E ektgrößen Metaanalysen. Zusammenhänge und Unterschiede quantifizieren E ektgrößen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "E ektgrößen Metaanalysen. Zusammenhänge und Unterschiede quantifizieren E ektgrößen"

Transkript

1 DAS THEMA: EFFEKTGRÖßEN UND METAANALYSE E ektgrößen Metaanalysen Zusammenhänge und Unterschiede quantifizieren E ektgrößen Was ist ein E ekt? Was sind E ektgrößen? Berechnung von E ektgrößen Interpretation von E ektgrößen 1

2 WAS IST EIN EFFEKT? in quantitativen Studien geht es letztlich immer um (mindestens) eines von fünf Dingen: Anteile, Lagemaße, Streuungsmaße, Mittelwertsunterschiede, Zusammenhänge Unterschiede und Zusammenhänge sind dabei die wichtigsten Größen sie werden Effekte genannt Nedeltcheva et al. (2010) (aus Spiegel Online) Gewichtsverlust in kg Mi;elwerts- unterschied = Effekt 8.5h 5.5h Schlaf WAS SIND EFFEKTGRÖßEN? zwei Probleme: Wie soll man einen bestimmten Effekt interpretieren? Wie kann man Effekte aus verschiedenen Studien (von verschiedenen Skalen/Messinstrumenten) vergleichen)? Beispiel: der Unterschied im Gewichtsverlust beträgt etwa 1kg Ist das viel oder wenig? Lösung: Standardisierung des Effektes das bringt zwei Vorteile: 1. die Bedeutsamkeit des Effektes wird deutlich (Sie erinnern sich: traue keinem Mittelwert ohne Streuung) 2. Effekte aus verschiedenen Studien werden vergleichbar und einheitlich interpretierbar standardisierte Effekte heißen Effektgrößen (oder Effektstärken) Effektgrößen gibt es für Mittelwertsunterschiede (man spricht dann von Abstandsmaßen) und für Zusammenhänge (Zusammenhangsmaße) 2

3 WAS SIND EFFEKTGRÖßEN? Effektgrößen für Mittelwertsunterschiede bei unabhängigen Messungen generelles Prinzip: Mittelwertsunterschied an der Streuung innerhalb der Gruppen relativieren: Design: between Gewichtsverlust in kg Streuung Gruppe A ΔM Streuung Gruppe B Mi;elwertsunterschied der Gruppen A und B gemeinsame Streuung 8.5h 5.5h Schlaf WAS SIND EFFEKTGRÖßEN? Effektgrößen für Mittelwertsunterschiede bei unabhängigen Messungen Variante 1: Streuung der Stichprobendaten verwenden à Cohens d Variante 2: geschätzte Streuung in der Population verwenden à Hedges g (Bei der Schätzung der Streuung in der Population wird bei der Berechnung der Standardabweichung nicht durch n, sondern durch n-1 geteilt.) 3

4 WAS SIND EFFEKTGRÖßEN? Effektgrößen für Mittelwertsunterschiede bei abhängigen Messungen generelles Prinzip: globalen Mittelwertsunterschied an der Streuung der Mittelwertsunterschiede pro Person relativieren: Design: within Gewichtsverlust in kg jede Person hat einen Mi;elwertsunterschied zwischen erster und zweiter Messung (Differenzwerte) Mi;elwert aller Differenzwerte Streuung der Differenzwerte 8.5h 5.5h Schlaf WAS SIND EFFEKTGRÖßEN? Effektgrößen für Mittelwertsunterschiede bei abhängigen Messungen Variante 1: Streuung der Stichprobendaten verwenden à Cohens d Variante 2: geschätzte Streuung in der Population verwenden à Hedges g (Bei der Schätzung der Streuung in der Population wird bei der Berechnung der Standardabweichung nicht durch n, sondern durch n-1 geteilt.) 4

