Musterlösung Übungsblatt 1 ( )

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Übungsblatt 1 ( )"

Transkript

1 Seminar: Formale Semantik Modul : Grammatiktheorie Seminarleiter: Anke Assmann Musterlösung Übungsblatt 1 ( ) Abgabe bis Institut für Linguistik Universität Leipzig 1 Funktionen und Mengen (20+3 Punkte) (a) Sind folgende Mengen gleich, wobei a b? Begründe. (8 Punkte) (1) a. {a} = {a, } ein, weil die rechte Menge mehr Elemente als die linke enthält. b. {x : a = b} = Ja, weil die Aussage a=b falsch ist. Das bedeutet, dass die linke Menge die leere Menge ist, genauso wie die rechte. c. = { } ein, nur die linke Menge ist leer. Die rechte Menge hat ein Element, nämlich die leere Menge. d. {x : x } = Ja, da kein Element in der leeren Menge ist, gibt es kein x, für das die Aussage x gilt. Damit ist die linke Menge leer, genau wie die rechte. e. {x : x schläft} = {x : x {x : b schläft}} Die linke Menge enthält alle Schlafenden. Die rechte Menge lässt sich zu {x : b schläft} vereinfachen. un ist b schläft entweder wahr oder falsch. Das heißt die rechte Menge beschreibt entweder die gesamte Menge der Individuen (falls b schläft wahr ist) oder die leere Menge (falls b schläft falsch ist). Die Mengen sind also nur dann gleich, wenn die Welt so beschaffen ist, dass alle Individuen schlafen oder kein Individuum schläft. f. {a} - {b} = {b} - {a} ein. Die Differenzmenge von {a} und {b} ist {a}. Die Differenzmenge von {b} und {a} ist {b}. Da ab, ist auch {a}{b}. g. {x : {x} P({x})} = {x : {a} P({a})} ( P(M) steht für Potenzmenge von M: die Menge aller Teilmengen von M) Ja. Jede Menge M ist eine Teilmenge von sich selbst, und somit ist sie ein Element von P(M). Sie ist aber keine Teilmenge von P(M). Damit sind die Aussagen {x} P({x}) und {a} P({a}) beide falsch. Daraus folgt, dass sowohl die linke als auch die rechte Menge die leere Menge beschreibt. Somit sind sie gleich. h. {x : x {y : y {a,b}}} = {y : x {a,b} } ein. Die Mengen lassen sich wie folgt vereinfachen: {y : y {a,b}} = {a,b}. Damit beschreibt auch die gesamte linke Menge {a,b}. In der rechten Menge wurde x nicht als Variable deklariert, daher muss es eine Konstante sein. Dann ist die Aussage x {a,b} falsch, woraus man 1

2 schließen kann dass die rechte Menge die leere Menge ist und somit nicht gleich {a,b} ist. (b) Ermittle die Funktionswerte. (6 Punkte+ 3 Zusatzpunkte) (2) Sei F die Funktion f so dass f : I I, und für jedes x I gilt: f(x) = x 2 a. F(5) = 25 b. F(300) = c. F( 5) = Kein Funktionswert, weil 5 keine natürliche Zahl ist. (3) Sei L {x : x ist ein Land}. Sei H {x : x ist eine Hauptstadt}. Sei F die Funktion f so dass f : L H, und für jedes x L gilt: f(x) = Hauptstadt von x a. F(Deutschland) = Berlin b. F(Osttimor) = Dili c. F(Luxemburg) = Luxemburg (4) 3 Zusatzpunkte wegen Fehler in der Aufgabe Korrigierte Aufgabe: Sei I {g : g ist eine Funktion von D in {0,1}}. Sei F die Funktion f so dass f : I {0,1}, und für jedes g I gilt: f(g) = 1 gdw y D, so dass g(y) = 1. a. F(g Frau ) = 1 (es gibt ja Frauen) b. F(g Einhorn ) = 0 (es gibt leider keine Einhörner) c. F(g speu ) = 0 (Es gibt keine Entität, der man die Eigenschaft speu zuordnen könnte. Das Wort gibt es nämlich nicht.) g Frau : D {0,1} und für jedes x D gilt, g Frau (x) = 1 gdw x eine Frau ist. g Einhorn : D {0,1} und für jedes x D gilt, g Einhorn (x) = 1 gdw x ein Einhorn ist. g speu : D {0,1} und für jedes x D gilt, g speu (x) = 1 gdw x speu ist. (c) Ermittle die Funktion anhand von Argument und Funktionswert. enne sie in Prosa und beschreibe sie formal. (6 Punkte) (5) a. f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, f(5) = 5, f(6) = 6, f(7) = 7, f(8) = 8, f(9) = 9, f(10) = 10,... Die Identitätsfunktion. f : I I : x I.f(x) = x. [λx I. x] b. f(0) = 0, f(1) =1, f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5, f(6) = 8, f(7) = 13, f(8) = 21, f(9) = 34, f(10) = 55,... Die Fibonacci-Funktion. f : I I : x I.f(x) = f(x 1) + f(x 2) c. f(charles) = Elisabeth, f(william) = Charles, f(victoria) = Silvia, f(hakon) = Harald,... Die Elternteil-von -Funktion. f : {x : x ist ein Prinz oder eine Prinzessin} {x : x ist ein König oder 2

