Mathematik Grundlagen Teil 2

Größe: px
Ab Seite anzeigen:

Download "Mathematik Grundlagen Teil 2"

Transkript

1 BBZ Biel-Bienne Eine Institution des Kantons Ben CFP Biel-Bienne Une institution du canton de Bene Beufsmatuität Matuité pofessionnelle Beufsbildungszentum Mediamatike Médiamaticiens Cente de fomation pofessionnelle BM Abschlusspüfung 017 TALS Mathematik Gundlagen Teil Püfungsdaue: 75 Minuten, mit Hilfsmittel - Fomelsammlung (Fundamentum, ohne zusätzliche Blätte) - Gafikfähige Taschenechne CAS im Püfungsmodus (zuückgesetzt) - Geometiewekzeug Voname: Klasse: - Alle Aufgaben müssen diekt auf das Aufgabenblatt gelöst weden - Falls meh Platz benötigt wid, vewenden Sie die Rückseite ode ein Zusatzblatt - Alle Blätte müssen mit Name und Klasse (Zusatzblätte: Aufgabennumme) beschiftet sein - De Lösungsweg muss kla esichtlich und saube dagestellt sein - Alle Lösungen müssen, falls möglich, exakt angegeben weden - Numeische Lösungen auf vie signifikante Stellen unden - Nicht mit Bleistift scheiben Jede koekt gelöste Aufgabe aus den Püfungsteilen 1 und zählt 4 Punkte. Jede Püfungsteil umfasst 6 Aufgaben. Total Punktzahl: 48; 43 Punkte egibt die Note 6 Gesamtnote: Unteschiften:

2 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: /8 Aufgabe1: Ein Öltanke ist auf Gund getieben woden und Tonnen Öl haben sich auf de Wasseobefläche vebeitet. 1 m 3 hat eine Masse von 860 kg und die Ölschicht eine Dicke von 10 - cm. a) Welche Obefläche in km wid vom Öl übedeckt? b) Das Öl veteilt sich keisfömig auf de Wasseobefläche, bestimmen Sie den Radius des Ölkeises. c) Nach eine gewissen Zeit ist de Ölfilm nu noch halb so dick. Um welchen Fakto veändet sich dabei de Radius des Ölkeises? Lösung Aufgabe 1 (HugCa) a) = =, =4 10 =4 10 b) = = =4 10 =4000! A 4000 A = π = = km π π c) Die Fläche vedoppelt sich, somit wid um den Fakto gösse. g_tals_17_t_lö.docx

3 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 3/8 Aufgabe : Bei einem Begveloennen wid eine Stecke von 90 km hin und 90 km zuück gefahen. Geadeaus fahen die Athleten mit eine Duchschnittsgeschwindigkeit von 40 km/h, begauf mit 0 km/h und begab mit 60 km/h. Fü die Hinfaht benötigen Sie 3 Stunden 5 Minuten und fü die Rückfaht Stunden und 5 Minuten. Beechnen Sie die Längen de einzelnen Teilstecken (auf de Hinfaht: x = geadeaus; y = begauf; z = begab). Lösung Aufgabe : Gleichungssystem: x + y + z = 90 x y z + + = x y z + + = x L {( 30km;50km; 10km) } Solve: = 30 y= 50 z = 10 (ode Gleichungssystem übe die Zeit gibt auch.5 Punkte, ichtig gesolved (mit FF) ) Keine Einheiten 0.5 P (1) Totale Stecke 0.5P () Hinfaht (3) Rückfaht = 1.5 P g_tals_17_t_lö.docx

4 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 4/8 Aufgabe 3 Gegeben ist die Gleichung eine Paabel f ( x) = y = x + 4x 3 a) Bestimmen Sie die Scheitelfom und zeichnen Sie diese Paabel ins gegebene Koodinatensystem. 7 6 y x b) Eine Geade g(x) mit de Steigung m = - soll die Paabel f (x) beühen. Beechnen Sie diesen Beühungspunkt. c) Wie lautet die Funktionsgleichung von g(x)? d) Beechnen Sie die Umkehfunktion g 1 ( x ) de Geaden und zeichnen Sie diese zusammen mit g (x) im obigen Koodinatensystem. g_tals_17_t_lö.docx

