Das Konzept der Symmetrie (Hermann Weyl)

Größe: px
Ab Seite anzeigen:

Download "Das Konzept der Symmetrie (Hermann Weyl)"

Transkript

1

2 Das Konzept der Symmetrie (Hermann Weyl) Werkzeugkiste: Transformationsgruppen Dreieck Drehung Dreieck R.P. Feynman: Ein Objekt heißt symmetrisch, wenn man mit ihm etwas anstellen kann, ohne es am Ende, wenn man fertig ist mit der Prozedur, geändert zu haben.

3 Die Themen Beispiel: die Diedergruppen D n ; Allgemeine Definition einer Gruppe; Symmetrien in der Physik: äußere und innere Symmetrien; Beispiel Rotationsgruppen; Beispiel unitäre Gruppen Matrix-Gruppen; Darstellungen von Gruppen und Lie-Algebra; SU(2)-Darstellung und Spin; Die Lorentz-Gruppe als Symmetriegruppe der Minkowski RaumZeit Spinoren.

4 D 3 Symmetrie eines gleichseitigen Dreiecks Decktransformationen: 3 Drehungen + 3 Spiegelungen 6 Möglichkeiten: die identische Abbildung e; die Drehung d um 120 um den Mittelpunkt des Dreiecks; die Drehung d² um 240 um den Mittelpunkt des Dreiecks; drei Spiegelungen s 1, s 2 und s 3 an den drei Mittelsenkrechten des Dreiecks.

5 D 3 Cayley Gruppentabelle * e d d² s 1 s 2 s 3 e e d d² s 1 s 2 s 3 d d d² e s 3 s 1 s 2 d² d² e d s 2 s 3 s 1 s 1 s 1 s 2 s 3 e d d² s 2 s 2 s 3 s 1 d² e d s 3 s 3 s 1 s 2 d d² e Untergruppe

6 Untergruppe Die Diedergruppe D 4

7 Die Diedergruppe D 8 Isometriegruppen des regelmäßigen 8-Ecks # Elemente = 2x8 = 16

8 Definition einer Gruppe Lit.: W.K.Tung, Group Theory in Physics (85) A. Wipf, Symmetrien in der Physik (SS 2007 Web) Eine Gruppe { G, } ist Menge G mit Multiplikation so dass a, b, c G, 1. a bg Closure 2. a b c a bc a bc Assoziativität 3. unique I G I a a I a Identität a G a a a a I Inverse Gruppe { G, } heißt normalerweise einfache Gruppe (simple group) G und a b = ab.

9 Beispiele von Gruppen äußere Symmetrien orthogonale Gruppen SO (n) : SO(3) - SO(1,3) innere Symmetrien Heute bekannt als Eichsymmetrien unitäre Gruppen SU(n) : SU(2) SU(3) SU(5)

10 Arten von Gruppen Endliche Gruppe : Gruppe mit endlicher Anzahl von n Elementen. n = Ordnung der Gruppe. Diskrete Gruppe : 1-1 Abb. zwischen G & einer Untermenge nat. Zahlen. ( label of elements of G is discrete ) Kontinuierliche Gruppe (Lie Gruppe) n-parameter : 1-1 Abb. G Teilm. R n. Abelsche Gruppe : ist kommutativ, d.h., ab ba a, bg 2 n Zyklische Gruppe C n der Ordnung n : Cn a, a,, a I Gruppe {G, } ist homomorph zur Gruppe { H, } : Abb. f : G H die Multiplikationen respektiert, d.h. a b c a, b, c G C n Abelsch f a f b f c Untergruppe der Gruppe {G, } : Untermenge, closed unter.

11 SO(2): Rotation Einheits-Kreis Rotation in der x-y Ebene um den Winkel : r R r I R 0 x cos sin x y sin cos y R R R R R 1 R R G R, 1-D kontinuierliche Abelsche Lie-Gruppe.