3 eine Königin} : x D.f(x) = ein Elternteil von x [λx: x ist ein Prinz oder eine Prinzessin. Ein Elternteil y von x, wobei y {x : x ist ein König oder eine Königin} ] 2 Wahrheitsbedingungen (24 Punkte) (a) Beweise die folgende Behauptung. utze für den Beweis die Regeln (S1)-(S6) aus den Folien zu Heim & Kratzer 1998:Kapitel 2 (Folie 11, 32; Heim & Kratzer 1998:S.16, 27). (14 Punkte) (6) helps. = 1 gdw hilft. Weise dem Satz helps. zunächst den richtigen Phrasenstrukturbaum zu gemäß den ahmen von Heim & Kratzer 1998:Kapitel 2. otiere dann die Denotationen der terminalen Knoten und berechne anhand der Regeln (S1)-(S6) die Denotationen der nicht-terminale Knoten. S VP V = 1 gdw hilft. helps Denotationen: = = helps = f : D {g : g ist eine Funktion von D in {0,1}}: x D. f(x) = g x : D {0,1} : y D. g x (y) = 1 gdw y hilft x [λx D. [λy D. y hilft x]] Beweis: Aus den Regeln (S2), (S4) für und folgt, dass = und =. Aus der Regel (S5) folgt, dass 3

4 V helps = helps. Dann ist nach Regel (S1) S V helps VP = V helps VP = helps()() (wegen Regel (S6)) f : D {g : g ist eine Funktion von D in {0, 1}} : = x D f(x) = g x : D {0, 1} : y D g x (y) = 1 gdw y hilft x [ ] g : D {0, 1} : = () y D g (y) = 1 gdw y hilft = 1 gdw hilft. () ()() (b) Erweitere/ändere das Regelinventar (S1) - (S6) so ab, dass folgende Struktur interpretiert werden kann. Gib den Lexikoneintrag für will an. Von welchem semantischen Typ ist will? (10 Punkte) (7) S Aux AuxP VP will V help eues Regelinventar: (S1) Wenn α die Form S hat, dann α = γ(β). β γ (S2) Wenn α die Form hat, dann α = β. β (S3) Wenn α die Form hat, dann α = β. β 4

5 AuxP (S4) Wenn α die Form hat, dann α = β(γ). β γ (S5) Wenn α die Form Aux hat, dann α = β. β (S6) Wenn α die Form VP hat, dann α = β(γ). β γ (S7) Wenn α die Form V β hat, dann α = β. Lexikoneintrag will: Sei D <e,t> {g : g ist eine Funktion von D in {0,1}} will = f : D <e,t> D <e,t> : g D <e,t>. f(g) = h g : D {0,1}: x D. h g (x) = 1 gdw es eine zukünftige Welt gibt, in der g(x) = 1. Alternativ in λ-otation: will = [λg D <e,t>. [λx D. es gibt eine zukünftige Welt, in der g(x) = 1]] will ist vom Typ << e, t >, < e, t >>. 3 Semantische Typen (6 Punkte) (a) Sind folgende Ausdrücke semantische Typen gemäß der Definition aus Heim & Kratzer 1998:Kapitel 2, S. 28? (5 Punkte) (8) a. < t, e > ja b. < p, e > nein c. << e, < e, t >>, << e, t >, e >> ja d. <<< e, t >, t >> nein e. << e, t >, < e, t >, < e, t >> nein (b) Gebe zu folgender Funktion den semantischen Typ an. (1 Punkt) (9) give = f : D {g : g ist eine Funktion von D in {h: h ist eine Funktion von D in {0,1}}}, so dass x D, f(x) = g x : D {h: h ist eine Funktion von D in {0,1}}, so dass y D. g x (y) = h x,y : D {0,1}, so dass z D. h x,y (z) = 1 gdw z gibt an y x. < e, < e, < e, t >>> 5

