen

Mehr

Prozentrechnung. 1. Von 360 Schülern fahren. b) gehen zu Fuß. 2. Wieviel sind 2 7. von 210? 3. Wieviel sind 3. von 500?

Prozentrechnung. 1. Von 360 Schülern fahren. b) gehen zu Fuß. 2. Wieviel sind 2 7. von 210? 3. Wieviel sind 3. von 500? Prozentrechnung. Von 60 Schülern fahren a) mit dem Fahrrad zur Schule 9 7 b) gehen zu Fuß 8 Wie viele Schüler sind das?. Wieviel sind 7 von 0?. Wieviel sind 00 von 500? 4. Wieviel sind (Typ ) a) 4% von

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi. Copyright Francesco Grassi

Prozentrechnung Theorie und Aufgaben. Prozentrechnung. Theorie und Aufgaben. von Francesco Grassi.  Copyright Francesco Grassi Prozentrechnung Theorie und Aufgaben von Francesco Grassi www.educationalapps.ch Inhaltsverzeichnis VORWORT...3 KAP.1 Prozentanteil... 4 KAP.2 Prozentuelle Änderung...23 VORWORT Mit ProzenTutor kann man

Mehr

Download. Mathematik üben Klasse 8 Prozentrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Prozentrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Prozentrechnung Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Prozentrechnung

Mehr

Malnehmen Multiplizieren

Malnehmen Multiplizieren . Malnehmen Multiplizieren Lademannbogen 5, 9 Hamburg; Postfach 6 05 00, Hamburg 5 = Als Multiplikation bezeichnet man das Malnehmen. Man multipliziert die Stellen der Zahlen einzeln miteinander und addiert

Mehr

2 Terme 2.1 Einführung

2 Terme 2.1 Einführung 2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.

Mehr

Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich

Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen.

Mehr

LÖSUNGEN Zinsrechnung

LÖSUNGEN Zinsrechnung M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 6. Januar 2016 LÖSUNGEN Zinsrechnung Aufgabe 1. Am 3. März eines Jahres erfolgt eine Einzahlung von 3.500 e. Auf welchen Endwert

Mehr

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse Matheheft 7. Klasse Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Lernplan von 1 Seite Prozent- und Zinsrechnung bearbeiten am Anteile

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Prozentrechnen. Teil 1: Grundlagen. Trainingseinheiten zum Üben und Vertiefen. Datei Nr Friedrich Buckel. Stand 21.

Prozentrechnen. Teil 1: Grundlagen. Trainingseinheiten zum Üben und Vertiefen. Datei Nr Friedrich Buckel. Stand 21. Mathematik für Klasse 6/7 Prozentrechnen Teil : Grundlagen Trainingseinheiten zum Üben und Vertiefen Datei Nr. 0 Stand 2. Juni 207 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.schule 0 Prozentrechnung

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Berechnung von Grundwert, Prozentwert und Prozentsatz

Berechnung von Grundwert, Prozentwert und Prozentsatz Berechnung von rundwert, Prozentwert und Prozentsatz Sind zwei rößen der Prozentrechnung gegeben, lässt sich die dritte berechnen. Die fehlenden rößen können auf verschiedene Weisen berechnet werden. Hier

Mehr

Alle Themen Typische Aufgaben

Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.1 Rechnen mit natürlichen Zahlen 1 Gemeinsame Teiler und Vielfache Das kleinste gemeinsame Vielfache (kgv)

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Üben für die 2. Schularbeit Mathematik 3

Üben für die 2. Schularbeit Mathematik 3 Üben für die 2. Schularbeit Mathematik 3 LÖSUNG wird zwischen 08.12. und 12.12.2016 in Teilen in eurer Klassenkiste auf lernkiste.at verfügbar sein. (1) Rationale Zahlen multiplizieren und dividieren a)

Mehr

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8%

f) = 3% = 9% = 34% = 65% = 21% = 88% f) 540 = 2% = 80% = 40% = 50% = 17% = 90% f) = 33,3% = 83,3% = 42,9% = 116,7% = 34,8% = 30,8% Prozentrechnung Lösungen 1. Schreibe als Prozent. 4 5 21 88 b) c) d) = % = % = 4% = 5% = 21% = 88% 2. Schreibe als Prozent. 4 b) 50 c) 10 d) 450 85 540 200 700 400 00 500 00 = 2% = 80% = 40% = 50% = 17%

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?

1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt? Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht

Mehr

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden.