12

13 1 0 0 R 1 0 cos sin 0 sin cos R 3 cos sin 0 sin cos SO(3) - Rotationen in 3D Jede Rotation kann in 3 Rot zerlegt werden R 2 ds² = (dx) T. (dx) bleibt invariant R() T R() = I cos 0 sin sin 0 cos

14 Euler Winkel - Drehung in 3 Schritten Gruppenmannigfaltigkeit SO(3) ist eine Sphäre S³ mit Radius π. SO(3) ist eine sog. nicht-abelsche kompakte Lie-Gruppe.

15 Unitäre Gruppen operieren in komplexen Räumen Jeder Punkt der Ebene steht für eine komplexe Zahl. Die gewöhnlichen reellen Zahlen kommen da auch vor, die horizontale Achse ist die gewohnte Zahlengerade.

16 U(1): Rotation Einheits-Kreis in C

17 U + U = I and det(u) = 1 Zwei komplexe Parameter a, b mit Norm = 1 U = Äquivalent durch 3 Winkel U =

18 p N n 22

19 Lawrence Berkeley Nat. Lab 1950 SU(3)-Multipletts: pi, D 1961Der acht-fache Weg Singlett MeV MeV D D D D D 0

20 SU(n) Innere Symmetrien Isospin Symmetrie => (p, n)-dublett SU(3) Symmetrie => Hadronen chirale Symmetrie => Pi-Mesonen SU(3) Farb-Symmetrie => Quark WW elektroschwache Symmetrie: => SU(2)xU(1) Schwacher Isospin + Y

21 Spezielle Matrix-Gruppen

22 Darstellung von Gruppen Eine Darstellung einer Gruppe ist ein Satz linearer Transformationen eines Vektorraumes, der die gleiche Multiplikationstabelle wie die Gruppe selber erfüllt. Matrix Darstellung : Darstellung mit linearen Transformationen mittels invertierbarer Matrizen (durch Wahl einer geeigneten Basis). Unitäre Darstellung : Darstellung mittels unitärer Matrizen. Jede Matrix-Darstellung ist isomorph zu einer unitären Darstellung.

23 Darstellung von D 3 in E³ D 3 = { e, d, d², s 1, s 2, s 3 } E R 1 R 2 R 3 R 4 R 5 z.b. gilt:

24 Lie-Algebra einer Gruppe [ X, Y ] = X*Y Y*X

25 Lie Algebra = Tangentialraum an Identität e SO(3) = S³

26 Lie-Algebra Jacobi-Identität

27 Lie Algebra der Matrix-Gruppen

28 Ex: Lie Algebra der SU(2)

29 Darstellungen der su(2) Starte mit 2 diagonalisierten Operatoren J z und J 2 jm J Z j' m m jj' mm jm J 2 j' m j( j 1) 2 jj' mm j m j 0, 1 2 N ganzzahlig 2,1,...( SU (2) j, 3 2 j 1, j 2... oder Spin) j 1, halbzahlig j (2 j 1Terme)

30 1 ), ( 1 ), ( jm m j C jm J jm m j C jm J 1) )( ( ), ( 1) )( ( ), ( m j m j m j C m j m j m j C z z z y x J J J J J J J J J J J J ij J J 2 ], [ 0 ], [ ], [ 2 2 2

31

32 Die Lorentz Gruppe Lichtkegel der Minkowski RaumZeit invariant

33 ) / ( 0 0 ) / ( x x x x c v c v x x x x Lorentz Transformationen in x Vektor Notation für Ereignisse (m,n=0,..,3) n n m m x x Einstein Summationskonvention

34 LT als Pseudo-Rotation

35 Die Minkowski Metrik 1908 Abstand zwischen 2 benachbarten Ereignissen ds 2 c 2 d 2 c 2 dt 2 dx 2 dy 2 dz 2 ds² = (dx) T (dx) mn

36 Invarianz der Minkowski Metrik Eine Lorentz-Trafo lässt den Abstand ds inv ds² = (dx) T (dx) = (dx ) T (dx ) = T,dx ) = (dx), (dx) = (dx 0,dx i ) T Die Matrizen der Lorentz Transformationen bilden eine 6D Lie-Gruppe Lorentz-Gruppe SO(1,3), analog zur Rotationsgruppe SO(4), die als 4x4 Rotationsmatrizen R in E 4 realisiert sind R T I 4x4 R = I 4x4, I

37 LG Rotationen in 3D

38 3 Rotationen und 3 Boosts

39 Die Lorentz Gruppe 0 0 > 1, < -1

40 4 Lorentz Gruppen Die Lorentz Gruppe als Isometrie-Gruppe der Minkowski-RaumZeit zerfällt in 4 Untergruppen: Eigentliche Lorentz- Gruppe Spiegelungen Zeitspiegelung Raum- + Zeitspiegelung.

41 Lie Algebra der Lorentz Gruppe

42 Lie Algebra Lorentz Gruppe Lie Algebra zerfällt in su(2) x su(2) (a,b)

43

44

45

46 Zusammenfassung In der Physik unterscheiden wir zwischen äußeren (extern) Symmetrien (Raum und Zeit) und inneren (intern) Symmetrien (Feldzustände). Symmetrien werden durch Gruppen repräsentiert: SO(3), SO(1,3), SU(2), SU(3), SU(n) Darstellungen der Lorentz-Gruppe bestimmen die möglichen komplexen Wellengleichungen. Darstellungen der SU(3) spielten eine wichtige Rolle in der Klassifikation der Mesonen und Baryonen in den 60er Jahren (Gell-Mann). Heute: Das Standard-Modell der Teilchenphysik wird durch U Y (1)xSU L (2)xSU C (3) als Eichsymmetrie definiert (Hyperladung, schwacher Isospin und starke Farbladung).

47 Anhang Vektoren und Tensoren (+,-,-,-) Minkowski Vektoren und Tensoren 4-Vektoren m A A A 0 (, ) ( m=0,1,2,3) Skalarprodukt (Lorentz-invariant!) m 0 0 A B A Bm A B A B mn AB m n

48 Minkowski Metrik (Cartesische Koordinaten) mn Gradienten Operator: 1 m,,, c t x y z m mn 1 n, -, -, - c t x y z

49 4-Geschwindigkeit und 4-Impuls 4-Position ( Weltlinie ) x m ( ct, x) E p pmu c m 4-Impuls, m 4-Beschleunigigung m U ( c, v) ( c, v) 1 2 v c 2 2 m U U U U c m 2

50 Weltlinie mit 4-Acceleration 4-Velocity u ist zeitartig, 4-Acceleration a ist ein raumartiger Vektor.

51 Lorentz Tensoren Tensoren transformieren kovar. unter LTs: Bsp.: Energie-Impuls, Produkte Vektoren n n C B A T m m m m x A A x A A,, n m mn T T

52 Higher Rank Tensors Dual Tensors

53 Antisymmetrischer 2-Tensor - 2-Form x y z x z y y z x z y x B B E B B E B B E E E E F mn Faraday Tensor

54 Elektromagnetisches Feld LG Transformationen n m mn F F ~ ~ ) ( ) ( E v B B B B B v E E E E

55 Faraday und der Duale Tensor

56 Energie-Impuls Tensor

57 ED Erhaltungssätze

58 Die Gesetze der Physik in Spezieller Relativität Schreibe sie als Tensor-Gleichungen (Tensoren sind Lorentz-kovariant). E und B Felder in Maxwells Theorie sind nicht kovariant benutze Faraday Tensor. Verwende Erhaltung von Energie und Impuls als Divergenzgleichung! Leite Feldgleichungen wenn möglich aus Lagrange-Theorien ab (Variationsprinzip).

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren

gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Stefan K. 4.Übungsblatt Algebra I Aufgabe 1 gegeben: G sei endliche Gruppe, jede Untergruppe von G sei ein Normalteiler von G zu zeigen: je zwei Elemente teilerfremder Ordnung kommutieren Beweis: Seien

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

Darstellungstheorie. der. Lorentzgruppe

Darstellungstheorie. der. Lorentzgruppe Darstellungstheorie der Lorentzgruppe 1.) Lorentztransformationen: Die zwei grundlegenden Postulate der Speziellen Relativitätstheorie sind das Relativitätsprinzip, welches besagt, dass alle Naturgesetze

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Elemente der Gruppentheorie

Elemente der Gruppentheorie Elemente der Gruppentheorie Tobias Sudmann 06.11.2006 Rolle der Gruppentheorie in der Physik abstraktes mathematisches Modell Symmetriebegriff historisch: Harmonievorstellung bei Plato, Pythagoras, Kepler,...

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Quantenchromodynamik die Starke Wechselwirkung. Max Camenzind Akademie HD Juni 2015

Quantenchromodynamik die Starke Wechselwirkung. Max Camenzind Akademie HD Juni 2015 Quantenchromodynamik die Starke Wechselwirkung Max Camenzind Akademie HD Juni 25 2.6.25 Tag der offenen Tür Haus der Astronomie & MPIA Bus 39 alle 5 Min. ab Bismarckplatz > :45 Uhr Was ist eine Gruppe

Mehr

Zusammenfassung des Vortrags SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder. Artur Sperling

Zusammenfassung des Vortrags SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder. Artur Sperling Zusammenfassung des Vortrags SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder Artur Sperling 01.12.2010 Theorie der Teilchen und Felder SU(3) und das Quarkmodell Sperling 1 Inhaltsverzeichnis

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

2. Mannigfaltigkeiten

2. Mannigfaltigkeiten 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem

Mehr

Gruppen und ihre Darstellungen

Gruppen und ihre Darstellungen Kurze Zusammenfassung: Gruppen und ihre Darstellungen Beispiele: ganze Zahlen mit Addition (e=0: Nullelement)) rationale Zahlen mit Multiplikation (e=1: Einselement) Translationen: x x+a Drehungen (kontinuierlich

Mehr

KAPITEL 6. Algebra Gruppen

KAPITEL 6. Algebra Gruppen KAPITEL 6 Algebra 6.. Gruppen Bekannt sind die Kongruenzklassen, bijektive Abbildungen, Permutationen. Wir hatten in diesen Fällen eine Verknüpfung auf einer Menge. (Addition bzw. Multiplikation bei den

Mehr

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop

Mathematisches Kaleidoskop II Materialien Teil 3. Dr. Hermann Dürkop Mathematisches Kaleidoskop II Materialien Teil 3 Dr. Hermann Dürkop E-Mail: info@ermanus.de .3.3 Noch zwei Isomorphie-Beispiele Beispiel : Wir betrachten die Symmetrien eines nichtquadratischen Rechtecks.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Die Symmetriegruppen SO(3) und SU(2)

Die Symmetriegruppen SO(3) und SU(2) Die Symmetriegruppen SO(3) und SU(2) Ein Vortrag im Rahmen des Seminars: Theorie der Teilchen und Felder Martin Wilde 5. Juli 2007 1 Inhaltsverzeichnis 1 Grundlegendes zur Drehgruppe SO(3) 3 1.1 Die Bezeichnung

Mehr

Das Standardmodell der Teilchenphysik. Clara Fuhrer

Das Standardmodell der Teilchenphysik. Clara Fuhrer 1 Das Standardmodell der Teilchenphysik Clara Fuhrer 2 Das Standardmodell der Teilchenphysik Gliederung: Einführung Was ist das Standardmodell Die Elementarteilchen Leptonen Hadronen Quarks Die Wechselwirkungen

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

Gruppe SU(3) und Quarkmodell

Gruppe SU(3) und Quarkmodell WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für theoretische Physik Seminarvortrag über Gruppe SU() und Quarkmodell von Babak Alikhani am 5.. Inhaltverzeichnis. Die Gruppen U(n) und SU(n). Die Generatoren

Mehr

Invariantentheorie. Bewegungen

Invariantentheorie. Bewegungen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 21 In den folgenden Vorlesungen werden wir die endlichen Untergruppen G SL 2 (C) und ihre Invariantenringe klassifizieren. Dieses

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Das Standardmodell. Max Camenzind Akademie HD Mai 2015

Das Standardmodell. Max Camenzind Akademie HD Mai 2015 Das Standardmodell Max Camenzind Akademie HD Mai 215 Berühmteste Formel Einsteins E = g m c² E = 7 TeV (LHC) m c² = 938 MeV g =? v =? Standard-Modell der Teilchenphysik 3 Arten von Elementarteilchen (eigentlich

Mehr

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor:

Mehr

Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen

Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen Script zum Vortrag Symmetrien in der Physik: Gruppen, Beispiele und Konjugationsklassen gehalten an der Universität Hamburg am 25.10.2012 im Rahmen des Proseminars: Gruppentheorie in der Quantenmechanik

Mehr

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme Inhaltsverzeichnis Teil I. Nichtrelativistische Vielteilchen-Systeme 1. Zweite Quantisierung... 3 1.1 Identische Teilchen, Mehrteilchenzustände undpermutationssymmetrie... 3 1.1.1 Zustände und Observable

Mehr

Liesche Gruppen und homogene Räume

Liesche Gruppen und homogene Räume Liesche Gruppen und homogene Räume Einführung Liesche Gruppen 1 treten typischerweise als Symmetriegruppen auf, d.h. als Gruppen von Abbildungen, unter denen ein Objekt oder eine Eigenschaft erhalten bleibt.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 10 Bewegungen Wir haben schon mehrfach die Würfelgruppe betrachtet, also die Gruppe der eigentlichen Symmetrien an einem Würfel.

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Rotationsgruppen und Drehimpulsoperatoreigenwerte

Rotationsgruppen und Drehimpulsoperatoreigenwerte Rotationsgruppen und Drehimpulsoperatoreigenwerte Philipp Stephani. Juni 008 Inhaltsverzeichnis Rotationsgruppen. Definition: Gruppe............................... Rotationen im dreidimensionalen Raum

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik 6. Übungszettel, 30. April 2013 Lösungen 1. Zeigen Sie detailliert: Das homomorphe Bild einer zyklischen Gruppe ist

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

3 Bilinearform, Basen und Matrizen

3 Bilinearform, Basen und Matrizen Lineare Algebra II 2. Oktober 2013 Mitschrift der Vorlesung Lineare Algebra II im SS 2013 bei Prof. Peter Littelmann von Dario Antweiler an der Universität zu Köln. Kann Fehler enthalten. Veröentlicht

Mehr

Liegruppen und Liealgebren

Liegruppen und Liealgebren Literatur Liegruppen und Liealgebren Vortrag im Rahmen des Proseminars zur Quantenmechanik II von Hannes Zechlin (1. Teil) und Sandra Flessau (2. Teil) Universität Hamburg, 20. Dezember 2006 [1] M. Chaichian

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Zusammenfassung meines Vortrags zum Thema Die Gruppe SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder

Zusammenfassung meines Vortrags zum Thema Die Gruppe SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder Zusammenfassung meines Vortrags zum Thema Die Gruppe SU(3) und das Quarkmodell im Seminar zur Theorie der Teilchen und Felder Katrin Schmietendorf 4. Juni 2008 Inhaltsverzeichnis 1 Mathematische Beschreibung

Mehr

Seminararbeit. Orthogonale Gruppen. Marvin K. Neugebauer. 15. Juli 2010

Seminararbeit. Orthogonale Gruppen. Marvin K. Neugebauer. 15. Juli 2010 Seminararbeit Orthogonale Gruppen Marvin K Neugebauer 15 Juli 2010 Prof Dr Schwachhöfer Lehrstuhl für Differentialgeometrie Proseminar Lineare Algebra SS 2010 Dank an Rafael Kawka für die Hilfe bei der

Mehr

Gruppen und Konjugationsklassen

Gruppen und Konjugationsklassen Gruppen und Konjugationsklassen Vortrag von Philipp Ranitzsch und Andreas Bick im Proseminar zur Quantenmechanik II bei Prof. Dr. Louis und Dr. Wohlfarth 1 Symmetrien in der Physik Symmetrien spielen in