5 WAS SIND EFFEKTGRÖßEN? Rechenbeispiel für unabhängige Messungen: Wie unterscheidet sich eine Versuchsgruppe, in der eine Verhaltenstherapie durchgeführt wurde, von einer Kontrollgruppe ohne Therapie (AV: Befindlichkeit auf einer Skala von 1 bis 10)? 1. Geht der Effekt in die richtige Richtung? à ja 2. Was ist der Effekt? à 8,8 7,6 = 1,2 Punkte 3. Wie groß ist der Effekt? à gemeinsame Streuung ermitteln: à Effektgröße ermitteln: WAS SIND EFFEKTGRÖßEN? Effektgrößen für Zusammenhänge Zusammenhangs-Maße sind bereits Effektgrößen, weil der Effekt hier bereits an der Streuung relativiert ist: alle Korrelationskoeffizienten (r, Rho, Tau, Phi) sind Effektgrößen Gewichtsverlust in kg KorrelaSon von Gewichtsverlust und Gruppenzugehörigkeit 8.5h 5.5h Schlaf 5

6 BERECHNUNG VON EFFEKTGRÖßEN Effektgrößen können auf drei Wegen bestimmt werden: 1. aus Rohwerten (siehe vorherige Folien) 2. aus anderen Effektgrößen 3. aus Ergebnissen von Signifikanztests (siehe Inferenzstatistik) Effektgrößen umrechnen Umrechnen von Abstandsmaßen: die Stichprobengröße n bezieht sich auf die Gesamtanzahl von Personen (bei zwei Gruppen zu je 10 Personen, ist n = 20) df bestimmt sich durch n k (wobei k die Anzahl der Gruppen ist, also 2) BERECHNUNG VON EFFEKTGRÖßEN Effektgrößen umrechnen Korrelationen aus Abstandsmaßen: (gilt nur bei gleichen Stichprobengrößen) Abstandsmaße aus Korrelationen: (macht natürlich nur Sinn, wenn sich mindestens eine der beiden korrelierten Variablen als eine Codierung von zwei Gruppen verstehen lässt) 6

7 FREIHEITSGRADE EXKURS in statistischen Formeln werden statt der Stichprobengröße n häufig die Freiheitsgrade df (degrees of freedom) verwendet, weil diese erfahrungsgemäß zu den besseren Schätzungen von Parametern führen in einem mathematischen Ausdruck gibt es immer nur eine definierte Anzahl von Größen, die frei variieren können, wenn andere Größen festgelegt sind einfaches Beispiel: Wie viele Summanden können frei variieren, ohne dass sich die Summe ändern muss? z.b.: = 11 à es können n 1 Summanden frei variieren à df = n 1 INTERPRETATION VON EFFEKTGRÖßEN d und g drücken Mittelwertsunterschiede in Standardabweichungseinheiten aus, d.h., ein d von -1 oder 1 entspricht einem Mittelwertsunterschied von 1SD auf der Merkmals-Skala sie sind prinzipiell nach oben hin offen, während r von -1 bis 1 begrenzt ist die Interpretation ist vom Gegenstandsbereich abhängig dennoch werden gern die Konventionen nach Cohen (1988) benutzt: 7

8 INTERPRETATION VON EFFEKTGRÖßEN zurück zum Ausgangsbeispiel: Gewichtsverlust in kg Daten der Originalstudie: d = 1,22 r =.52 à großer Effekt EFFEKTGRÖßEN STECKBRIEF Effektgrößen beschreiben die standardisierte Größe von Mittelwertsunterschieden oder Zusammenhängen sie sind leicht und einheitlich zu interpretieren und lassen sich über verschiedene Studien hinweg vergleichen und zusammenfassen sie können auf drei Wegen bestimmt werden: aus Rohwerten, aus anderen Effektgrößen und aus den Ergebnissen von Signifikanztests für Unterschiede: hauptsächlich d und g für Zusammenhänge: alle Arten von Korrelationskoeffizienten 8

9 Studien über Studien Metaanalysen die Idee der Metaanalyse die Stichprobenverteilung Hauptergebnis der Metaanalyse generelles Vorgehen Voraussetzungen DIE IDEE DER METAANALYSE zur Erinnerung (und zur Einstimmung auf die Inferenzstatistik): Ziel von Studien ist es am Ende, den gefundenen Effekt auf die Population zu verallgemeinern es gibt zwei Wege, das zu tun: einen empirischen und einen theoretischen den empirischen beschreitet die Metaanalyse den theoretischen beschreitet die Inferenzstatistik generelle Idee: ein Parameter lässt sich umso genauer schätzen, je öfter man ihn untersucht die Frage ist also: was würde passieren, wenn man eine Studie immer wieder wiederholte? 9

10 DIE IDEE DER METAANALYSE oft ist es der Fall, dass es tatsächlich mehrere Studien zu der gleichen Fragestellung gibt, derselbe Parameter also mehrmals geschätzt wurde die Metaanalyse trägt diese Studien zusammen und bestimmt einen aggregierten Kennwert, der nun eine viel bessere Schätzung für die Größe des Parameters in der Population liefert als einzelne Studien Parameter können Anteile, Lage- und Streuungsmaße oder Effekte (Zusammenhänge oder Unterschiede) sein DIE STICHPROBENVERTEILUNG Beispiel für einen Mi;elwert Wir machen eine Studie (und erhalten eine Häufigkeitsverteilung): den Mi;elwert tragen wir in einer neuen Abbildung ab Wir (oder ein anderer Forscher) machen eine neue Studie (und erhalten eine etwas andere Häufigkeitsverteilung): den Mi;elwert tragen wir wieder ab 10

11 DIE STICHPROBENVERTEILUNG Das lässt sich nun mit einer beliebig großen Anzahl von Mi;elwerten machen: es entsteht eine neue Verteilung, die nicht mehr Personen, sondern nur noch die Kenn- werte einzelner SSchproben (hier: Mi;el- werte) beinhaltet à die SSchprobenverteilung da es sich um Kennwerte aus echten empirischen Studien handelt, haben wir es mit einer empirischen SSchprobenverteilung zu tun HAUPTERGEBNIS DER METAANALYSE Hauptergebnis einer Metaanalyse ist ein gemittelter Kennwert, d.h., etwa der gemittelte Mittelwert oder die gemittelte Effektgröße aus einer Reihe von Studien z.b.: manchmal werden die Werte aus den einzelnen Studien noch an ihrer Stichprobengröße gewichtet, damit größere Studien stärker einfließen z.b.: 11

12 HAUPTERGEBNIS DER METAANALYSE der gemi;elte Kennwert ist das Hauptergebnis der Metaanalyse und liefert eine sehr verlässliche Schätzung für die Größe des Parameters in der PopulaSon HAUPTERGEBNIS DER METAANALYSE Beispiel: klassische Metaanalyse von Smith und Glass (1977) wirkt Psychotherapie? verglichen wurde Therapie vs. keine Therapie für eine ganze Reihe von psychischen Störungen (aus fast 400 einzelnen Studien) berechnet wurde ein mittleres d: 12

13 HAUPTERGEBNIS DER METAANALYSE oft werden die Ergebnisse der einbezogenen Studien in einem so genannten Forest Plot dargestellt: die einzelnen Studien Gesamt- Effekt untersuchter Parameter (z.b. d) die Kästchen zeigen den Kennwert der jeweiligen Studie, die Linien an den Kästchen zeigen die Konfidenzintervalle (siehe InferenzstaSsSk) METAANALYSE GENERELLES VORGEHEN für eine konkrete Fragestellung: nach relevanten Forschungsarbeiten suchen (Datenbanken, Google, Bibliothek, Referenzen in Forschungsarbeiten...) Ein- bzw. Ausschlusskriterien festlegen (z.b. Randomisierung, Kontrollgruppen, Ausschluss von Alternativerklärungen...) Auswahl relevanter Studien treffen (im Hinblick auf die Ein- und Ausschlusskriterien und auf die genaue Fragestellung (dieselbe AV?)) sich auf einen Kennwert einigen (z.b. r) für alle Studien die Ergebnisse in diesen Kennwert umrechnen, falls sie nicht schon so vorliegen alle Kennwerte mitteln (und evtl. an der Stichprobengröße gewichten) evtl. Ergebnisse visualisieren 13

