Diskrete Strukturen Endterm

Größe: px
Ab Seite anzeigen:

Download "Diskrete Strukturen Endterm"

Transkript

1 Technische Universität München Winter 016/17 Prof H J ungartz / Dr M Luttenberger, J räckle, K Röhner H- Diskrete Strukturen Endterm eachten Sie: Soweit nicht anders angegeben, ist stets eine egründung bzw der Rechenweg anzugeben! ufgabe 1 6P Wir betrachten die folgenden Formeln über den aussagenlogischen Variablen,, C: F 1 := ( ( )) F := ((( ) ( C)) (C )) (a) Zeichnen Sie zu den Formeln F 1 und F jeweils den entsprechenden Syntaxbaum (b) Stellen Sie Wahrheitstabellen für beide Formeln auf uf die Wiederholung der Wahrheitswerte unter den Variablen der Formel kann verzichtet werden Es müssen Teilformeln nur soweit ausgewertet werden, dass sich der Wahrheitswert der gegebenen Formel eindeutig aus der Wahrheitstabelle ergibt (entsprechend den Tutorübungen) Ihre Tabellen müssen dem Format aus den Übungen entsprechen: ( ( )) 0 0? 0 1? 1 1? bzw C ((( ) ( C)) (C )) 0 0 0? 0 0 1? 1 1 1? (c) Geben Sie zu beiden Formeln jeweils eine möglichst einfache semantisch äquivalente Formel in KNF an ( ( ))

2 C C C ((( ) ( C)) (C )) KNF: F 1 ( ) (nur eine Klausel) KNF: F C ufgabe 5P Gegeben sei die folgende aussagenlogische Formel als Klauselmenge: {{,, C}, {,, D}, {, C, D}, {, }, {, }} (a) Wenden Sie den DPLL-lgorithmus aus den Folien (mit OLR, aber ohne PLR) an, um eine erfüllende elegung für obige Formel zu berechnen (b) eschreiben Sie die PLR ( pure-literal rule, vgl Übungsblatt 6) und markieren Sie in Ihrer zu (a) den ersten Zeitpunkt, in welchem die PLR angewendet werden würde Erinnerung : Die OLR hat stets höchste Priorität, die Fallunterscheidung stets niedrigste Priorität eachten Sie : Hat der DPLL-lgorithmus die Wahl zwischen mehreren Literalen, so soll stets das Literal gewählt werden, das bzgl der Ordnung vor allen anderen zur uswahl stehenden Literalen kommt, wobei gelten soll: C C D D Fallunterscheidung nach : nnahme ist wahr OLR mit {} anwenden: OLR mit {}: also unerfüllbar, backtracking Fallunterscheidung nach nnahme ist falsch OLR mit {} anwenden: Fallunterscheidung nach nnahme ist wahr OLR mit {}: OLR mit {C} {{}, {}} {{}} {{, C}, {, D}, {C, D}} {{C}, {C, D}} also erfüllbar, gib elegung β() = 0, β() = 1, β(c) = 0, β(d) {0, 1} zurück PLR: Falls eine Variable entweder nur als positives oder nur als negatives Literal vorkommt, setze entsprechendes Literal auf wahr und entferne entsprechend alle Klauseln, welches das Literal enthalten Die PLR würde hier gleich zu eginn C auf 0 setzen und damit die Formel auf {{,, D}, {, }, {, }} reduzieren {}