5 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 5/8 Lösung Aufgabe 3 (SchRe) a) y x a) S -7 b ;c ; S Scheitelpunkt: a a 3 ( 1) 4 b ; ; S ; Zeichnen de Paabel: b) Idee: Gleichsetzen de Gleichungen. -> quadatische Gleichung -> Diskiminante muss NULL geben! p y x x g : y = + x 4 q 3 = + x q x x + = x x q = 0 x 6± 0 x einsetzen in p : y 1= = = 3 = = 0 Beühpunkt B 30 ( ) ; c) Gleichung de qtangente: q Idee: Koodinaten des Beühpunktes in die Gleichung de Geaden einsetzen: 0 = 3+ = 6 y x Tangentengleichung: = P d) 1 1 y = g ( x) = x+ 3 1 P g_tals_17_t_lö.docx

6 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 6/8 Aufgabe 4: Zu Beginn eine Reise ist de Benzintank voll und das Fahzeug fäht mit konstante Geschwindigkeit. Nach 08 km bleiben noch 39 Lite Benzin im Tank übig und nach 58 km, noch 15 Lite. a) Geben Sie die Funktionsgleichung an, welche die übigbleibenden Lite Benzin im Vehältnis zu den gefahenen Kilometen bestimmt. b) Wie viele Lite baucht das Fahzeug po 100 km? c) Beechnen Sie die maximale Stecke, die man mit einem vollen Benzintank fahen kann. d) Wie viele Lite enthält de volle Tank? Lösung Aufgabe 4 (HugCa) a) Zwei Punkte sind gegeben: (08;39), (58;15) = "# # = 0,075 39= 0, ,, =54.6 / = 0, P b) Nach 100 km: /= 0, = Das Fahzeug baucht 7.57/100! c) De Tank ist lee bei / = 0 = 0, =78! 0.5P d) Am Anfang: 0 =0, also /= 0, = P g_tals_17_t_lö.docx

7 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 7/8 Aufgabe 5 (SchRe): In de gegebenen symmetischen Figu ist ein Keis mi Radius in de Segmentfläche mit Radius R = 1m einbeschieben. Die Fläche des Keises mit Radius ist doppelt so goss wie die Fläche des Deiecks BCM. a) Beechnen Sie die Stecke BM. b) Beechnen Sie den Winkel ACB. Lösung Aufgabe 5 (SchRe) Pythagoas : BM a) = 1 ( 1 ) Deiecksfläche : 1 BM CM Halbe Keisfläche : 1 π 1 1 ( 1 ) ( 1 ) P. Gleichung: = ( ) ( ) π 1 P. Auflösen mit TI-nspie: = BM = m 1 P. ACB cos ω = ω = ACB. ω = = b) ( 1 ). = ω= cos. ( ). = P. g_tals_17_t_lö.docx

8 BM Mathematik TALS Gundlagenpüfung_17_Teil Seite: 8/8 Aufgabe 6 (MoeBe) Ein gleichschenkliges Deieck ABC mit de Basis c = 5 und α= β = 37 ist gegeben. a) Beechnen Sie die Höhe h c des Deiecks. b) Beechnen Sie die Länge de Winkelhalbieenden w α. c) Beechnen Sie die Länge de Seitenhalbieenden s a. Lösung Aufgabe 6 (MoeBe) a) Beechnen Sie die Höhe h c des Deiecks. c Höhe: h c =tan α = b) Beechnen Sie die Länge de Winkelhalbieenden w α. Winkelhalbieende: Sinussatz: c w = 3 sin sin 180 α c) Beechnen Sie die Länge de Seitenhalbieenden s a. α ( α) w α csin( α) = = sin 180 α c a wobei a= hc + = = ,5P a a Seitenhalbieende: Cosinussatz: s a = c + c cosα = P g_tals_17_t_lö.docx