14 METAANALYSE VORAUSSETZUNGEN Metaanalysen sind nur sinnvoll, wenn die berücksichtigten Studien eine zufriedenstellende Qualität haben (man spricht vom Müll-rein-Müll-raus-Problem ) à dafür werden oft eine Reihe von Ein- und Ausschlusskriterien definiert die berücksichtigten Studien auch tatsächlich dasselbe messen ( Äpfelund-Birnen-Problem ) à wenn das nicht der Fall ist, sollte man für verschiedene AVs verschiedene Metaanalysen machen METAANALYSE STECKBRIEF Metaanalysen aggregieren Parameter (z.b. Zusammenhänge oder Unterschiede) aus verschiedenen Studien sie basieren also auf empirischen Stichprobenverteilungen Hauptergebnis ist in der Regel ein gemittelter und an der Stichprobengröße gewichteter Parameter Metaanalysen liefern wesentlich bessere Schätzungen für Populationsparameter als einzelne Studien 14

15 LITERATUR Hussy, W., Schreier, M. & Echterhoff, G. (2010). Forschungsmethoden in Psychologie und Sozialwissenschaften. Heidelberg: Springer. Schäfer, T. (2011). Statistik II. Inferenzstatistik. Wiesbaden: Springer VS. Sedlmeier, P. & Renkewitz, F. (2013). Forschungsmethoden und Statistik: Ein Lehrbuch für Psychologen und Sozialwissenschaftler. München: Pearson. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.), New Jersey: Lawrence Erlbaum Associates. Cohen, J. (1992). A power primer. Psychological Bulletin, 112 (1): Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American Psychologist, 32(9), TEIL 5: INFERENZSTATISTIK 15

16 DAS THEMA: ERKENNTNISSE AUS STUDIEN VERALLGEMEINERN INFERENZSTATISTIK Gilt das nun für alle? die Idee der Inferenzstatistik theoretische Stichprobenverteilungen 16

17 DIE IDEE DER INFERENZSTATISTIK was bisher geschah: wir haben Ergebnisse aus Studien durch Kennwerte und Abbildungen beschrieben und sie als Parameterschätzungen für die Population benutzt à Deskription und Exploration was wir nun tun wollen: Angaben darüber machen, wie gut diese Schätzungen für die Population eigentlich sind à Inferenzen (Schlüsse) von den Stichprobendaten auf die Population zentrale Frage: Ist das Ergebnis in meiner Studie zufällig entstanden oder kann ich behaupten, dass es in der Population ebenso gilt? DIE IDEE DER INFERENZSTATISTIK Vorsicht: Inferenzstatistische Angaben machen nur Sinn, wenn es überhaupt eine Population gibt. Die Frage, ob ein Ergebnis signifikant ist, ist sinnlos, wenn die Ergebnisse nur auf genau die Leute angewendet werden sollen, die auch untersucht wurden. Dann reicht die Beschreibung der Ergebnisse, z.b. mit Hilfe von Effektgrößen. 17

18 DIE THEORETISCHE STICHPROBENVERTEILUNG zur Erinnerung: auch bei der Metaanalyse ging es um die Verlässlichkeit der Schätzung von Parametern in der Population dort wurde eine empirische Stichprobenverteilung benutzt die Idee der Inferenzstatistik ist ähnlich: ich habe zwar nur eine Studie, aber ich überlege, was theoretisch passieren würde, wenn ich diese Studie immer wieder wiederholte ich erhalte eine theoretische Stichprobenverteilung (diese Verteilung kann man selbst nur schwer konstruieren, aber man kann sie von einer Software simulieren lassen) DIE THEORETISCHE STICHPROBENVERTEILUNG Wie gelangt man zur theoretischen Stichprobenverteilung? à da Stichprobenkennwerte normalverteilt sind (siehe Exkurs), brauchen wir nur 2 Größen: Mittelwert und Streuung als Mi;elwert nehmen wir den Kennwert aus unserer Studie (etwas anderes haben wir ja nicht) über die hypothessche Streuung wissen wir nichts, können aber die Streuung der SSchprobendaten zu Hilfe nehmen 18

19 ZENTRALER GRENZWERTSATZ EXKURS Annahme bei der Konstruktion einer theoretischen Stichprobenverteilung: es gibt einen wahren Parameter in der Population alle Studien, die ihn suchen, werden Ergebnisse liefern, die zufällig um ihn herum schwanken à es entsteht eine Normalverteilung à dieses Prinzip wird Zentraler Grenzwertsatz genannt: die Verteilung von Parametern aus Stichproben nähert sich bei steigender Anzahl berücksichtigter Stichproben immer mehr der Normalverteilung (Achtung: es geht hier nicht um die Größe der einzelnen Stichproben, sondern nur um ihre Anzahl!) DIE THEORETISCHE STICHPROBENVERTEILUNG Wie wird die Streuung der Stichprobenverteilung bestimmt? die Standardabweichung einer Stichprobenverteilung wird Standardfehler genannt (!!!,SE, bei Mittelwerten oft SEM für standard error of mean) der Standardfehler lässt sich leicht aus der Standardabweichung der Häufigkeitsverteilung bestimmen dafür verwendet man anstelle von s die geschätzte Standardabweichung für die Population:!! diese wird anschließend durch die Wurzel der Stichprobengröße geteilt (Wurzel-n-Gesetz): Standardfehler eines Parameters (i kann jeder beliebige Parameter sein) geschätzte Standard- abweichung aus der SSchprobe 19

20 DIE THEORETISCHE STICHPROBENVERTEILUNG Sinn der theoretischen Stichprobenverteilung: 1. sie zeigt, wie verlässlich eine Parameterschätzung ist: Wie groß ist die Streuung der Verteilung? Wie groß ist also die (Un-)Genauigkeit der Populationsschätzung? à diese Information wird für Standardfehler und Konfidenzintervalle benutzt 2. sie zeigt, wie wahrscheinlich es ist, einen Kennwert einer bestimmten Größe zu ziehen, wenn in der Population ein Parameter der Größe X vorhanden ist à diese Information wird für Signifikanztests benutzt INFERENZSTATISTIK STECKBRIEF im Zuge der Inferenzstatistik wird untersucht, wie gut Schätzungen von Populationsparametern aufgrund von Stichproben-Kennwerten sind es geht also um die Verallgemeinerbarkeit von Stichprobendaten auf die Population generelle Idee: Was würde passieren, wenn die Studie immer wieder durchgeführt und der Kennwert bestimmt würde? diese Idee wird durch die theoretische Stichprobenverteilung repräsentiert die Stichprobenverteilung von Kennwerten ist laut dem Zentralen Grenzwertsatz immer normalverteilt die Standardabweichung der Stichprobenverteilung wird Standardfehler genannt 20

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick Methodenlehre II Thomas Schäfer Thomas Schäfer SS 2009 1 Organisatorisches Wiederholung Methodenlehre I Überblick Methodenlehre II Thomas Schäfer SS 2009 2 1 Organisatorisches Übung zur Vorlesung Friederike

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Gestaltungsempfehlungen

Gestaltungsempfehlungen Gestaltungsempfehlungen Prof. Dr. Günter Daniel Rey 1 Überblick Auswahl der Empfehlungen Gestaltungseffekte Empirische Überprüfung Variablenarten Versuchspläne Beispiel eines Experimentes Statistische

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Gestaltungsempfehlungen

Gestaltungsempfehlungen Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien I Gestaltungsempfehlungen Überblick Auswahl der Empfehlungen Gestaltungseffekte Empirische

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 11 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 03.12.13 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 13 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 19.05.15 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

1.4.1 Lernen mit Podcasts

1.4.1 Lernen mit Podcasts 20 Die Bachelorarbeit er gut gefallen hat oder auch nicht). Hier nun kurz skizziert die drei Beispiele, die wir im Verlauf dieses Buchs immer wieder heranziehen werden: Waltraud und Valerie 1.4.1 Lernen

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Aufgabe 1 a) Berechnen Sie die Korrelation zwischen dem Geschlecht und der Anzahl erinnerter positiver Adjektive. Wie nennt sich eine solche Korrelation und wie lässt sich der Output

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

1.4 Installation eines Qualitätsmanagementsystems

1.4 Installation eines Qualitätsmanagementsystems Ko n t r o l l f r a g e n : 1 Geben Sie vier Argumente an, die für die Installation eines Qualitätsmanagementsystems sprechen. 2 Erläutern Sie den Zusammenhang zwischen einem funktionierenden Qualitätsmanagementsystem

Mehr

Gütekriterien für evaluative Messinstrumente in der Rehabilitation

Gütekriterien für evaluative Messinstrumente in der Rehabilitation 12. Rehabilitationswissenschaftliches Kolloquium Rehabilitation im Gesundheitssystem Bad Kreuznach, 10. bis 12. März 2003 Gütekriterien für evaluative Messinstrumente in der Rehabilitation Dipl.-Psych.

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Programmier dich um auf Selbstbewusst

Programmier dich um auf Selbstbewusst Programmier dich um auf Selbstbewusst Anwendungsbereiche Die Wunderfrage kann immer dann eingesetzt werden, wenn Menschen über Probleme sprechen und sich dadurch in einer Art Problemtrance bewegen, in

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, Philosophische Fakultät, Seminar für Sozialwissenschaften Vorbemerkung: Es handelt sich um die Anfang

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Aufgaben zu Kapitel 3

Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Aufgabe 1 a) Berechnen Sie einen t-test für unabhängige Stichproben für den Vergleich der beiden Verarbeitungsgruppen strukturell und emotional für die abhängige Variable neutrale

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

U0. Einführender Text: ein quickly prototyping

U0. Einführender Text: ein quickly prototyping U0. Einführender Text: ein quickly prototyping Mit der zunehmenden Computerunterstützung bei der Anwendung statistischer Verfahren haben sich zugleich die Schwierigkeiten beim Einsatz der Statistik verschoben.

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Persönlichkeit und Persönlichkeitsunterschiede

Persönlichkeit und Persönlichkeitsunterschiede 9 Persönlichkeit und Persönlichkeitsunterschiede 1 Inhalt Die Beschäftigung mit der menschlichen Persönlichkeit spielt in unserem Alltag eine zentrale Rolle. Wir greifen auf das globale Konzept Persönlichkeit

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Mehr Geld verdienen! Lesen Sie... Peter von Karst. Ihre Leseprobe. der schlüssel zum leben. So gehen Sie konkret vor!

Mehr Geld verdienen! Lesen Sie... Peter von Karst. Ihre Leseprobe. der schlüssel zum leben. So gehen Sie konkret vor! Peter von Karst Mehr Geld verdienen! So gehen Sie konkret vor! Ihre Leseprobe Lesen Sie...... wie Sie mit wenigen, aber effektiven Schritten Ihre gesteckten Ziele erreichen.... wie Sie die richtigen Entscheidungen

Mehr

Optimieren Sie Ihre n2n Webseite

Optimieren Sie Ihre n2n Webseite N2N Autor: Bert Hofmänner 5.10.2011 Optimieren Sie Ihre n2n Webseite Einer der wichtigsten Faktoren für den Erfolg Ihrer Webseite in Suchmaschinen sind deren Inhalte. Diese können Sie mit einem Content

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Leseprobe aus: Budischewski, Kriens, SPSS für Einsteiger, ISBN 978-3-621-28183-6 2015 Beltz Verlag, Weinheim Basel

Leseprobe aus: Budischewski, Kriens, SPSS für Einsteiger, ISBN 978-3-621-28183-6 2015 Beltz Verlag, Weinheim Basel http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-621-28183-6 Vorwort LiebeLeserin, lieber Leser, wir arbeiten seit vielen Jahren mit SPSS. Diese Erfahrung aus Vorlesungen, Abschlussarbeiten,

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Die Methode des Robusten Trends und der CAC40 (Frankreich)

Die Methode des Robusten Trends und der CAC40 (Frankreich) Die Methode des Robusten Trends und der CAC40 (Frankreich) von Dr. Hans Uhlig Zusammenfassung Auch für den CAC40 lässt sich ein robuster Trend bestimmen, wie es für den DAX bereits gezeigt werden konnte

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 2. FS Master Rehabilitationspsychologie, SoSe 2012 Faktorenanalyse/ faktorielle Validität 2 Einleitung Allgemeines zu Faktorenanalysen (FA)

Mehr