6 4 Charakteristische Funktionen (7 Punkte) (a) Schreibe zu folgenden Mengen die charakteristischen Funktionen. (3 Punkte) (10) a. {x : x ist ein Schwein} f : D {0,1} : x D. f(x) = 1 gdw x ist ein Schwein [λx D. x ist ein Schwein] b. {x : {y : y likes x} = } f : D {0,1} : x D. f(x) = 1 gdw {y : y likes x} = (x wird von niemandem gemocht) [λx D. {y : y likes x} = ] c. {x : y I. x = y 2 } f : I {0,1} : x I. f(x) = 1 gdw y I. x = y 2 (x eine Quadratzahl ist) [λx I. y I[x = y 2 ]] (b) Schreibe zu folgenden Funktionen die Mengen, die sie charakterisieren und beschreibe die Mengen in Prosa. (4 Punkte) (11) a. f : I I für jedes x I, f(x) = 1 gdw x mod 2 = 0 mod steht für modulo, also für den Rest der bei der Division von natürlichen Zahlen durch natürliche Zahlen entsteht. {x I : x mod 2 = 0} (die Menge aller geraden Zahlen) b. f: D {0, 1} für jedes x D, f(x) = 1 gdw Delphine sind Fische. {x : Delphine sind Fische} = (die leere Menge) 5 Currying (6 Punkte) (a) Sei D = {,, Maria}. Schreibe zu folgenden Mengen die charakteristischen Funktionen (in Tabellennotation). Wende Currying darauf an. Beachte dabei die Richtung. (6 Punkte) (12) a. Links-nach-Rechts: R dislikes = {<, >, <, >, <Maria, Maria>} <, > 0 <, > 1 <, Maria > 0 <, > 1 f dislikes = <, > 0 <, Maria > 0 < Maria, > 0 < Maria, > 0 < Maria, Maria > 1 6

7 f dislikes = Maria 0 1 Maria Maria Maria 1 b. Rechts-nach-Links: R dislikes = {<, >, <, >, <Maria, Maria>} <, > 0 <, > 1 <, Maria > 0 <, > 1 f dislikes = <, > 0 <, Maria > 0 < Maria, > 0 < Maria, > 0 < Maria, Maria > Maria 0 1 f dislikes = 0 Maria 0 0 Maria 0 Maria 1 c. Rechts-nach-Links: R introduces to = {<,, Maria>, <,, Maria>, <Maria,, >} 7

8 f introduces to = <,, > 0 <,, > 0 <,, Maria > 1 <,, > 0 <,, > 0 <,, Maria > 0 <, Maria, > 0 <, Maria, > 0 <, Maria, Maria > 0 <,, > 0 <,, > 0 <,, Maria > 1 <,, > 0 <,, > 0 <,, Maria > 0 <, Maria, > 0 <, Maria, > 0 <, Maria, Maria > 0 < Maria,, > 0 < Maria,, > 0 < Maria,, Maria > 0 < Maria,, > 1 < Maria,, > 0 < Maria,, Maria > 0 < Maria, Maria, > 0 < Maria, Maria, > 0 < Maria, Maria, Maria > 0 8

9 f introduces to = Maria Maria Maria Maria 0 0 Maria Maria Maria Maria Maria Maria Maria Maria Maria 0 6 λ-otation (18+1 Punkte) (a) Schreibe folgende Funktionen in λ-otation um. (2 Punkte + 1 Zusatzpunkt) (13) a. f : I I: x I. f(x) = x 2 [λx I. x 2 ] b. f : D {g : g ist eine Funktion von D in {h: h ist eine Funktion von D in {0,1}}} x D. f(x) = g x : D {h: h ist eine Funktion von D in {0,1}} y D. g x (y) = h x,y : D {0,1} z D. h x,y (z) = 1 gdw z gibt an y x. [λx D. [λy D. [λz D. z gibt an y x]]] c. 1 Zusatzpunkt wegen Fehler in der Aufgabenstellung: Korrigierte Aufgabenstellung: Sei I {g : g ist eine Funktion von D in {0,1}}. f : I {0,1} g I. f(g) = 1 gdw y D. so dass g(y) = 1. [λg D <e,t>. y D, so dass g(y) = 1] 9

10 (b) Vereinfache folgende Ausdrücke. (10 Punkte) (14) a. [λx D e. [λy D e. y hasst x]]()() = [λy D e. y hasst ]() = 1 gdw hasst b. [λx D e. [λy D e. y hasst x]()]() = [λx D e. hasst x]() = 1 gdw hasst c. [λ f D <e,t>. [λx D e. f(x) = 1 und x ist groß ]]([λx D e. x ist ein Elefant])(Dumbo) = [λx D e. [λx D e. x ist ein Elefant](x) = 1 und x ist groß ](Dumbo) = [λx D e. x ist ein Elefant und x ist groß ](Dumbo) = 1 gdw Dumbo ist ein Elefant und Dumbo ist groß d. [λ f D <e,<e,t>>. [λx D e. f(x)() = 1]] ([λx D e. [λy D e. y mag x]]) = [λx D e. [λx D e. [λy D e. y mag x]](x)() = 1] = [λx D e. [λy D e. y mag x]() = 1] = [λx D e. mag x] (c) Beschreibe folgende Funktionen in Prosa. (6 Punkte) (15) a. [λx I. x mod 2 = 0] Die charakteristische Funktion der Menge aller geraden natürlichen Zahlen: Die kleinste Funktion, die jedes x, für das gilt x ist eine natürliche Zahl, abbildet auf den Wahrheitswert 1 gdw x gerade ist b. [λx : x ist ein Tier. x s natürlicher Feind] Die Funktion die jedem Tier die Menge seiner natürlichen Feinde zuordnet: Die kleinste Funktion, die jedes x, für das gilt x ist ein Tier, abbildet auf den natürlichen Feind von x c. [λx I. [λy I. y X]] Die charakteristische Funktion von I - X: Die kleinste Funktion, die jede Menge X, für die gilt X ist eine Teilmenge der Menge der natürlichen Zahlen, abbildet auf die kleinste Funktion, die jedes y, für das gilt y ist eine natürliche Zahl, abbildet auf den Wahrheitswert 1 gdw y nicht in der Menge X enthalten ist 10

Musterlösung Übungsblatt 3 ( ) 1 Prädikatmodifikation 40 Punkte

Musterlösung Übungsblatt 3 ( ) 1 Prädikatmodifikation 40 Punkte Seminar: Formale Semantik Modul 04-006-1006: Grammatiktheorie Seminarleiter: Anke Assmann Musterlösung Übungsblatt 3 (14.05.2013) Abgabe bis 22.05.2013 Institut für Linguistik Universität Leipzig 1 Prädikatmodifikation

Mehr

Musterlösung Übungsblatt 6 ( )

Musterlösung Übungsblatt 6 ( ) Seminar: Formale Semantik Modul 04-006-1006: Grammatikorie Seminarleiter: Anke Assmann Musterlösung Übungsblatt 6 (05.06.2013) Abgabe bis 14.06.2013 Institut für Linguistik Universität Leipzig Hinweis:

Mehr

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 2. Universität Leipzig, Institut für Linguistik

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 2. Universität Leipzig, Institut für Linguistik 1 / 52 Formale Semantik Heim & Kratzer 1998, Kap. 2 Anke Assmann anke.assmann@uni-leipzig.de Universität Leipzig, Institut für Linguistik 09.04.2013 2 / 52 Inhalt 1 Ein sanfter Einstieg 2 Ermittlung von

Mehr

Linguistische Grundlagen 6. Semantik

Linguistische Grundlagen 6. Semantik Linguistische Grundlagen 6. Semantik Gereon Müller Institut für Linguistik Universität Leipzig www.uni-leipzig.de/ muellerg Gereon Müller (Institut für Linguistik) 04-006-1001: Linguistische Grundlagen

Mehr

Musterableitung Relativsätze als Hilfestellung zur Lösung von Aufgaben in den Übungen und der Klausur

Musterableitung Relativsätze als Hilfestellung zur Lösung von Aufgaben in den Übungen und der Klausur eminar: Formale emantik Modul 04-006-1006: Grammatikorie eminarleiter: Anke Assmann Institut für Linguistik Universität Leipzig Musterableitung Relativsätze als Hilfestellung zur Lösung von Aufgaben in

Mehr

Semantik. Anke Himmelreich Formale Semantik. Universität Leipzig, Institut für Linguistik 1 / 47

Semantik. Anke Himmelreich Formale Semantik. Universität Leipzig, Institut für Linguistik 1 / 47 1 / 47 Semantik Formale Semantik Anke Himmelreich anke.assmann@uni-leipzig.de Universität Leipzig, Institut für Linguistik 09.06.2016 2 / 47 Inhaltsverzeichnis 1 Vorbemerkungen 2 Wahrheitskonditionale

Mehr

Typengetriebene Interpretation. Arnim von Stechow Einführung in die Semantik

Typengetriebene Interpretation. Arnim von Stechow Einführung in die Semantik Typengetriebene Interpretation Arnim von Stechow Einführung in die Semantik arnim.stechow@uni-tuebingen.de Programm Logische Typen Typengesteuerte Interpretation λ-schreibweise Prädikatsmodifikation (PM)

Mehr

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs.

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. 2.2.2 Semantik von TL Menge der Domänen Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. Johannes Dölling: Formale

Mehr

3.4 Direkte vs. indirekte Interpretation

3.4 Direkte vs. indirekte Interpretation 3 Theorie der λ -Repräsentation 3.4 Direkte vs. indirekte Interpretation In unserer semantischen Analyse natürlichsprachlicher Ausdrücke haben wir bisher die Methode der indirekten Interpretation zugrunde

Mehr

EF Semantik: Musterlösung zu Aufgabenblatt 2

EF Semantik: Musterlösung zu Aufgabenblatt 2 EF Semantik: Musterlösung zu Aufgabenblatt 2 Magdalena Schwager magdalena@schwager.at Sommersemester 2010, Universität Wien Lösen Sie folgende Aufgaben (1)-(4) und geben Sie sie zusammengetackert bei András,

Mehr

Musterlösung. [8 Punkte] Vereinfachen Sie folgende λ-ausdrücke so weit wie möglich Schritt für Schritt, d.h. nur eine λ-konversion pro Schritt.

Musterlösung. [8 Punkte] Vereinfachen Sie folgende λ-ausdrücke so weit wie möglich Schritt für Schritt, d.h. nur eine λ-konversion pro Schritt. Modulprüfung Grammatiktheorie, 2013 10.07.2013 Institut für Linguistik, Universität Leipzig Probeklausur: Formale emantik ([105] Punkte insgesamt.) Prüfer: Anke Assmann Hinweis: Unterstrichene Punktzahlen

Mehr

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 3. Universität Leipzig, Institut für Linguistik

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 3. Universität Leipzig, Institut für Linguistik 1 / 30 Formale Semantik Heim & Kratzer 1998, Kap. 3 Anke Assmann anke.assmann@uni-leipzig.de Universität Leipzig, Institut für Linguistik 23.04.2013 2 / 30 Vorbemerkung Bisher gab es für jede syntaktische

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

Grundkurs Semantik. Sitzung 6: Prädikation, Modifikation, Referenz. Andrew Murphy

Grundkurs Semantik. Sitzung 6: Prädikation, Modifikation, Referenz. Andrew Murphy Grundkurs Semantik Sitzung 6: Prädikation, Modifikation, Referenz Andrew Murphy andrew.murphy@uni-leizpig.de Grundkurs Semantik HU Berlin, Sommersemester 2015 http://www.uni-leipzig.de/ murphy/semantik15

Mehr

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 1. Universität Leipzig, Institut für Linguistik

Formale Semantik. Anke Assmann Heim & Kratzer 1998, Kap. 1. Universität Leipzig, Institut für Linguistik 1 / 20 Formale Semantik Heim & Kratzer 1998, Kap. 1 Anke Assmann anke.assmann@uni-leipzig.de Universität Leipzig, Institut für Linguistik 09.04.2013 2 / 20 Inhalt 1 Vorbemerkungen 2 Wahrheitskonditionale

Mehr

Formale Semantik. λ Typenlogik. Tutorium WiSe 2013/ November Sitzung: Folien freundlicherweise bereitgestellt von Andreas Bischoff

Formale Semantik. λ Typenlogik. Tutorium WiSe 2013/ November Sitzung: Folien freundlicherweise bereitgestellt von Andreas Bischoff Formale Semantik Tutorium WiSe 2013/14 20. November 2013 3. Sitzung: λ Typenlogik Folien freundlicherweise bereitgestellt von Andreas Bischoff Grenzen der Typenlogik Das letzte Mal: lesen(duden*) ( Eigenschaft

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Schriftliche Hausaufgaben SoSe 2009 Musterlösung

Schriftliche Hausaufgaben SoSe 2009 Musterlösung Schriftliche Hausaufgaben SoSe 2009 Musterlösung 1. Lexikalische Semantik I: Merkmalsanalyse & Prototypen (6 Punkte) i. Bestimmen Sie gemeinsame und unterscheidende Merkmale der beiden durch die Substantive

Mehr

2 Theorie der semantischen Typen

2 Theorie der semantischen Typen 2 Theorie der semantischen Typen 2 Theorie der semantischen Typen [ Dowty 83-97, Gamut 75-9, Partee 338-34] 2. Typen Eine mögliche Erweiterung von PL ist die Prädikatenlogik der 2. Stufe (PL2). In PL2

Mehr

Wiederholung Signatur, Terme

Wiederholung Signatur, Terme Was bisher geschah (algebraische) Strukturen zur zusammenhängenden Modellierung von Mengen von Individuen (evtl. verschiedener Typen) Funktionen auf Individuen dieser Mengen Relationen zwischen Individuen

Mehr

Musterlösung Übungsblatt 2 ( ) 1 Prädikatmodifikation 23 Punkte

Musterlösung Übungsblatt 2 ( ) 1 Prädikatmodifikation 23 Punkte eminar: Formale emanik Modul 04-006-1006: Grammaikheorie eminarleier: Anke Assmann Muserlösung Übungsbla 2 (07.05.2013) Abgabe bis 14.05.2013 Insiu für Linguisik Universiä Leipzig 1 Prädikamodifikaion

Mehr

Formale Methoden 2 (Lehrstuhl I Logik in der Informatik)

Formale Methoden 2 (Lehrstuhl I Logik in der Informatik) Formale Methoden 2 Gaetano Geck (Lehrstuhl I Logik in der Informatik) Blatt 3 Beispiellösung WS 2015/16 Aufgabe 1 [Wiederholung: Relationen] 3 Punkte Begründe jeden deiner Lösungsvorschläge. a) Wir definieren

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Diskrete Strukturen Endterm

Diskrete Strukturen Endterm Technische Universität München Winter 016/17 Prof H J ungartz / Dr M Luttenberger, J räckle, K Röhner H- Diskrete Strukturen Endterm eachten Sie: Soweit nicht anders angegeben, ist stets eine egründung

Mehr

Formale Semantik. Tutorium WiSe 2012/ November Foliensatz freundlicherweise von Andreas bereitgestellt. 2. Sitzung: Typenlogik

Formale Semantik. Tutorium WiSe 2012/ November Foliensatz freundlicherweise von Andreas bereitgestellt. 2. Sitzung: Typenlogik Formale Semantik Tutorium WiSe 2012/13 19. November 2012 2. Sitzung: Typenlogik Foliensatz freundlicherweise von Andreas bereitgestellt Schönfinkel Darstellung Prädikatenlogik lesen(peter*, duden*) Typenlogik

Mehr

7 Intensionale Semantik

7 Intensionale Semantik 7 Intensionale Semantik 7.1 Intension und Extension Bisher wurde eine extensionale Semantik verfolgt. D.h. als Denotationen von Sätzen wurden Wahrheitswerte, als Denotationen von Individuenausdrücken Individuen

Mehr

7. SITZUNG: KOMPOSITIONALITÄT AUF SATZEBENE MENGEN UND (CHARAKTERISTISCHE) FUNKTIONEN

7. SITZUNG: KOMPOSITIONALITÄT AUF SATZEBENE MENGEN UND (CHARAKTERISTISCHE) FUNKTIONEN 7. SITZUNG: KOMPOSITIONALITÄT AUF SATZEBENE MENGEN UND (CHARAKTERISTISCHE) FUNKTIONEN 1. Kompositionalität und die Interpretation atomarer Aussagen: DIE IDEE Bisher wurde gezeigt, was die Interpretation

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

Mathematische Grundlagen der Computerlinguistik I

Mathematische Grundlagen der Computerlinguistik I 1. Übungsblatt (Mengenlehre) I. Gegeben seien die Mengen: A = {a,b,c,2,3}, B = {a,b}, C = {c, 2}, D = {a,b,c}, E = {a,b,{c}}, F =, G = {{a,b}, {c,2}} Beantworte folgende Fragen mit wahr oder falsch (1-12),

Mehr

Lösungen zum Aufgabenblatt 10 Logik und modelltheoretische Semantik

Lösungen zum Aufgabenblatt 10 Logik und modelltheoretische Semantik Lösungen zum Aufgabenblatt 10 Logik und modelltheoretische Semantik Universität München, CIS, SS 2013 Hans Leiß Abgabetermin: Do, 4.7.2013, 16 Uhr, in meinem Postfach Aufgabe 10.1 Vereinfache die folgenden

Mehr

er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann ( )

er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann ( ) er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann (1001243) 2003-05-12 Problemstellung In diesem Text geht es darum die Semantik einer Logik

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen Dr. Theo Lettmann Paderborn, den 21. November 2003 Abgabe 1. Dezember 2003 Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen AUFGAB 38 : s seien folgende Prädikate gegeben: Person()

Mehr

Formale Semantik. Anke Assmann Zusammenfassung. Universität Leipzig, Institut für Linguistik 1 / 100

Formale Semantik. Anke Assmann Zusammenfassung. Universität Leipzig, Institut für Linguistik 1 / 100 1 / 100 Formale Semantik Zusammenfassung Anke Assmann anke.assmann@uni-leipzig.de Universität Leipzig, Institut für Linguistik 09.07.2013 2 / 100 Warnung Die folgende Zusammenfassung ersetzt nicht die

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Was bisher geschah. Semantik III. Semantik I Ÿ lexikalische Semantik. Heute: Satzbedeutung, Wahrheitskonditionale Semantik.

Was bisher geschah. Semantik III. Semantik I Ÿ lexikalische Semantik. Heute: Satzbedeutung, Wahrheitskonditionale Semantik. Was bisher geschah Semantik III Gerrit Kentner Semantik I lexikalische Semantik Ambiguitäten Sinnrelationen (vertikal und horizontal) Wortfelder / semantische Merkmale Semantik II Intension und Extension

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Informatik Vorkurs: Etwas Mathematik. Werner Struckmann WS 2014/2015

Informatik Vorkurs: Etwas Mathematik. Werner Struckmann WS 2014/2015 Informatik Vorkurs: Etwas Mathematik Werner Struckmann WS 2014/2015 Etwas Mathematik: Was machen wir? 1. Aussagen, Logik 2. Mengen, Relationen, Funktionen 3. Zahlenmengen, Rechnen 4. Beweise 5. Dualzahlen:

Mehr

Satzsemantik. Semantik und Pragmatik. Satzsemantik. Satzsemantik

Satzsemantik. Semantik und Pragmatik. Satzsemantik. Satzsemantik Satzsemantik 8. Mai 2007 Gerhard Jäger Erklärungsanspruch der Satzsemantik Wahrheitsbedingungen von Aussagensätzen Bedeutungsbeziehungen zwischen (Aussage-)Sätzen Kompositionale Berechnung von Satzbedeutungen

Mehr

Einführung in die Semantik, 8. Sitzung Typentheorie, F deutsch

Einführung in die Semantik, 8. Sitzung Typentheorie, F deutsch Einführung in die Semantik, 8. Sitzung, F deutsch Göttingen 1. Dezember 2006 Einführung in die Semantik, 8. Sitzung, F deutsch Semantik von F deutsch Satzoperatoren Negation Konjunktion und Disjunktion

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

Kapitel 5. Mathematische Semantik. 1 Motivation

Kapitel 5. Mathematische Semantik. 1 Motivation Kapitel 5 Mathematische Semantik In diesem Kapitel werden wir nun eine weitere Technik zur Definition der Semantik einer Programmiersprache vorstellen: die mathematische bzw. denotationale Semantik. Außerdem

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Semantik einiger Konjunktionen. Arnim von Stechow Einführung in die Semantik

Semantik einiger Konjunktionen. Arnim von Stechow Einführung in die Semantik Semantik einiger Konjunktionen Arnim von Stechow Einführung in die Semantik Programm Syntax und Semantik einiger AL-Junktoren Epistemisches müssen und können Strukturellen Mehrdeutigkeiten Extensionale

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Satzbedeutung. Ludwig Wittgenstein

Satzbedeutung. Ludwig Wittgenstein Was bisher geschah Semantik III Gerrit Kentner Semantik I lexikalische Semantik Ambiguitäten Sinnrelationen (vertikal und horizontal) Wortfelder / semantische Merkmale Semantik II Verbbedeutung: Aktionsart

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0 Funktionen Aufgabe 1. Finden Sie 3 Beispiele von Funktionen und 3 Beispiele von partiellen Funktionen, die nicht total sind. Es sollten auch mehrstellige Funktionen darunter sein. Aufgabe 2. Zeigen Sie,

Mehr

Klausur zur Mathematik III. Variante A

Klausur zur Mathematik III. Variante A Lehrstuhl C für Mathematik (Analysis) Prof. Dr. Oliver Schaudt Aachen, den 21.02.2018 Klausur zur Mathematik III WS 2017/18 Variante A Name Matrikelnr. Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel

Mehr

Klausur zur Mathematik III. Variante B

Klausur zur Mathematik III. Variante B Lehrstuhl C für Mathematik (Analysis) Prof. Dr. Oliver Schaudt Aachen, den 21.02.2018 Klausur zur Mathematik III WS 2017/18 Variante B Name Matrikelnr. Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Musterlösungen zum 10. Übungsblatt

Musterlösungen zum 10. Übungsblatt Musterlösungen zum 1. Übungsblatt Analysis bei Dr. Rolf Busam WS 6/7 Aufgabe 46 (Hartmuth Henkel) (a) Seien x, y, z X. (i) Es ist δ(x, y) nach Definition. Insbesondere gilt δ(x, y) = x = y. (ii) Es gilt

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Semantik und Pragmatik

Semantik und Pragmatik 1/17 Semantik und Pragmatik 15. Mai 2006 Gerhard Jäger Satzsemantik 2/17 Erklärungsanspruch der Satzsemantik Wahrheitsbedingungen von Aussagensätzen Bedeutungsbeziehungen zwischen (Aussage-)Sätzen Kompositionale

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Dr. Eva Richter / Holger Arnold Universität Potsdam, Theoretische Informatik, Sommersemester 2008 Übungsblatt 3 (Version 4) Abgabetermin: 13.5.2008, 12.00 Uhr Der λ-kalkül Da

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

Übungsblatt 3 Lösungen

Übungsblatt 3 Lösungen Übungsblatt 3 Lösungen Formale Semantik WiSe 2011/2012 1 Lambda-Kalkül Anmerkungen: Pot(U) = Potenzmenge von U, wobei U das Universum Die Potenzmenge einer Menge M ist die Menge aller Teilmengen von M

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

1 K-Rahmen und K-Modelle

1 K-Rahmen und K-Modelle Seminar: Einführung in die Modallogik (WS 15/16) Lehrender: Daniel Milne-Plückebaum, M.A. E-Mail: dmilne@uni-bielefeld.de Handout: K-Rahmen, K-Modelle & K-Wahrheitsbedingungen Im Folgenden werden wir uns

Mehr

3 Prädikatenlogik der 1. Stufe (PL1) Teil I

3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3 Prädikatenlogik der 1. Stufe (PL1) Teil I 3.3 Quantoren [ Gamut 70-74 McCawley 23-44 Chierchia 113-117 ]? Sind folgende Sätze jeweils synonym? (1) (a) Hans ist verheiratet oder nicht verheiratet. (b)

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Übungsblatt 6. f(x, y, z) = xyz + 3e x y

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Übungsblatt 6. f(x, y, z) = xyz + 3e x y D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 6 1. Es seien f : R 2 R 3 und g : R 3 R 3 die Funktionen definiert durch x cos(y) 2 y 2 f(x, y) = x sin(y) und g(x, y, z)

Mehr

Ferienkurs Lineare Algebra

Ferienkurs Lineare Algebra Ferienkurs Lineare Algebra Wintersemester 009/010 Lösungen Lineare Abbildungen und Matrizen Blatt 1 Linearität von Abbildungen 1. Welche dieser Abbildungen ist ein Gruppenhomomorphismus? Geben Sie eine

Mehr

Übungsblatt 1. Lorenz Leutgeb. 30. März 2015

Übungsblatt 1. Lorenz Leutgeb. 30. März 2015 Übungsblatt Lorenz Leutgeb 30. März 205 Aufgabe. Annahmen ohne Einschränkungen: P Σ und P Γ. Per Definitionem der Reduktion: P P 2 f : Σ Γ wobei f total und berechenbar, genau so, dass: w Σ : w P f(w)

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander

Mehr

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion F. Für n 1 definiere S n := n i=1 X i, M n := max{x i :1 i n} Frage: Welche sind die möglichen (nicht

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER WIEDERHOLUNG: SPRACHE DER PL Die Sprache der PL enthält (1) Einfache Individuenterme: Individuenkonstanten (a, b, c, ) und Individuenvariablen (x, y, z,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Funktionen und sprachliche Bedeutungen

Funktionen und sprachliche Bedeutungen Einführung in die Semantik,4. Sitzung Mehr zu Funktionen / Mengen, Relationen, Göttingen 1. November 2006 Mengen und sprachliche Bedeutungen Abstraktion und Konversion Rekursion Charakteristische Funktionen

Mehr

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B.

1. Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (c) A B = A B und A B = A B. . Aufgabe: Es seien A, B und C Aussagen. Zeigen Sie, dass die folgenden Rechenregeln richtig sind: (a) (A B) C = (A C) (B C) und (A B) C = (A C) (B C). (b) A (A B) = A und A (A B) = A. (c) (A B) = A B

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2015/2016

Klausur Formale Systeme Fakultät für Informatik WS 2015/2016 Klausur Formale Systeme Fakultät für Informatik WS 2015/2016 Prof. Dr. Bernhard Beckert 4. März 2016 Vorname: Name: Matrikel-Nr.: Platz-Nr.: Code: **Vorname** **Familienname** **Matr.-Nr.** **Hörsaal**

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 7 Sprachen erster Sufe Die in der letzten Vorlesung erwähnten Konstruktionsmöglichkeiten für Aussagen sind im Wesentlichen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr