Ein wenig Mengentheorie

Größe: px
Ab Seite anzeigen:

Download "Ein wenig Mengentheorie"

Transkript

1 Ein wenig Mengentheorie Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2013

2 Der Teufel! Mein theurer Freund, ich rath euch drum Zuerst Collegium Logicum. Da wird der Geist euch wohl dressirt, In spanische Stiefeln eingeschnürt, Daß er bedächtiger so fortan Hinschleiche die Gedankenbahn, Und nicht etwa, die Kreuz und Quer, Irrlichtelire hin und her. Dann lehret man euch manchen Tag, Daß, was ihr sonst auf einen Schlag Getrieben, wie Essen und Trinken frei, Eins! Zwei! Drei! dazu nöthig sei. Dr. Uwe Scheffler 2

3 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. Element nennt man die zusammengefaßten Gegenstände. Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 3

4 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. Element nennt man die zusammengefaßten Gegenstände. Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 4

5 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 5

6 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 6

7 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 7

8 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 8

9 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 9

10 Mengen und Elemente Menge nennt man jede als Ganzes gefaßte Vielheit von beliebigen (konkreten oder abstrakten) wohlunterschiedenen Gegenständen. {e 1,..., e n } die Menge aus e 1, e 2,..., e n Element nennt man die zusammengefaßten Gegenstände. e 1 {e 1,..., e n } e 1 ist Element der Menge Mengenbildung geschieht über Aufzählung oder Eigenschaften. die Menge der Zahlen 2, 3, 5, 7; die Menge der Berge Kilimandsharo und Mount Everest; die Primzahlen unter 10; die Achttausender Untermenge einer Menge K ist jede Menge, deren Elemente alle in K sind. L K genau dann, wenn für alle e L auch gilt e K Dr. Uwe Scheffler 10

11 Besondere Mengen Die leere Menge ist die Menge, die kein einziges Element enthält: für alle e gilt: e Die universale Menge ist die Menge, die alle Elemente enthält: für alle e gilt: e U Identisch sind zwei Mengen genau dann, wenn sie in allen Elementen übereinstimmen: M 1 = M 2 genau dann, wenn für alle e gilt: e M 1 genau dann, wenn e M 2 Dr. Uwe Scheffler 11

12 Kartesische Produkte Kartesisches Produkt zweier Mengen K und L wird die Menge aller geordneten Paare genannt, deren erstes Element aus K und deren zweites aus L ist. K L = { d, e : d K und e L} {Anna,Bodo} Kants Kritiken = { Anna, KdrV, Anna, KdpV, Anna, KdU Bodo, KdrV, Bodo, KdpV, Bodo, KdU } n-faches kartesisches Produkt : K 1... K n = { e 1,..., e n : e 1 K 1 und... und e n K n } (Menge aller n-tupel... ) Dr. Uwe Scheffler 12

13 Kartesische Produkte Kartesisches Produkt zweier Mengen K und L wird die Menge aller geordneten Paare genannt, deren erstes Element aus K und deren zweites aus L ist. K L = { d, e : d K und e L} {Anna,Bodo} Kants Kritiken = { Anna, KdrV, Anna, KdpV, Anna, KdU Bodo, KdrV, Bodo, KdpV, Bodo, KdU } n-faches kartesisches Produkt : K 1... K n = { e 1,..., e n : e 1 K 1 und... und e n K n } (Menge aller n-tupel... ) Dr. Uwe Scheffler 13

14 Kartesische Produkte Kartesisches Produkt zweier Mengen K und L wird die Menge aller geordneten Paare genannt, deren erstes Element aus K und deren zweites aus L ist. K L = { d, e : d K und e L} {Anna,Bodo} Kants Kritiken = { Anna, KdrV, Anna, KdpV, Anna, KdU Bodo, KdrV, Bodo, KdpV, Bodo, KdU } n-faches kartesisches Produkt : K 1... K n = { e 1,..., e n : e 1 K 1 und... und e n K n } (Menge aller n-tupel... ) Dr. Uwe Scheffler 14

15 Kartesische Produkte Kartesisches Produkt zweier Mengen K und L wird die Menge aller geordneten Paare genannt, deren erstes Element aus K und deren zweites aus L ist. K L = { d, e : d K und e L} {Anna,Bodo} Kants Kritiken = { Anna, KdrV, Anna, KdpV, Anna, KdU Bodo, KdrV, Bodo, KdpV, Bodo, KdU } n-faches kartesisches Produkt : K 1... K n = { e 1,..., e n : e 1 K 1 und... und e n K n } (Menge aller n-tupel... ) Dr. Uwe Scheffler 15

16 Funktionen Funktion heißt jede Abbildung von einer Menge K in eine Menge L, die jedes Element von K auf genau ein Element von L abbildet. Sei T = {w, f} die Menge der Wahrheitswerte, K die Menge der Studenten der TU und L die Menge der Zahlen. Dann sind kg: koerpergroesse in cm und mn: matrikelnummer Funktionen von den Studenten in die Zahlen: kg(anna)=175; kg(bodo)=175;... mn(anna)=675665; mn(bodo)=348776;... vh: verheiratet eine Funktion von Studenten Studenten in Wahrheitswerte: vh( Anna,Bodo )=f; vh( Anna,Anna )=f; vh( Chris,Dani )=w; vh( Dani,Chris )=w Dr. Uwe Scheffler 16

17 Funktionen Funktion heißt jede Abbildung von einer Menge K in eine Menge L, die jedes Element von K auf genau ein Element von L abbildet. Sei T = {w, f} die Menge der Wahrheitswerte, K die Menge der Studenten der TU und L die Menge der Zahlen. Dann sind kg: koerpergroesse in cm und mn: matrikelnummer Funktionen von den Studenten in die Zahlen: kg(anna)=175; kg(bodo)=175;... mn(anna)=675665; mn(bodo)=348776;... vh: verheiratet eine Funktion von Studenten Studenten in Wahrheitswerte: vh( Anna,Bodo )=f; vh( Anna,Anna )=f; vh( Chris,Dani )=w; vh( Dani,Chris )=w Dr. Uwe Scheffler 17

18 Funktionen Funktion heißt jede Abbildung von einer Menge K in eine Menge L, die jedes Element von K auf genau ein Element von L abbildet. Sei T = {w, f} die Menge der Wahrheitswerte, K die Menge der Studenten der TU und L die Menge der Zahlen. Dann sind kg: koerpergroesse in cm und mn: matrikelnummer Funktionen von den Studenten in die Zahlen: kg(anna)=175; kg(bodo)=175;... mn(anna)=675665; mn(bodo)=348776;... vh: verheiratet eine Funktion von Studenten Studenten in Wahrheitswerte: vh( Anna,Bodo )=f; vh( Anna,Anna )=f; vh( Chris,Dani )=w; vh( Dani,Chris )=w Dr. Uwe Scheffler 18

19 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 19

20 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 20

21 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 21

22 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 22

23 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 23

24 Relationen n-stellige Relation heißt jede Untermenge eines kartesisches Produktes K 1... K n. Verheiratet Menschen Menschen (Paare von Menschen, die miteinander verheiratet sind) Liegt Zwischen Ort Ort Ort Tripel von Orten, deren erster zwischen den anderen liegt Liegt Zwischen Gegenstand Gegenstand Gegenstand Tripel von Gegenständen, deren erster zwischen den anderen liegt Verursacht Agenten Handlungen (Paare von Menschen und Taten, die sie ausführen) Klug Lebewesen Menge der Lebewesen, die klug sind Dr. Uwe Scheffler 24

25 Operationen über Mengen Schnittmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K und L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K und e L. Vereinigungsmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K oder L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K oder e L. Komplementärmenge N einer Menge K ist die Menge, die nur die Elemente enthält, die nicht Element von K sind: N = K genau dann, wenn für alle e: e N dann und nur dann, wenn e K. Dr. Uwe Scheffler 25

26 Operationen über Mengen Schnittmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K und L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K und e L. Vereinigungsmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K oder L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K oder e L. Komplementärmenge N einer Menge K ist die Menge, die nur die Elemente enthält, die nicht Element von K sind: N = K genau dann, wenn für alle e: e N dann und nur dann, wenn e K. Dr. Uwe Scheffler 26

27 Operationen über Mengen Schnittmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K und L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K und e L. Vereinigungsmenge N der Mengen K und L ist die Menge, die nur die Elemente enthält, die Element von K oder L sind: N = K L genau dann, wenn für alle e: e N dann und nur dann, wenn e K oder e L. Komplementärmenge N einer Menge K ist die Menge, die nur die Elemente enthält, die nicht Element von K sind: N = K genau dann, wenn für alle e: e N dann und nur dann, wenn e K. Dr. Uwe Scheffler 27

28 Bilder zu den Operationen (Eulersche Kreise) K L K K L L K K Dr. Uwe Scheffler 28

29 Bilder zu den Operationen (Eulersche Kreise) K L K K L L K K Dr. Uwe Scheffler 29

30 Bilder zu den Operationen (Eulersche Kreise) K L K K L L K K Dr. Uwe Scheffler 30

Logik zur Einführung

Logik zur Einführung Logik zur Einführung Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2011 Bitte zur Kenntnis nehmen: Informationen finden Sie auf http://www.sodass.net/dresden/logik4.htm Organisatorisches wird

Mehr

Metasprache und Sprache

Metasprache und Sprache Metasprache und Sprache Womit und worüber wir reden Prädikatenlogik Uwe Scheffler [Technische Universität Dresden] Oktober 2013 Reste Naive Mengenlehre haben wir drauf, hier noch ein Rest! Uwe Scheffler

Mehr

Mengen, Theorien, Modelle

Mengen, Theorien, Modelle Mengen, Theorien, Modelle Ein Crashkurs in formaler Logik Dr. Uwe Scheffler [Technische Universität Dresden] April 2011 Georg Cantor Menge nennt man jede Zusammenfassung von wohlunterschiedenen Objekten

Mehr

EINFÜHRUNG IN DIE GEOMETRIE

EINFÜHRUNG IN DIE GEOMETRIE Dr. Michael Gieding EINFÜHRUNG IN DIE GEOMETRIE MATERIAL FÜR DAS SELBSTSTUDIUM WICHTIGE GRUNDBEGRIFFE DER MATHEMATIK: MENGEN UND RELATIONEN MENGEN 0. Mengen 0.0 Ziel der Ausführungen Die Mengenlehre bildet

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Elementare Logik andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind derart konzipiert,

Mehr

Metasprache und Sprache

Metasprache und Sprache Metasprache und Sprache Womit und worüber wir reden Prädikatenlogik Uwe Scheffler [Technische Universität Dresden] Oktober 2012 Theorien als sprachliche Objekte Eine Theorie ist eine Menge von Sätzen.

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 2. Oktober 2015 Vorsemesterkurs Informatik Inhalt 1 Relationen 2 Funktionen 3 Beweistechniken Motivation Direkter Beweis Beweis

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Quick Start Informatik Theoretischer Teil WS2011/12 11. Oktober 2011 Relationen und Funktionen > Relationen Relationen Relationen und Funktionen > Relationen

Mehr

2 Mengenlehre. 2.1 Grundlagen Definition

2 Mengenlehre. 2.1 Grundlagen Definition 2 Mengenlehre 2.1 Grundlagen Einer der wichtigsten Grundbegriffe in der Mathematik ist der Mengenbegriff. Die zugehörige Theorie - die Mengenlehre - bildet die Grundlage für die gesamte Mathematik. Nur

Mehr

Zweite und dritte Sitzung

Zweite und dritte Sitzung Zweite und dritte Sitzung Mengenlehre und Prinzipien logischer Analyse Menge Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens

Mehr

4 Mengentheorie. 4.1 Mengen

4 Mengentheorie. 4.1 Mengen 4 Mengentheorie 4.1 Mengen Die Mengentheorie ist entwickelt worden, um eine elementare Basis für den Aufbau der gesamten Mathematik zu haben. Ihr Begründer ist Georg Cantor (1845-1918). Die Standard-Semantik

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die Mathematik

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Elizaveta Kovalevskaya WS 2017/18 6. Oktober 2017 Vorkurs Informatik - WS 2017/18 1/44 Vorsemesterkurs Informatik Übersicht 1 Relationen 2 Funktionen

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Was ist Logik? Goethe, Faust

Was ist Logik? Goethe, Faust Was ist Logik? Zuerst Collegium Logicum. Da wird der Geist Euch wohl dressiert, In spanische Stiefeln eingeschnürt, Da 3 er bedächtiger so fortan Hinschleiche die Gedankenbahn, Und nicht etwa, die Kreuz

Mehr

Rudolf Steiner COLLEGIUM LOGICUM

Rudolf Steiner COLLEGIUM LOGICUM Rudolf Steiner COLLEGIUM LOGICUM Erstveröffentlichung: Magazin für Literatur, 68. Jg., Nr. 12, 25. März 1899 (GA 31, S. 337-341) In der Sitzung des Preußischen Abgeordnetenhauses vom 13. März (1899) hat

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Vorkurs Informatik Theoretischer Teil WS 2013/14 2. Oktober 2013 Vorkurs Informatik WS 2013/14 1/27 Relationen und Funktionen > Relationen Relationen

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK3 vom 15.9.2016 VK3: Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen

Mehr

Mehr über Abbildungen

Mehr über Abbildungen Mehr über Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 5. September 2011 Definition (Menge) Wir verstehen unter einer Menge eine Zusammenfassung von unterscheidbaren Objekten zu einem

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Zitate zur Logik. Aristoteles. Goethe

Zitate zur Logik. Aristoteles. Goethe Zitate zur Logik Aristoteles Goethe Eine Deduktion (syllogismos) ist also ein Argument, in welchem sich, wenn etwas gesetzt wurde, etwas anderes als das Gesetzte mit Notwendigkeit durch das Gesetzte ergibt.

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 1: Mengenlehre 1 Mengen Einleitung Beschreibung und Beispiele Operationen Verhältnisse Kartesisches Produkt 2 Relationen

Mehr

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g:

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g: 1 Mengen Gregor Cantor denierte 1895 eine Menge als eine Zusammenfassung wohldenierter, unterscheidbarer Objekte. Eine Menge wird als neues Objekt angesehen, die Menge ihrer Objekte. Ein Objekt x aus der

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Lineare Algebra Jung Kyu Canci Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle Herbstsemester 2015 2 Inhaltsverzeichnis 1 Einführung in die Lineare Algebra 5 1.1 Elementare

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione

Einführung in die Semantik, 2./3. Sitzung Mengen / Relatione Eigenschaften von Einführung in die Semantik, 2./3. Sitzung Mengen / / Göttingen 2. November 2006 Eigenschaften von Mengenlehre Eigenschaften von Eigenschaften von Das Konzept Menge Eine Menge ist eine

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x

Mehr

Lösungen Arbeitsblatt Mengenlehre

Lösungen Arbeitsblatt Mengenlehre Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Arbeitsblatt Mengenlehre Dozent: Roger Burkhardt Büro: - Klasse: BWZ (Gruppe A) 2012/2013

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate:

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate: Aussagenlogik: Aussagen Ausssageformen Prädikatenlogik beschäftigt sich mit Aussagen sind Sätze die entweder wahr oder falsch sind sind Sätze mit Variablen, die beim Ersetzen dieser Variablen durch Elemente

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Teil 2: Mathematische Grundlagen Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019 Übersicht 1. Mengen 2. Relationen und Abbildungen 3. Boolsche

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1

, 5;8 7,6 8;15;21 4/2,3/1,4 2; 4 3;15 7;7 3,2;3; 32 5,6,7 ; 8,2,1 Mathematik (BG27) 2 3 { Objekt} { Menge } { Element } { } Reihenfolge spielt keine Rolle Unterscheidbarkeit der Objekte (redundanzfrei) 4 Objekt, 58 7,6 Beschreibung 81521 4/2,3/1,4 2 4 315 77 3,23 32

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik kartesische Produkte und und Funktionen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents kartesische Produkte und 1 kartesische Produkte und 2 Darstellung

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 3 MINT Mathekurs WS 2016/2017 1 / 21 Vorlesung 3 (Lecture 3) Einführung in die

Mehr

Logik, WS Gerhard Brewka. 1. Einführung. 1.1 Teilgebiete der Informatik und Theoretische Informatik

Logik, WS Gerhard Brewka. 1. Einführung. 1.1 Teilgebiete der Informatik und Theoretische Informatik Logik, WS 2008 Gerhard Brewka Gebraucht die Zeit, sie geht so schnell von hinnen, Doch Ordnung lehrt Euch Zeit gewinnen. Mein teurer Freund, ich rat' Euch drum Zuerst Collegium logicum. Da wird der Geist

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Brückenkurs Mathematik 2018

Brückenkurs Mathematik 2018 Mathematik 2018 1. Vorlesung Logik, Mengen und Funktionen Prof. Dr. 24. September 2018 Ich behaupte aber, dass in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,

Mehr

1 Grundlagen. 1.1 Aussagen

1 Grundlagen. 1.1 Aussagen 1 Grundlagen 1.1 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben,

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42

Mengen, Logik. Jörn Loviscach. Versionsstand: 17. Oktober 2009, 17:42 Mengen, Logik Jörn Loviscach Versionsstand: 17. Oktober 2009, 17:42 1 Naive Mengenlehre Mengen sind die Grundlage fast aller mathematischen Objekte. Ob die Zahl 7, ein Kreis in der Ebene, die Relation

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

Lösungen Arbeitsblatt Mengenlehre

Lösungen Arbeitsblatt Mengenlehre Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Dozent: - Brückenkurs Mathematik 2016 Lösungen Arbeitsblatt Mengenlehre Modul: Mathematik Datum:

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik überblick Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Allgemeines Termine Übung und Skript Plan Table of Contents 1 Allgemeines Termine Übung und Skript Plan 2 Allgemeines Termine

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Formale Methoden 1. Gerhard Jäger 24. Oktober Uni Bielefeld, WS 2007/2008 1/22

Formale Methoden 1. Gerhard Jäger 24. Oktober Uni Bielefeld, WS 2007/2008 1/22 1/22 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 24. Oktober 2007 2/22 Mengen Georg Cantor (1845-1918) Eine Menge ist eine Zusammenfassung von wohlunterschiedenen

Mehr

Paare und Kartesische Produkte

Paare und Kartesische Produkte Paare und Kartesische Produkte Aufgabe 1. Stellen Sie das Tripel (a, b, c) als Paar und als Menge dar. Hinweis: Verwenden Sie Farben. Lösung von Aufgabe 1. (a, b, c) = ((a, b), c) Paar Darstellung (a,

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 2 MINT Mathekurs SS 2017 1 / 23 Vorlesung 2 (Lecture 2) Einführung in die Mengenlehre.

Mehr

1.2. Mengen, Zahlen, Intervalle und Produkte

1.2. Mengen, Zahlen, Intervalle und Produkte 1.2. Mengen, Zahlen, Intervalle und Produkte Zahlen Einige Zahlenmengen werden mit besonderen Buchstaben bezeichnet. Die kleinste aller Mengen ist die leere Menge { }, die überhaupt kein Element enthält.

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

8 Relationen, Umkehrung

8 Relationen, Umkehrung 8 Relationen, Umkehrung Jörn Loviscach Versionsstand: 29. September 2012, 19:37 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von

Mehr