Mehr

Kap.1 Gruppe, allgemeine Begriffe

Kap.1 Gruppe, allgemeine Begriffe Stand 21.05.2004 Kap.1 Gruppe, allgemeine Begriffe 1.0 Axiome Gruppe G: Menge von Elementen g, g,... mit einer Verknüpfung (oft unterdrückt) g 1, g 2 G g 1 g 2 G Postulate an Verknüpfung 1) Assoziativ

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Übungsblatt 4. Hausübungen

Übungsblatt 4. Hausübungen Übungsblatt 4 Hausübungen Die Hausübungen müssen bis Mittwoch, den 07.11.18, um 18:00 Uhr in den Briefkasten mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden. Bitte schreiben

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

Irreduzible Darstellungen von SU 2 (C)

Irreduzible Darstellungen von SU 2 (C) Irreduzible Darstellungen von SU 2 (C) Alessandro Fasse Email: fasse@thp.uni-koeln.de WS14/15 - Universität zu Köln 26.01.2015 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 2 2 Darstellungstheorie

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Blatt 06.3: Matrizen

Blatt 06.3: Matrizen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt 06.3:

Mehr

Zusammenfassung: Wigner-Eckart-Theorem

Zusammenfassung: Wigner-Eckart-Theorem Zusammenfassung: Wigner-Eckart-Theorem Clebsch-Gordan- Reihe: Def. vontensor - Algebraische Version, (via infinitesimaler Rotation): Clebsch-Gordan- Reihe für Tensoren: Wigner-Eckart- Theorem: Geometrie

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

ANWENDUNG DER GRUPPENTHEORIE IN DER QUANTENMECHANIK

ANWENDUNG DER GRUPPENTHEORIE IN DER QUANTENMECHANIK M. I. PETRASCHEN E. D. TRIFONOW ANWENDUNG DER GRUPPENTHEORIE IN DER QUANTENMECHANIK In deutscher Sprache herausgegeben von Prof. Dr. rer. nat. habil. ARMIN UHLMANN Leipzig Mit 22 Abbildungen und 16 Tabellen

Mehr

Übersicht über das Quarkmodell. Lunchclub-Seminarvortrag am Pascal Gunkel

Übersicht über das Quarkmodell. Lunchclub-Seminarvortrag am Pascal Gunkel Übersicht über das Quarkmodell Lunchclub-Seminarvortrag am 04.02.15 Pascal Gunkel Gliederung Einleitung Globale Transformationen in der QCD SU(3)-Flavor-Symmetrie Poincaré Invarianz SU(3)-Color-Symmetrie

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 2006/07 en Blatt 6 27.11.2006 Körper, Ringe und Gruppen Z13 Gruppen Seien GL

Mehr

Rechenmethoden der Physik Vorlesungsskript

Rechenmethoden der Physik Vorlesungsskript Rechenmethoden der Physik Vorlesungsskript Prof. Dr. Gernot Akemann Fakultät für Physik Universität Bielefeld Inhaltsverzeichnis 0 Inhaltsübersicht 5 0.1 Literatur: einige Standardwerke........................

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 4 (WS 2015/16) 1 Abgabetermin: Donnerstag, 19. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Klassifikation diskreter Isometrien

Klassifikation diskreter Isometrien Klassifikation diskreter Isometrien der Ebene Konrad Schöbel Mathematisches Institut Friedrich-Schiller-Universität Jena Motivation Quelle: Wikipedia Ziel Wir möchten die möglichen Symmetrien einer solchen

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Einleitende Bemerkungen: Gl. für Kreis: Gl. für Elllipse: (gestauchter Kreis) Gl. für Kugel: Gl. für Elllipsoid: (gestauchter Kugel) Diese

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei TO Rechenmethoden Wise 2012-2013 Jan von Delft 16.10.2012 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/12t0/ Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^ Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik 1 1.1 Die Grundgleichungen der Newton schen Mechanik... 1 1.1.1 Gravitationspotential und K raft... 1 1.1.2 Bewegungsgleichung

Mehr