3 ufgabe 3 5P Die nzahl n der Zwuggelmeerschweinchen zum Zeitpunkt n N 0 ist durch folgende Rekursionsgleichung gegeben: Zeigen Sie mittels geeigneter Induktion, dass für alle n N 0 gilt: 0 = 1 1 = n+ = n+1 n + 1 n = 1 (n + n + ) Hinweis : Geben Sie explizit die Induktionsbasis an und gliedern Sie den Induktionsschritt in Induktionsannahme, Induktionsbehauptung und eweis der Induktionsbehauptung Werten Sie jeweils linke und rechte Seite unabhängig voneinander aus Iasis: n {0, 1} n = 0: linke Seite: 0 = 1; rechte Seite 1 ( ) = 1 n = 1: linke Seite: 1 = ; rechte Seite: 1 ( ) = ISchritt: Sei n N 0 beliebig fixiert Innahme: Es gilt für das fixierte n: n = 1 (n + n + ) und n+1 = 1 ((n + 1) + (n + 1) + ) Iehauptung: Es gilt für das fixierte n: n+ = 1 ((n + ) + (n + ) + ) eweis: Rechte Seite ausmultiplizieren: 1 ((n + ) + n + + ) = 1 n + 5 n + 4 Linke Seite nach Definition: n+ Def = n+1 n + 1 Inn = ((n + 1) + n ) 1 (n + n + ) + 1 = n + n n n 1 n = 1 n + 5 n + 4 Damit gilt n = 1 (n + n + ) für alle n N 0, was zu zeigen war ufgabe 4 3P Mit Graph sei im Weiteren ein Tupel G = (V, E) mit V < und E ( V ) gemeint Wir nehmen weiterhin an, dass die Knoten V = {v 1, v,, v n} nach aufsteigendem Knotengrad aufgezählt werden, dh deg(v i) deg(v j) für 1 i < j n Dann ist die Gradfolge von G gerade die Sequenz (deg(v 1), deg(v ),, deg(v n)) egründen Sie jeweils kurz, ob (a) jeder Graph mit Gradfolge (,,,, 4, 4, 4, 4, 4) einen Euler-Kreis enthält (b) es einen planaren zusammenhängenden Graphen mit Gradfolge (1, 1,,, 3, 3, 4) gibt, der die Ebene in genau (umschließende und eingeschlossene) Flächen unterteilt (c) es einen -färbbaren Graphen mit Gradfolge (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4) (1 Knoten vom Grad 1, 5 Knoten vom Grad 4) gibt (a) Nein, z die disjunkte Vereinigung des C 4 mit dem K 5, welche nicht zusammenhängend ist (b) Sollte es einen planaren Graphen mit dieser Gradfolge geben, dann müsste F E + V = 1 + k gelten (mit k die nzahl der Zusammenhangskompenten) Mit der nnahme F = und den gegebenen Werten V = 7 und E = 8 müsste also = 1 + k, also k = 0 gelten Jeder Graph hat aber mindestens eine Zusammenhangskomponente lso kann es keinen solchen planaren Graphen geben (inbesondere keinen zusammenhängenden, für den dann k = 1 gesetzt werden darf) (c) Z

4 ufgabe 5 6P Wir betrachten den Graphen G n = (V n, E n) mit V n = [n] und E n = {{, } [n], [n], =, } (a) Zeichnen Sie G 3 (b) Welchen Grad hat in G n? (c) Zeigen Sie: Ist eine k-elementige, nicht leere Teilmenge von [n], dann gilt deg() = n k in G n (d) estimmen Sie E n Geben Sie einen möglichst einfachen usdruck an Hinweis : Sie dürfen für diese Teilaufgabe 3 n = n k) n k ohne eweis verwenden (e) eweisen Sie den Hinweis zu (d), dh zeigen Sie, dass 3 n = n k) n k für belieibges n N 0 (a) Graph (oder so ähnlich): {1, } {, 3} {1, 3} {1,, 3} {1} {} {3} (b) deg( ) = n 1: ist disjunkt zu jeder anderen Teilmenge von [n], also zu allen n 1 Teilmengen benachbart (c) Sei [n] eine Menge mit k > 0 Elementen Dann ist ein Nachbar von, falls [n] \ Damit hat Grad n k (d) Nach Vorlesung: E = [n] ( ) ( ) n deg() = n n n 1 + n k n = k n k = 3 n 1 k k k=1 lso E = 3n 1 lternativ: Sei {, } eine Kante von G n Dann gilt = und [n] Dh definiert eine bbildung f : [n] {a, b, c} Von diesen bbildungen gibt es 3 n Die bbildung, die jedes Element aus [n] auf c abbildet, beschreibt dabei keine Kante, da es in einem ungerichteten Graphen keine Schleifen gibt Die verbleibenden 3 n 1 bbildung beschreiben jede Kante doppelt (Vertauschen von a und b verändert Kante nicht) Insofern gibt es 3n 1 Kanten (e) Nach der binomischen Formel gilt: (x + y) n = n y) x k y n k Mit x = 1 und y = folgt die ehauptung ufgabe 6 8P (a) estimmen Sie ϕ(83) = Z 83 Hinweis : 83 ist eine Primzahl (b) erechnen Sie (c) Zeigen Sie, dass 5 ein Erzeuger von Z 83, 83, 1, dh zeigen Sie, dass 5 = Z 83 gilt Hinweis : Verwenden Sie geeignet, dass 5 10 mod 83 = 11 gilt (nicht zu zeigen) (d) estimmen Sie das Inverse von 15 in Z 83, 83, 1 mittels des erweiterten euklidischen lgorithmus (EE) Hinweis : Halten Sie sich an das in den Übungen und der Vorlesung verwendete Format für die Tabellierung des EE: (e) erechnen Sie (64 45 ) mod 83 a b b/a α β????? p := 83 (a) ϕ(p) = p 1 = 8, da p = 83 prim (b) p p p 7 19 p 133 p 33 (c) Die möglichen Ordnungen von 5 sind die Teiler von 8 = 41, also 1,, 41, 8 Man muss daher zeigen, dass 5 k 83 1 für k {1,, 41}, was für k = 1, offensichtlich ist leibt 5 41 p (5 10 ) 4 5 p p p p 33 5 p 186 p 1 p 8 (d) a b b/a α β lso ist das multiplikative Inverse von 15 modulo 83 (e) p (64 mod p) 45 mod p 1 p 15 1 p 7

5 ufgabe 7 7P Wie viele Möglichkeiten gibt es, 4 Studenten 8 Tutoren zuzuordnen, wenn jedem Tutor mindestens fünf Studenten zugeordnet werden sollen und weiterhin (a) Studenten nicht unterschieden werden, (i) Tutoren ebenfalls nicht unterschieden werden (ii) Tutoren jedoch unterschieden werden (b) Studenten unterschieden werden, (i) Tutoren jedoch nicht unterschieden werden (ii) Tutoren ebenfalls unterschieden werden Erinnerung : In den Tutorübungen haben Sie gesehen, dass die nzahl aller Äquivalenzrelationen über [n], welche genau λ i Äquivalenzklassen der Größe i besitzen, gerade durch gegeben ist n! λ 1!λ! λ n!(1!) λ 1 (!) λ (n!) λn In (b) reicht es, das Ergebnis als arithmetisch usdruck unter Verwendung der in Vorlesung behandelten Zählkoeffizienten anzugeben Der arithmetische usdruck muss jedoch begründet werden! Für (a) muss entsprechend (b) verfahren werden, es ist aber zusätzlich der explizite Zahlenwert anzugeben (a) (i) Man ist an der nzahl der ungeordneten Partitionen von 4 in 8 Summanden, jeder davon größer gleich 5, interessiert: x 1 + x + + x 7 + x 8 = 4 mit 5 x 1 x x 8 Subtrahiert man von jedem x i genau 4, dann erhält man genau die ungeordneten Partition von = 10 in 8 positive ganze Zahlen, wovon es gerade P 10,8 = viel gibt, nämlich (1, 1, 1, 1, 1, 1, 1, 3) und (1, 1, 1, 1, 1, 1,, ) (ii) Man ist an den Zählvektoren (n 1,, n 8) N 8 0 mit i ni = 4 und ni 5 interessiert (ni nzahl der Studenten, die Tutor i zugeordnet werden), dh an der nzahl der Zählvektoren (n 1,, n 8) N 8 0 und i ni =, also ( ) +8 1 = 9! = 36!7! (b) (i) (Siehe T 101) Man muss [4] in 8 Mengen partitionieren, wobei jede Menge mindestens 5 Elemente enthält Dh man ist an den Äquivalenzrelationen über [4] interessiert, die nur Äquivalenzklassen mit mindestens 5 Elementen besitzen, also den Typ (λ 1, λ,, λ 4) mit λ 1 = = λ 4 = 0, i λi = 8 und i iλi = 4 haben (siehe Hinweis) von diesen Vektoren λ gibt es nach (a) gerade P 10,8 = viele, konkret λ 5 = 7, λ 7 = 1 (was in (a) (5, 5, 5, 5, 5, 5, 5, 7) entspricht) und λ 5 = 6, λ 6 = (in (a) (5, 5, 5, 5, 5, 5, 6, 6)) Damit ergibt sich 4! 7!(5!) 7 (7!) + 4! 6!!(5!) 6 (6!) (ii) Wie in (b), nur muss man jeder Teilmenge noch einen Tutor zuordnen, also (siehe auch H 113) ( ) 4! 7!(5!) 7 (7!) + 4! 8! 6!!(5!) 6 (6!)

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Kleiner Ausflug in Logik und Verkehrssteuerung

Kleiner Ausflug in Logik und Verkehrssteuerung Kleiner usflug in Logik und Verkehrssteuerung Ein logisches Rätsel usgangslage: Drei Frauen stehen hintereinander. Jede trägt einen Hut auf dem Kopf und sieht nur die Hüte der voran stehenden Personen.

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Übungsblatt 5 12. September 2011 Diskrete Strukturen

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Lösungen Prüfung Fachmaturität Pädagogik

Lösungen Prüfung Fachmaturität Pädagogik Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Übungsblatt 3 Lösungen

Übungsblatt 3 Lösungen Übungsblatt 3 Lösungen Formale Semantik WiSe 2011/2012 1 Lambda-Kalkül Anmerkungen: Pot(U) = Potenzmenge von U, wobei U das Universum Die Potenzmenge einer Menge M ist die Menge aller Teilmengen von M

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299 Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem. Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Partitionen natürlicher Zahlen

Partitionen natürlicher Zahlen Partitionen natürlicher Zahlen [email protected] 9. Oktober 03 In dieser Notiz wird der Beweis des Satzes über die Anzahl der Partitionen einer natürlichen Zahl vorgestellt. Die Darstellung folgt

Mehr

Musterlösung zur Probeklausur zur Kombinatorik

Musterlösung zur Probeklausur zur Kombinatorik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Kombinatorik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 00 Punkte Freitag,. Dezember

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Demo für Mengenlehre Teil 1. Die Grundlagen. Text INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W.

Demo für  Mengenlehre Teil 1. Die Grundlagen. Text INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. Die Grundlagen Stand..0 Friedrich W. uckel Text 0 FRIEDRIH W. UKEL INTERNETILIOTHEK FÜR SHULMTHEMTIK Mengenlehre Teil 0 Mengenlehre Vorwort Die Mengenlehre wurde lange als die unverzichtbare Grundlage

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Hochschule Darmstadt, Wintersemester 2015/16 Bernd Baumgarten (Lehrbeauftragter) Der Großteil der Folieninhalte ist dankend übernommen von Prof. Steffen Lange, h_da 0/1, Folie 1

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 76 Das Konzept einer Mannigfaltigkeit In der zweiten Hälfte dieses Kurses werden wir den Begriff der Mannigfaltigkeit entwickeln. Als

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs ([email protected]) Reinhard Riedl ([email protected]) Nadine Korolnik ([email protected])

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben.

Aus Knoten und Kanten, die Bezeichnungen haben können. Ein Graph, bei dem die Kanten Richtungen haben. ormale Methoden der Informatik WS 2/2 Lehrstuhl für atenbanken und Künstliche Intelligenz ProfrrJRadermacher H Ünver T Rehfeld J ollinger 3 ufgabenblatt esprechung in den Tutorien vom 72 (ab Übungstermin)

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr