exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

Größe: px
Ab Seite anzeigen:

Download "exp(z) := k=0 sin(z) := k=0 cos(z) := k=0"

Transkript

1 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen Zahlen C als Tupel zweier reeller Zahlen mit Addition und der Multiplikation C = {z := a + ib a, b R} (a + ib) + (c + id) = (a + c) + i(b + d) (a + ib) (c + id) = (ac bd) + i(ad + bc). Damit ausgestattet werden die komplexen Zahlen zum Körper. Die komplex konjugierte Zahl von z = a+ib ist gegeben durch z = a ib. Ferner definieren wir noch die Norm/ den Betrag durch z = z z. Mit z = a + ib ergibt sich ebenfalls die Darstellung z = a 2 + b 2. Bezüglich diesen Betrags haben wir a n + ib n =: z n z = a + ib genau dann, wenn a n a und b n b bzgl. der üblichen Konvergenz auf den reellen Zahlen gilt. Damit ergibt sich sofort, dass eine Funktion f : R C stetig ist, genau dann wenn stetige Funktionen g, h : R R existieren mit f = g + ih. Wir definieren die Exponentialfunktion exp und die Winkelfunktionen sin, cos als Funktionen C C, gegeben durch exp(z) := sin(z) := cos(z) := z k k!, ( ) k z 2k+, (2k + )! ( ) k z 2k. (2k)! Alle drei Reihen konvergieren absolut für alle z C, und stellen unendlich oft differenzierbare Funktionen dar. Beweisen Sie die Euler Formel e ix = cos x + i sin x für alle x R. Satz des Cauchy Produkts (Formel motivieren, aber nicht rigoros beweisen) Seien a k, b k zwei absolut konvergente Reihen. Dann gilt ( ) ( ) k a k b k = a l b k l. Beweisen Sie folgende Rechenregeln: l= exp(z) = exp(z) exp(w) exp(z) = exp(w + z). Literatur: H. Amann, J. Escher: Analysis I (Kapitel II.8, II.9), O. Forster: Analysis (Kapitel 8,3,4)

2 Skalarprodukte und (Prä)hilberträume Definition eines Skalarproduktes Beispiele von Skalarprodukten, insbesondere das Standardskalarprodukt z, w C = z w auf den komplexen Zahlen, und dem Standardskalarprodukt auf R n, gegeben durch v w := v, w R n := n v k w k. Geometrische Bedeutung des Skalarprodukts (verallgemeinerter Winkel). Die induzierte Norm definieren und damit die Cauchy Schwarz Ungleichung erläutern/wiederholen (ohne Beweis). Nicht jede Norm wird von einem Skalarprodukt induziert. Dazu kurz die Parallologramm Gleichung beweisen. Definition eines komplexen (Prä)hilbertraums H Beispiele von (endlich dimensionalen) Hilberträumen Definition von Projektionen P Definition des orthogonalen Komplements eines linearen Untervektorraumes W H. Beweisen Sie: Sei ψ H ein festes Element. Sei ferner W = {λ ψ λ C} der lineare Vektorraum aufgespannt durch w. Dann ist P : H W, definiert durch P(f) = f, ψ ψ eine Projektion und es gilt H = W W d. h. jedes f H lässt sich eindeutig darstellen als f = φ + φ 2 mit φ W, φ 2 W. Man kann W nun wieder in einen eindimensionalen Unterraum W 2 W und W 2 spalten und erhält und damit W = W 2 W 2, H = W W 2 W 2. Vermutung Man kann H in eindimensionale, paarweise orthogonale Unterräume aufteilen. (Kein Beweis!) Literatur: G. Fischer: Lineare Algebra (Kapitel 5), K. Königsberger: Analysis (Kapitel 3, 8), H. Amann, J. Escher: Analysis (Kapitel II.3), S. Hildebrandt: Analysis (Kapitel 4.7, 4.8)

3 Periodische Funktionen Das Ziel des Vortrags ist die Einführung periodischer Funktionen und elementare Eigenschaften dieser zu beweisen.. Sei f: R C eine Funktion. Existiert ein ρ >, s.d. f(x + ρ) = f(x) für alle x R so nennen wir f periodisch mit Periode ρ. Definition: Wir definieren die Menge der stetigen bzw. k fach stetig differenzierbaren Funktionen mit Periode ρ als C ρ = {f : R C f ist stetig mit Periode ρ}, C k ρ = {f : R C f ist k fach stetig differenzierbar mit Periode ρ}. Wichtige Beispiele für periodische Funktionen sind sin und cos. Diese sind zudem unendlich oft differenzierbar, d.h. sin, cos C k für alle k. Beweisen Sie: C ρ ist ein Untervektorraum der stetigen Funktionen und C k ρ ist ein Untervektorraum der k fach stetig differenzierbarer Funktionen. Sind f, g C k ρ, so ist das Produkt f g ebenfalls in C k ρ. Ist f C ρ und g: C C eine stetige Funktion, so ist g f in C ρ. Wichtige Beispiele sind g(z) = z, sowie g(z) = z. Ist f C ρ, so ist f beschränkt und f nimmt sowohl Maximum als auch Minimum an. Ist f C ρ, so ist f C ρ, d.h. insbesondere periodisch mit Periode ρ. Sei f C ρ, so gilt für alle Konstanten c R die Gleichheit Für alle f C ρ gilt ˆ ρ f(x)dx = ˆ ρ ˆ ρ+c c f (x)dx =. f(x)dx. Es folgt, dass für f, g Cρ die folgende Formel der partiellen Integration gilt: ˆ ρ f (x)g(x)dx = ˆ ρ f(x)g (x)dx. Sei f periodisch mit Periode ρ und sei λ. Wir definieren g: R C, g(x) = f(λx). Dann ist g stetig und periodisch mit Periode ρ = ρ λ. Mit der Wahl λ = ρ wird g also periodisch. Es reicht also periodische Funktionen zu untersuchen, um Rückschlüsse für allgemeine periodische Funktionen ziehen zu können. Literatur: Bemerkung: Durch die Identifizierung von und des Intervalls [, ] erhalten wir den Einheitskreis S in der komplexen Ebene, und somit kann jede periodische Funktion f : R C als stetige Funktion f : S C gedacht werden. H. Amann, J. Escher: Analysis II (Kapitel V.4)

4 Definition der Fouriertransformation Beweisen Sie: Die Abbildung, : C C C f, g = ˆ p f(x), g(x) C dx = ˆ p f(x) g(x)dx definiert ein Skalarprodukt auf C, wobei, C das Standardskalarprodukt auf C ist. Der Raum C ist also ein Prähilbertraum (aber kein Hilbertraum), welche wir mit der vom Skalarprodukt induzierten Norm ausstatten. Man definiere für alle k Z die Funktionen ψ k : R C, ψ k (x) = exp(i k x). Beweisen Sie: Die Funktionen (ψ k ) sind periodisch und paarweise orthonormal, d.h. ψ k, ψ l = δ kl für alle k, l Z. Man definiere die N-te Partialsumme der Fourierreihe von f C als P N (f) : C C P N (f)(z) = f, ψ k ψ k (z). Die Funktionen P N (f) sind aufgrund der Vektorraumstruktur periodisch und unendlich oft stetig differenzierbar. Die Vorfaktoren f(k) = f, ψ k werden als Fourierkoeffizienten bezeichnet, und die dadurch definierte Funktion F(f) : Z C heißt Fouriertransformierte von f. F(f)(k) = f(k). In späteren Vorträgen wird gezeigt, dass für f C gilt f = lim N P N(f). Also kann die Fourierreihenentwicklung auch als orthogonale Projektion auf die Funktionen (ψ k ) k Z gesehen werden, und damit als Darstellung der Funktion f bzgl. der Orthonormalbasis (ψ k ) k Z. Literatur O. Forster: Analysis (Kapitel 23), K. Königsberger: Analysis (Kapitel 7,6), H. Amann, J. Escher: Analysis II (Kapitel VI.7)

5 Elementare Rechenregeln Im Folgenden seien f, g: R C stetige, periodische Funktionen. Beweisen Sie: Die Fouriertransformation ist linear, d.h. f + g = f + ĝ λf = λ f für alle λ C. Die Funktion f ist reellwertig genau dann, wenn f(x) = f( x) für alle x R gilt. Die Funktion f ist gerade, d.h. f(k) = f( k) für alle k Z genau dann, wenn f gerade ist, d.h. f(x) = f( x) für alle x R. Die Funktion f ist ungerade (d.h. f(k) = f( k) für alle k Z) genau dann, wenn f ungerade ist (d.h. f(x) = f( x) für alle x R). Sei h : R C eine differenzierbare Funktion, so gilt h ist achsensymmetrisch = h ist punktsymmetrisch, h ist punktsymmetrisch = h ist achsensymmetrisch, h ist periodisch = h ist periodisch. Sämtliche Umkehrungen sind im Allgemeinen falsch! Sei f : R C eine stetig differenzierbare, periodische Funktion. Dann ist F(f )(k) = ikf(f)(k) für alle k Z. Beweis: Für k Z ist F(f )(k) = f (k) = f, ψ k = = ik f (x)e ikx dx f(x)e ikx dx = ik f(k). Sei h gegeben durch h(x) = f(x + x ) für alle x R und eine feste Zahl x R. Dann ist h ebenfalls eine stetige, periodische Funktion und es gilt ĥ(k) = exp( i k x ) f(k) für alle k Z Literatur O. Forster: Analysis (Kapitel 8,8,23), K. Königsberger: Analysis (Kapitel 6,6)

6 Wohldefiniertheit und Konvergenz Formulieren und beweisen Sie: Die Bessel Ungleichung und die erläutern Sie diese anschaulich. [Satz 7. in Analysis II von H. Amann, J. Escher.] Formulieren und beweisen Sie: Das Lemma von Riemann Lebesgue: Ist f C, so gilt für alle k Z mit k die Gleichheit f(k) = k f (k). (.) Also folgt mit der Schranke f (k) f (x) dx, dass f(k), falls k oder k. Beweisen Sie: Aus (.) folgt: P N (f) = f(k)ψ k konvergiert absolut und gleichmäßig für N. Dazu bemerke man zuerst, dass mit der Dreiecksungleichung gilt P N (f) = f(k)ψ k f(k) ψ k. Nun gilt allgemein reelle Vektoren (a k ) N, (b k) N, dass a k b k = a N a N. a (N ) a N b N b N. b (N ) b N, wobei der Punkt das Standardskalarprodukt auf R 2N+ darstellt. Nach der, im zweiten Vortrag vorgestellten, Cauchy Schwarz Ungleichung gilt somit ( N ) ( 2 N ) 2 a k b k a 2 k b 2 k Folglich,k k f (k) k 2,k 2,k Die Behauptung folgt nun mit der Bessel Ungleichung. f (k) Literatur O. Forster: Analysis (Kapitel 23), K. Königsberger: Analysis (Kapitel 6), H. Amann, J. Escher: Analysis II (Kapitel VI.7) 2 2

7 Punktweise Konvergenz Für f C 2 wird gezeigt, dass P Nf f für N punktweise konvergiert, und nach dem vorigen Resultat, sogar gleichmäßig. Beweis: Bemerke, dass P N f(x) = f(t) Mit dem Umschrieb e ikx ikt dt; f(x) = e iks = + f(x) (e iks + e iks) e ikx ikt dt. und Anwenden der geometrischen Summenformel für s [, π] und s gilt e iks = + (e iks + e iks) (.2) = + ei(n+)s e is + e i(n+)s e is. Erweitern den letzten Terms mit e is liefert weiter e i(n+)s e is = e ins e is e is. Alles auf einen Bruch zusammengefasst, lässt sich (.2) schreiben als e iks = ( e is e i(n+)s + e ins) = 2ie is/2 e is/2 e is/2 ( ) e i(n+ 2 )s + e i(n+ 2 )s 2ie is/2 Das Einsetzen von sin(x) = eix e ix 2i liefert nun für alle s [, π] die Gleichheit sin((n+ )s) e iks 2 falls s, = sin( 2) s N + falls s =. Nach der Substitution s = t x ist somit Aus sin x x P N f(x) f(x) = = [f(x + s) f(x)] e iks ds [f(x + s) f(x)] 2 sin( s 2 ) sin((n + 2 )s) ds. π x folgt, dass s f(x+s) f(x) 2 sin(s/2) eine stetig differenzierbare Funktion ist. Mit sin((n + 2 )s) = Im(ei(N+ 2 )s ) folgt das Resultat mit dem Riemann Lebesgue Lemma. Literatur K. Königsberger: Analysis (Kapitel 6.3)

8 Fourier und Faltung Das Ziel des Vortrags ist es die Faltung für periodische Funktionen zu definieren und motivieren, und ferner wichtige Beziehungen zwischen der Faltung und der eingeführten Fourierentwicklung darzulegen. Im folgenden seien f, g : R C stetige, periodische Funktionen Definition: Die Faltung von f und g ist gegeben durch Beweisen Sie: f g : R C, (f g)(x) = Es gilt f g = g f. f(x y)g(y)dy. Beweis: Substituiere wir im Integral z = x y y = x z so erhalten wir (f g)(x) = f(x y)g(y)dy = ˆ x+π x f(z)g(x z)dz = (g f)(x). Die Faltung f g ist eine stetige, periodische Funktion. Beweis: Zur Periode: Sei x R beliebig. Dann ist (f g)(x+) = f(x+ y)g(y)dy = Zur Stetigkeit. Sei x, z R. Dann ist (f g)(x) (f g)(z) = sup a,b R, a b = x z f(x y)g(y)dy = (f g)(x). [f(x y) f(z y)]g(y)dy f(a) f(b) sup g(c). Sind zudem f, g stetig differenzierbare Funktionen, so gilt f g(k) = l= f(l)ĝ(k l) für alle k Z. c R Beweis: Es gilt nach Definition für festes k Z die Gleichheit Nun ist f(x) = f g(k) = n= Eingesetzt ergibt dies f g(k) = ˆ ( π f(x)g(x)e ikx dx. f(n)e inx und g(x) = n= f(n)e inx )( m= m= ĝ(m)e imx. ĝ(m)e imx )e ikx dx. Mit der Cauchy Produktformel und der Orthogonalität der Basisfunktionen ψ k folgt die Aussage.

9 Explizite Beispiele der Fouriertransformation Es sollen erste Beispiele zu Fourierreihen gerechnet werden. Berechnen Sie die Fourierkoeffizienten der Funktionen und f : R R, { x, falls π x < π f(x) = periodisch fortgesetzt. g : R R, { x 2, g(x) = falls π x < π periodisch fortgesetzt. Bemerkung: Obwohl die Funktionen nicht auf R stetig differenzierbar sind, so konvergiert die Fourierreihe dennoch gegen die Funktion. Es gilt { k =, f(k) = i cos(kπ) k k. { k =, = i ( ) k k k. Bemerkung: Obwohl f reell war, ist es die Fouriertransformation f nicht. Diese ist sogar rein imaginär! Mit g = 2f folgt { kĝ(k) = iĝ (k) = 2i f(k) k =, = 8π ( ) k+ k k, also mit der direkten Rechnung ĝ() = g(x)dx = x 2 dx = 2 3 π3, dass { 2 3 ĝ(k) = π3 k =, ( ) k+ k. k 2 Beweisen Sie: Sei f C. Seien ferner die Folgen (c k) k N, (s k ) k N definiert über c k (f) = f(k) + f( k) ( ) und s k (f) = i f(k) f( k). Dann gilt f(x) = c (f) 2 + ( ) c k (f) cos(kx) + s k (f) sin(kx) Literatur O. Forster: Analysis (Kapitel 8,23), K. Königsberger: Analysis (Kapitel 6,6)

10 Die Dirichletreihe k 2 Beweisen Sie: Sei f C. Die Fourierreihe konvergiert in der Norm gegen f, also f P N (f) 2 = f(t) P N (f)(t) 2 dt für N. Dies folgt sofort aus der gleichmäßigen Konvergenz P N (f) f für N und der Abschätzung f(t) P N (f)(t) 2 dt sup f(s) P N (f)(s) 2 dt s [,π] = sup f(s) P N (f)(s) 2 dt s [,π] = sup f(s) P N (f)(s) 2. s [,π] Aus der Konvergenz folgt, dass die Bessel Ungleichung für N zur Gleichheit wird. Dies wird als Satz von Parseval/Plancherel bezeichnet: k= f(k) 2 = f(x) 2 dx. Wir zeigen zuerst per Teleskopsumme, dass N k 2 und mit folgt demnach N k 2 = + k=2 N k 2 + ( k ) k k=2 N k 2 + k=2 k(k ) = k k konvergiert. Es gilt k(k ) = + N = 2 N 2. Das gibt uns auch die obere Schranke von 2. Für den expliziten Grenzwert berechnen wir für f aus dem vorigen Vortrag [f(x) = x auf [, π)] den Wert Ferner ist k= f(k) 2 = f(x) 2 dx = k=,k k 2 = 4π k 2 x 2 dx = 2 3 π3. Nach dem Satz von Parseval sind beide Terme gleich und damit k 2 = π2 6. Literatur: H. Amann, J. Escher: Analysis (Kapitel II.7), K. Königsberger: Analysis (Kapitel 6.7)

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.

Mehr

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten

Mehr

Faltung und Gute Kerne. 1 Faltung

Faltung und Gute Kerne. 1 Faltung Vortrag zum Proseminar zur Analysis, 9.07.200 Lars Grötschel, Elisa Friebel Im ersten Abschnitt Faltung definieren und beschäftigen wir uns mit der Faltung, die die grundliegende Operation des zweiten

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken Fachbereich Mathematik SS 0 J. Latschev Analysis II Fourierreihen In diesem Kapitel der Vorlesung widmen wir uns der Frage, inwieweit man jede periodische Funktion als Reihe in gewissen Standardfunktionen

Mehr

Harmonische Analysis

Harmonische Analysis Seminar Harmonische Analysis Vortrag von Reidar Janssen 2. & 27. Oktober 211 Diese Übersetzung des ersten Kapitels von Anton Deitmars A First Course in Harmonical Analysis [] dient als Grundlage für meinen

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

6 Fourierreihen und die Fouriertransformation

6 Fourierreihen und die Fouriertransformation Mathematik für Physiker IV, SS 13 Mittwoch 9.5 $Id: fourier.tex,v 1.4 13/5/31 16:8:3 hk Exp hk $ 6 Fourierreihen und die Fouriertransformation 6.1 Die Fourierreihe einer integrierbaren Funktion Am Ende

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz

Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz Seminar Analysis III Universität Dortmund / Fachbereich Mathematik Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz Seminar vom.4.3 von Christian Gervens Christian Gervens:

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)=

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)= Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { fx= x,,

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von Blatt Nr. Markus Nöth Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS 1 Aufgabe 1 1 8 6 X w - 6 8 Abbildung 1: Cauchy-Schwarz-Ungl. A In der nebenstehenden Graphik sind

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0

θ für alle n n 0, 0, dann divergiert a n. θ n, also die mit a n0 θ n 0 6 REIHEN 6. Konvergenzkriterien - 19 - Wenn man im Majorantenkriterium die geometrische Reihe als Majorante nimmt, erhält man das (6..18) Quotientenkriterium : Sei (a n ) n N0 eine Folge in C. Es gebe

Mehr

III Reelle und komplexe Zahlen

III Reelle und komplexe Zahlen Mathematik für Elektrotechniker Klausur Vorbereitung Prof Dr Volker Bach, Dr Sébastien Breteaux, Institut für Analysis und Algebra Jeder Satz, der einen Namen hat, ist wichtig III Reelle und komplexe Zahlen

Mehr

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen Vortrag zum Seminar zur Fourieranalysis, 3.10.007 Margarete Tenhaak Im letzten Vortrag wurde die Fourier-Reihe einer -periodischen Funktion definiert. Fourier behauptete, dass die Fourier-Reihe einer periodischen

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

2.3 Konvergenzverhalten von Fourierreihen

2.3 Konvergenzverhalten von Fourierreihen 24 2 Fourierreihen 2.3 Konvergenzverhalten von Fourierreihen Wir diskutieren die folgenden Fragen: Unter welchen Umständen konvergiert eine Fourierreihe einer Funktion? Wann kann man eine stückweise stetige

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

45 Hilberträume. v = 2 <v, v>.

45 Hilberträume. v = 2 <v, v>. 45 Hilberträume Zusammenfassung Unter dem Begriff Hilbertraum werden solche euklidische oder unitäre Vektorräume zusammengefasst, die auch noch vollständig sind. Damit werden die in 41, 42 und in 43, 44

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Freitag.7 $Id: fourier.tex,v.4 9/7/ :5:6 hk Exp $ 8 Euklidische Vektorräume und Fourierreihen 8. Fourier Reihen Wir wollen jeder, oder zumindest möglichst vielen, Funktionen

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 22.11.2016 3. Mächtigkeit und die komplexe Zahlen Komplexe Zahlen Definition Die komplexe Zahlen sind definiert als C = R 2 = R R, mit (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Reihen, Exponentialfunktion Vorlesung

Reihen, Exponentialfunktion Vorlesung Reihen, Exponentialfunktion Vorlesung Marcus Jung 5.03.20 Inhaltsverzeichnis Inhaltsverzeichnis Reihen 3. Denition.................................... 3.2 Konvergenzkriterien für Reihen........................

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Musterlösungen zur 10. Serie: Fourier-Reihen

Musterlösungen zur 10. Serie: Fourier-Reihen Musterlösungen zur. Serie: Fourier-Reihen. Aufgabe Bestimmen Sie die Fourier-Koeffizienten der Funktionen fx) x, gx) x und hx) e x a) auf [, ] bzgl., cosx, sinx, cosx,,sinx..., b) auf [, ] bzgl. c) auf

Mehr