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden. Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 7 (G8) Arithmetik / Algebra / Funktionen: Prozent- Zinsrechnung Funktionen mit eigenen Worten, Wertetabellen, als Graphen und in Termen

Mehr

Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014

Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014 Aufgabe 1 Kolloquium zur Klausur Innovationscontrolling Sommersemester 2014 Dipl.-Kfm. Stephan Körner Aufgabe 1: Investitionscontrolling (40 Punkte) Die Bleier & Mine GmbH ist Herstellerin von Büroartikeln

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

I. Lehrplanauszug. Beispielaufgaben. Grundwissen Mathematik 6. Jahrgangsstufe. In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen:

I. Lehrplanauszug. Beispielaufgaben. Grundwissen Mathematik 6. Jahrgangsstufe. In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen: Grundwissen Mathematik 6. Jahrgangsstufe I. Lehrplanauszug In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen: Sie können rationale Zahlen in verschiedenen Schreibweisen darstellen. Sie

Mehr

Zinsrechnung ist Prozentrechnung: Einstiegshilfen mit Musterbeispielen zum Selbstlernen:

Zinsrechnung ist Prozentrechnung: Einstiegshilfen mit Musterbeispielen zum Selbstlernen: Zinsrechnung ist Prozentrechnung: Einstiegshilfen mit Musterbeispielen zum Selbstlernen: Den Bezeichnungen und Symbolen aus der Prozentrechnung entsprechen bei der Zinsrechnung: Prozentrechnung Zinsrechnung

Mehr

Kaufmännische Berufsmatura 2012

Kaufmännische Berufsmatura 2012 Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%.

Das Darlehn wurde nach 42 Monaten (3,5 Jahren) abgelöst. Auf Artikel I ist ein Rabatt von 12,5% und auf Artikel II von 5%. R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen zur Prozent und Zinsrechnung I se: E1 E E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E13 E14 E15 Nach 9 Monaten und 10 Tagen belaufen sich die anfallenden

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de

Zinsrechnen. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de Das Zinsrechnen Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Begriffe der Zinsrechnung Das Zinsrechnen ist Prozentrechnen unter

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen.

Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Frau Mayer erhält nach einem Jahr 8,40 Zinsen. Zinsen berechnen Die Zinsrechnung ist eine Anwendung der Prozentrechnung mit speziellen Begriffen. Grundwert G Kapital K Prozentwert P Zinsen Z Prozentsatz p Zinssatz p Frau Mayer hat ein Guthaben von

Mehr

Mathematik für Klasse 6 Rechnen mit Dezimalzahlen

Mathematik für Klasse 6 Rechnen mit Dezimalzahlen Mathematik für Klasse 6 Rechnen mit Dezimalzahlen 16 Trainingseinheiten zum Unterricht Dazu gehört auch eine Einführung in die Anfänge der Prozentrechnung. Datei Nr. 10310 Friedrich W. Buckel Stand: Stand

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg wirtschaftliche Anwendungen Hilfsmittel: GTR, Formelsammlung berufliche Gymnasien (AG, BTG, EG, SG, TG, WG) Alexander Schwarz www.mathe-aufgaben.com

Mehr

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler Lineare Gleichungen Lineare Gleichungssysteme Lineare Algebra Ein Trainingsheft für Schüler Manuelle Lösungen ohne Rechnerhilfen und (hier) ohne Determinanten Datei Nr. 600 Stand 8. September 04 FRIEDRICH

Mehr

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch K5: Mit Variablen und Termen arbeiten K5: Mit Variablen und Termen arbeiten K2: Geeignete heuristische Hilfsmittel (z. B. informative Figuren), Strategien und Prinzipien zum Problemlösen auswählen und

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr

Termstrukturen. Sieglinde Fürst. Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen

Termstrukturen. Sieglinde Fürst. Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen Sieglinde Fürst Termstrukturen Elementare Algebra Gleichungen lösen und Umformen Termstrukturen erkennen Inhalte Multiplizieren von mehrgliedrigen Ausdrücken Quadrat eines Binoms ergänzen, Arbeiten mit

Mehr

Lerntipps mit Checklisten zur Selbstkontrolle

Lerntipps mit Checklisten zur Selbstkontrolle Sehr geehrte Schülerinnen und Schüler, wenn Sie einen Zeitlan für die Prüfungsvorbereitung erstellt haben, werden Sie sich vielleicht fragen, wie Sie denn nun die eingelanten Lerneinheiten mit Inhalt füllen

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Abitur 2009 Mathematik GK Stochastik Aufgabe C1

Abitur 2009 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 009 Mathematik GK Stochastik Aufgabe C1 Auf einem Spielbrett rollt eine Kugel vom Start bis in eines der Fächer F 1 bis F 5. An jeder Verzweigung rollt

Mehr

Prozent (pro cento) - ganz einfach

Prozent (pro cento) - ganz einfach Prozent (pro cento) - ganz einfach p p% 100 Übungen: 7% 12,5% 25% 100% 7 100 0,07 12,5 125 100 1000 25 1 0,25 100 4 100 1 100 0,125 p% ist nur eine andere Schreibweise für p 100 oder p:100 Übung zu Prozentzahlen:

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2004 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 50 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Lösen Sie die Pflichtaufgabe und wählen

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 1 Elementare Algebra Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 5.10.2016 Tagesablauf 9:00-10:30 Vorlesung Audimax I

Mehr

Demo für Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr

Demo für  Prozentrechnen. Trainingseinheiten zum Üben und Vertiefen. Teil 1: Grundlagen. Datei Nr Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil : Grundlagen Datei Nr. 055 Stand 6. November 204 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 055 Prozentrechnung 2 Vorwort

Mehr