Mathematik Grundlagen Teil 1

Mathematik Grundlagen Teil 1 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Grundlagen Teil 1

Mathematik Grundlagen Teil 1 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Grundlagen Teil 1

Mathematik Grundlagen Teil 1 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Schwerpunkt Teil 1

Mathematik Schwerpunkt Teil 1 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Name: Vorname: Klasse:

Name: Vorname: Klasse: BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Grundlagen Teil 2

Mathematik Grundlagen Teil 2 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatike r Médiamaticiens Centre de

Mehr

Mathematik Schwerpunkt Teil 2

Mathematik Schwerpunkt Teil 2 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Grundlagen Teil 2

Mathematik Grundlagen Teil 2 BBZ Biel-Bienne Eine nstitution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatike r Médiamaticiens Centre de

Mehr

Mathematik Schwerpunkt Teil 2

Mathematik Schwerpunkt Teil 2 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7

BM Mathematik T1 Grundlagenprüfung_16 Seite: 1/7 BM Mathematik T Grundlagenprüfung_6 Seite: /7 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 75 Minuten, ohne Hilfsmittel Die Lösungen werden nur bewertet, wenn der Lösungsweg klar ersichtlich

Mehr

Berufsmaturitätsprüfung 2005 Mathematik

Berufsmaturitätsprüfung 2005 Mathematik GIBB Geweblich-Industielle Beufsschule Ben Beufsmatuitätsschule Beufsmatuitätspüfung 005 Mathematik Zeit: 180 Minuten Hilfsmittel: Fomel- und Tabellensammlung ohne gelöste Beispiele, Taschenechne Hinweise:

Mehr

Jede korrekt gelöste Aufgabe aus den Prüfungsteilen 1 und 2 zählt 4 Punkte. Jeder Prüfungsteil umfasst 6 Aufgaben.

Jede korrekt gelöste Aufgabe aus den Prüfungsteilen 1 und 2 zählt 4 Punkte. Jeder Prüfungsteil umfasst 6 Aufgaben. BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Die Prüfung umfasst 7 Aufgaben. Total Punktzahl: 28; 24 Punkte ergibt die Note 6. Gesamtnote: Unterschriften:

Die Prüfung umfasst 7 Aufgaben. Total Punktzahl: 28; 24 Punkte ergibt die Note 6. Gesamtnote: Unterschriften: BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+

Kantonsschule Reussbühl Maturitätsprüfung 2000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / x 1+ Kantonsschule Reussbühl Matuitätspüfung 000, Typus AB Be/Es/Ko Mathematik Lösungen Sw / 00 Lösung de Aufgabe a ( + a) + a a + a) f () ; f () a fü a - ( + ) b) f() ( ) ( + ) + + + Nullstellen f() 0 fü 0,

Mehr

Mathematik Grundlagen

Mathematik Grundlagen BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

Mathematik Grundlagen Teil 1

Mathematik Grundlagen Teil 1 BBZ Biel-Bienne Eine Institution des Kantons Bern CFP Biel-Bienne Une institution du canton de Berne Berufsmaturität Maturité professionnelle Berufsbildungszentrum Mediamatiker Médiamaticiens Centre de

Mehr

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen. BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

BM Mathematik T2 Grundlagenprüfung_0 - Serie Seite: 1/8. Formelsammlung (Fundamentum, ohne zusätzliche Blätter)

BM Mathematik T2 Grundlagenprüfung_0 - Serie Seite: 1/8. Formelsammlung (Fundamentum, ohne zusätzliche Blätter) BM Mathematik T Grundlagenprüfung_0 - Serie Seite: 1/8 Abschlussprüfung BM Mathematik Grundlagen TAL Teil Prüfungsdauer 7 Minuten, mit Hilfsmittel Formelsammlung (Fundamentum, ohne zusätzliche Blätter)

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

2 Zeichne in ein Koordinatensystem die Graphen folgender Geraden: Klassenarbeit 1 Klasse 8l Mathematik. Lösung. a) b)

2 Zeichne in ein Koordinatensystem die Graphen folgender Geraden: Klassenarbeit 1 Klasse 8l Mathematik. Lösung. a) b) 09.10.200 Klassenabeit 1 Klasse 8l Mathematik Lösung 1 b) a) d) Bestimme die Gleichungen de Geaden a) bis d) a) : y= 4 x 4 b) : y= x : y= 1 2 x d) : y= 1 6 x 1 2 Zeichne in ein Koodinatensystem die Gaphen

Mehr

Tag der Mathematik 2019

Tag der Mathematik 2019 Guppenwettbeweb Einzelwettbeweb Mathematische Hüden Aufgaben mit en Aufgabe G mit Aufgabe G a) Fü eine Konsevendose mit einem Lite Inhalt soll möglichst wenig Mateial benötigt weden, d.h. gesucht ist ein

Mehr

Lösungen zu delta 9 neu

Lösungen zu delta 9 neu Lösungen zu delta 9 neu Kann ich das noch? Lösungen zu den Seiten 7 und 8. a) L = { 0} b) L = {6} c) L = {} d) L = { } e) L = { } f) L = g) L = {} h) L = {}. a) Fuchtjoghut b) Eckenanzahl Anzahl de c)

Mehr

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses

GMFH - Gesellschaft für Mathematik an Schweizer Fachhochschulen SMHES - Société pour les Mathématiques dans les Hautes Ecoles Spécialisées suisses GMFH - Gesellschaft fü Mathematik an Schweize Fachhochschulen SMHES - Société pou les Mathématiques dans les Hautes Ecoles Spécialisées suisses Mathematik-Refeenzaufgaben zum Rahmenlehplan fü die Beufsmatuität

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

BM Mathematik T2 Grundlagenprüfung_0 - Serie Seite: 1/5. Formelsammlung (Fundamentum, ohne zusätzliche Blätter)

BM Mathematik T2 Grundlagenprüfung_0 - Serie Seite: 1/5. Formelsammlung (Fundamentum, ohne zusätzliche Blätter) BM Mathematik T2 Grundlagenprüfung_0 - Serie Seite: 1/ Abschlussprüfung BM Mathematik Grundlagen TAL Teil 2 Prüfungsdauer 7 Minuten, mit Hilfsmittel Formelsammlung (Fundamentum, ohne zusätzliche Blätter)

Mehr

Mathematikaufgaben > Vektorrechnung > Kugeln

Mathematikaufgaben > Vektorrechnung > Kugeln Michael Buhlmann Mathematikaufgaben > Vektoechnung > Kugeln Aufgabe: Gegeben ist eine Kugel K im deidimensionalen katesischen x 1 -x -x 3 -Koodinatensystem mit dem Uspung als Mittelpunkt und dem Radius

Mehr

1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2

1. Die zu berechnende Boje hat in etwa die folgende Gestalt: r 2 Lösungen fü die Püfung zu Einfühung in das mathematische Abeiten (14.3.003) 1. Die zu beechnende Boje hat in etwa die folgende Gestalt: h Zunächst bestimmen wi die Obefläche diese Boje. Sie ist zusammengesetzt

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

2.8. Prüfungsaufgaben zum Satz des Pythagoras

2.8. Prüfungsaufgaben zum Satz des Pythagoras .8. üfungsaufgaben zum Satz des ythagoas Aufgabe : Rechtwinkliges Deieck Ein echtwinkliges Deieck mit de Kathete a = 0, m hat die Fläche A = 000 cm. Beechne die estlichen Seitenlängen dieses Deiecks. 000

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da Gaphische Datenveabeitung Pola-, Zylinde- und Kugelkoodinatensysteme Pof. D. Elke Hegenöthe h_da GDV : Pola-, Zylinde-und Kugelkoodinatensystem Koodinatensysteme zu Dastellung geometische Daten: Katesisches

Mehr

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen.

1.(a) Wie ist a definiert? (b) Was ist a 2? (c) Nenne Beispiele für Zahlen, die keine Quadratwurzel in Q besitzen. GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u spachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 927 PEGNITZ FERNRUF 0924/48 FAX 0924/264 Gundwissen JS 9 Die eellen Zahlen 2 Septembe 2008 (a) Wie ist

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Brückenkurs Mathematik Seite: 1

Brückenkurs Mathematik Seite: 1 Bückenkus Mathematik Seite: Einfühung: Sollten Sie Pobleme beim Lösen de Übungsaufgaben haben, so wid de Besuch des Bückenkuses seh empfohlen, da mangelndes mathematisches Gundwissen zu enomen Schwieigkeiten

Mehr

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 2. Stufe (Keisolympiade) Klasse 9 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 2. Stufe (Keisolympiade) Klasse 9 Aufgaben Hinweis: De Lösungsweg mit Begündungen

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Formelsammlung ohne selbst gelöste Beispiele. Grafikfähiger Taschenrechner. Geometriewerkzeug.

Formelsammlung ohne selbst gelöste Beispiele. Grafikfähiger Taschenrechner. Geometriewerkzeug. Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Erlaubte Hilfsmittel: Formelsammlung ohne selbst gelöste Beispiele. Grafikfähiger Taschenrechner Geometriewerkzeug. Die Lösungen

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a

( ) (L3) ( ) ( ) Gymnasium Neutraubling: Grundwissen Mathematik 9. Jahrgangsstufe. Reelle Zahlen. a ist diejenige nicht negative Zahl, die quadriert a Gymnasium Neutaublin: Gundissen Mathematik. Jahansstufe Wissen und Können Reelle Zahlen Iationale Zahlen sind Zahlen, die nicht als Buch (ationale Zahl) dastellba sind. Eine iationale Zahl hat eine unendliche

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN

Mehr

Aufnahmeprüfung Mathematik Kurs TI (Technik) Wintersemester 2007/08

Aufnahmeprüfung Mathematik Kurs TI (Technik) Wintersemester 2007/08 Aufnahmeprüfung Mathematik Kurs TI (Technik) Wintersemester 007/08 Allgemeine Hinweise Zur Lösung der Aufgaben dürfen außer Stiften und Linealen keine Hilfsmittel verwendet werden, insbesondere ist die

Mehr

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:

Mehr

Extremwertaufgaben

Extremwertaufgaben 7.4.. Extemwetaufgaben Bei Extemwetaufgaben geht es daum, dass bei einem gestellten Sachvehalt (Textaufgabe) igendetwas zu maximieen bzw. zu minimieen ist. Dabei geht man nach einem festen, vogegebenen

Mehr

Aufnahmeprüfung 2018 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2018 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Aufnahmeprüfung 2018 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I» Hilfsmittel: Vorschriften:

Mehr

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung

HYPOZYKLOIDEN EINES DREIECKS. 1. Vorbemerkung HYPOYKLOIDEN EINES DREIECKS Vobemekung Die hie angespochenen Hypozykloiden eines Deiecks sind an sich Otslinien eines mekwüdigen Vieeckpunktes Geht man von einem Deieck ABC aus, so ehält man ein seh spezielles

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! hysik 1 / Klausu Ende SS 0 Heift / Kutz Name: Voname: Matikel-N: Unteschift: Fomeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenechne! Heftung nicht lösen! Kein zusätzliches

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsvewaltung fü Bildung, Wissenschaft und Foschung Fach Name, Voname Klasse Abschlusspüfung an de Fachobeschule im Schuljah / Mathematik (B) Püfungstag.. Püfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Lösung - Schnellübung 4

Lösung - Schnellübung 4 D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen

Mehr

V = 200 cm 3 p = 1 bar T = 300 K

V = 200 cm 3 p = 1 bar T = 300 K gibb BMS Physik Beufsmatu 009 1/6 Aufgabe 1 Keuzen Sie alle koekten Lösungen diekt auf dem Blatt an. Es können mehee Antwoten ichtig sein. Bewetung: Teile a) und b) je ein Punkt, Teil c) zwei Punkte. a)

Mehr

Brückenkurs Mathematik Seite: 1

Brückenkurs Mathematik Seite: 1 Bückenkus Mathematik Seite: Einfühung: Sollten Sie Pobleme beim Lösen de Übungsaufgaben haben, so wid de Besuch des Bückenkuses seh empfohlen, da mangelndes mathematisches Gundwissen zu enomen Schwieigkeiten

Mehr

Körper II. 2) Messt den Durchmesser des Kreises mit Hilfe von rechtwinkligen Dreiecken. 3) Berechnet nun: Umfang (u) Durchmesser (d)

Körper II. 2) Messt den Durchmesser des Kreises mit Hilfe von rechtwinkligen Dreiecken. 3) Berechnet nun: Umfang (u) Durchmesser (d) I Köpe II 33. Umfang un Flächeninhalt eines Keises Expeimentiet un vegleicht. Abeitet in Guppen. (Mateial: zb veschieene Dosen, Küchenolle, CD un ein Maßban) ) Emittelt en Umfang eines Keises bzw. eines

Mehr

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:

Mehr

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten

Tangentenfünfeck 1 Worum geht es? 2 Vorbereitung Abb. 1: Beliebiges Fünfeck mit vorgegebenen Seiten Hans Walse, [20150837] Tangentenfünfeck 1 Woum geht es? Zu fünf gegebenen Stecken gibt es im Pinzip genau ein passendes Tangentenfünfeck. Ein Gelenkmodell aus fünf vogegebenen Stecken hat also im Pinzip

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016

Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016 Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de

Mehr

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c

Mehr

Aufnahmeprüfung Mathematik

Aufnahmeprüfung Mathematik Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei

Mehr

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 09 PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 9 PHYS11 Gundkus I Physik, Witschaftsphysik, Physik Leham Othma Mati, othma.mati@uni-ulm.de 16. 1. 5 und 19. 1. 5 1 Aufgaben 1. De Raum soll duch ein katesisches Koodinatensystem beschieben

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Aufgaben zur Vorbereitung Technik

Aufgaben zur Vorbereitung Technik Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 75 68 Pte. = Note 6 Erreichte Punktzahl: Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Dienstag, 9. Mai 01 1:10-14:40 Uhr Allgemeines Diese Prüfung hat 14 Seiten

Mehr

Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin)

Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin) Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 017 (inkl. Nachtermin) Für die Note 6 müssen nicht alle Aufgaben gelöst werden. Der Notenschlüssel wird nach der Prüfung festgelegt.

Mehr

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME:

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Di SG10 D Gruppe A NAME: R. Brinkmann http://brinkmann-du.de Seite 8.. Klassenarbeit Mathematik Bearbeitungszeit 9 min. Di 8.. SG D Gruppe A NAME: Hilfsmittel: Taschenrechner Alle Ergebnisse sind soweit möglich durch Rechnung

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St. Gallen Bildungsdepartement BMS / FMS / WMS / WMI / IMS Aufnahmeprüfung Herbst 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 60 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl

Mehr

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer: Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung:

Mehr

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe)

Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe) D. Anulf Schönlieb, Übungsbeispiele zu Potenzen, Wuzeln und Vektoen,. Klasse (10. Schulstufe) Übungsbeispiele zu Potenzen und Wuzeln sowie zu Vektoechnung,. Klasse (10. Schulstufe) 1)a) b) c) ) a) b) uv

Mehr

Sinus- und Kosinussatz

Sinus- und Kosinussatz Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen Technische Berufsmaturitätsprüfung Baselland 009 Mathematik Teil (Mit Hilfsmitteln) Aufgabe Es sei ein Rechteck mit Umfang in einem Halbkreis einbeschrieben. [ Punkte] Berechnen Sie die Seitenlängen des

Mehr

Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1

Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 BMS gibb Gewerbliche Richtung Berufsmaturitätsprüfung Mai 2013 / BMS 1 Mathematik KandidatIn (Name, Vorname): Klasse BMS A 6 Prüfungsdauer: 120 Minuten Die gesamte Prüfung umfasst 8 Aufgaben. Jede vollständig

Mehr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 75 68 Pte. = Note 6 Erreichte Punktzahl: Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Dienstag, 9. Mai 01 1:10-14:40 Uhr Allgemeines Diese Prüfung hat 14 Seiten

Mehr

Landeswettbewerb Mathematik Bayern

Landeswettbewerb Mathematik Bayern Landeswettbeweb Mathematik Bayen ufgaben und Lösungsbeispiele. Runde 007/008 ufgabe In de nebenstehenden Gleichung steht jede Buchstabe fü eine de Ziffen bis 9, wobei keine Ziffen mehfach vokommt. Zeige,

Mehr

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer:

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich. Name: Vorname: Adresse: Nummer: Kanton Zürich Aufnahmeprüfung 2017 für die Mathematik Dauer: 90 Minuten Serie: E2 basierend auf dem Lehrmittel Mathematik Hohl Hilfsmittel: Vorschriften: Bewertung: - Zeichenutensilien, Taschenrechner,

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf

m v = r 2 2 Kontrolle Physik-Leistungskurs Klasse Radialkraft, Wurf Kontolle Physik-Leistunskus Klasse 11 6.11.015 Radialkaft, Wuf 1. Vate und Sohn sind mit dem Rad untewes, de eine mit einem 8e, de andee mit einem e Rad. Als es dunkel wid, schalten beide ihe Lampen an,

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

1. Klassenarbeit Lösungsvorschlag

1. Klassenarbeit Lösungsvorschlag EI 10c M 2009-10 MATHEMATIK 1 1. Klassenarbeit Lösungsvorschlag Vergleiche deine Lösungen mit diesem Lösungsvorschlag. Helft euch gegenseitig bei Fragen oder fragt mich direkt! AUFGABE 1 Die Gerade g geht

Mehr

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6

KIT WS 2011/12 Theo A 1. 2 = b c ist dann doppelt so lang, wie â, also. c = 2 6 KIT WS / Theo A Aufgabe : Vetoen [3 + 3 = 6] Gegeben sind die Vetoen a = (, 7, und b = (,,. (a Bestimmen Sie einen Veto c de Länge c = in de a b Ebene mit c b. (b Bestimmen Sie den paametisieten Weg (ϕ

Mehr

Zweite Schularbeit Mathematik Klasse 5A am

Zweite Schularbeit Mathematik Klasse 5A am Zweite Schularbeit Mathematik Klasse 5A am 10.12.2013 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Grundkompetenzen Grundwissen Grundkompetenzen Grundfertigkeiten Vernetzung und Vertiefung 18 Punkte

Mehr

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi SG26 D Gruppe A NAME: c) Überprüfen Sie das Ergebnis von a) mit dem Wurzelsatz von Vieta.

Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi SG26 D Gruppe A NAME: c) Überprüfen Sie das Ergebnis von a) mit dem Wurzelsatz von Vieta. R. Brinkmann Seite 8..03 Klassenarbeit Mathematik Bearbeitungszeit 90 min. Mi 6..06 SG6 D Gruppe A NAME: Hilfsmittel: Taschenrechner. Alle Ergebnisse sind soweit möglich durch Rechnung zu begründen.. Lösen

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Allgemeine Mechanik Musterlo sung 4.

Allgemeine Mechanik Musterlo sung 4. Allgemeine Mechanik Mustelo sung 4. U bung. HS 03 Pof. R. Renne Steuqueschnitt fu abstossende Zentalkaft Betachte die Steuung eines Teilchens de Enegie E > 0 in einem abstossenden Zentalkaftfeld C F x)

Mehr