Elektrizitätslehre und Magnetismus

Größe: px
Ab Seite anzeigen:

Download "Elektrizitätslehre und Magnetismus"

Transkript

1 Elektrizitätslehre und Magnetismus Othmar Marti Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik

2 Seite 2 Physik Elektrizitätslehre und Magnetismus Nach-Nachklausur Einsicht im Sekretariat Experimentelle Physik 1. Nachklausur: Schriftliche Prüfung Ende Sommersemester Vorlesung Frau Prof. Kaiser 2. Nachklausur: Wahlmöglichkeit Schriftliche Prüfung Ende Sommersemester Vorlesung Frau Prof. Kaiser Mündliche Prüfung bei mir (30-45 min). Anmeldung mit Formular bei mir und dann im Studiensekretariat. Zeitraum: Im Sommersemester

3 Seite 3 Physik Elektrizitätslehre und Magnetismus Elektrisches Feld um eine endliche Platte

4 Seite 4 Physik Elektrizitätslehre und Magnetismus Feld einer Ebene Integrationsfläche zur Berechnung des elektrischen Feldes einer Ebene Wenn σ die Ladungsdichte auf der Platte ist, dann ist σa = Φ = E n da = 2AE n ɛ 0 da sowohl die Unterseite wie auch die Oberseite einen Beitrag liefern. Also ist homogen im Raum. E r = σ 2ɛ 0

5 Seite 5 Physik Elektrizitätslehre und Magnetismus Ladungen im Inneren von Leitern Leiter haben in ihrem Inneren keine statischen elektrischen Felder. Da Ladungen im Inneren eines Leiters beweglich sind, folgt, dass das elektrische Feld an einer beliebigen Oberfläche, die sich ganz im Inneren eines Leiters befindet, null ist. Damit ist die umschlossene Ladung ebenso null. Daraus folgt, dass Ladungen sich nur an der Oberfläche eines Leiters befinden können.

6 Seite 6 Physik Elektrizitätslehre und Magnetismus Ladungen und Leiter Die makroskopisch beobachtbare elektrische Ladung eines Leiters befindet sich auf seiner Oberfläche. Das elektrische Feld an der Oberfläche eines Leiters steht senkrecht zu dieser Oberfläche und hat die Grösse E r = σ/ɛ 0

7 Seite 7 Physik Elektrizitätslehre und Magnetismus Spiegelladungen Links: Feldlinien in der Nähe eines Leiters. Rechts: Diese Feldlinien können mit einer Bildladung erklärt werden.

8 Seite 8 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential Die Arbeit ist durch W (r 1 r 2 ) = r 2 r 1 F (r) dr definiert. Die potentielle Energie eines Kraftfeldes F (x) ist die Arbeit gegen diese Feldkraft. Nach dem 3. Newtonschen Axiom ist F ext = F. Also E pot (x 2 ) = E pot (x 1 ) + x 2 x 1 x 2 = E pot (x 1 ) F ext (x) dx x 1 F (x) dx = E pot (x 1 ) W (x 1 x 2 ) Eine potentielle Energie existiert, wenn Die Arbeit W (r 1 r 2 ) unabhängig vom Weg ist. Die Arbeit für jede geschlossene Bahn null ist (Die Bahn darf keine Singularitäten des Feldes umschliessen). rot F (r) = 0 für alle r

9 Seite 9 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential Die potentielle Energie einer Probeladung q im Feld der Ladung Q ist r 2 E pot (r 2 ) = E pot (r 1 ) r 1 1 qq 4πɛ 0 r 2 r r dr Approximation eines beliebigen Integrationsweges durch Kreissegmente. Auf den Kreissegmenten (grün) ist E ds = 0, entlang der radialen Teile ist E ds = E(r)ds.

10 Seite 10 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential Da wir jede Bahnkurve durch Stücke in radialer Richtung und durch Bahnen mit r = const approximieren können, und da die Bahnen auf den Kugelflächen keinen Beitrag geben (sie sind senkrecht zur Kraft) können wir das Integral vereinfachen. E pot (r 2 ) = E pot (r 1 ) qq r 2 4πɛ 0 r 1 = E pot (r 1 ) qq 4πɛ 0 dr r 2 ( 1 r ) r2 Üblicherweise setzt man E pot (r = ) = 0. Damit wird E pot (r) = = E pot (r 1 ) + qq ( 1 1 ) r 1 4πɛ 0 r 2 r 1 qq 1 4πɛ 0 r Aus der potentiellen Energie kann die Kraft mit dem Gradienten berechnet werden. F (r) = grad E pot (r)

11 Seite 11 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential Für die potentielle Energie der Coulomb-Kraft bekommen wir F (r) = ( ) qq 1 grad = qq grad 1 4πɛ 0 r 4πɛ 0 r = qq ( 1 ) 4πɛ 0 r 2 grad r = qq r 4πɛ 0 r 3

12 Seite 12 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential In Komponenten ist r = ( x 2 + y 2 + z 2 und grad = = x, y, z Also grad ( ) 1 r = x y z 1 x 2 + y 2 + z 2 = ( x 2 + y 2 + z 2) 2 3 = ( x 2 + y 2 + z 2) 2 3 = 1 r 3 r x y z 2x 2y 2z ) (x 2 + y 2 + z 2)

13 Seite 13 Physik Elektrizitätslehre und Magnetismus Potentielle Energie und Potential Ergänzend zu Coulomb-Kraft hatten wir das elektrische Feld als auf eine Einheitsladung normierte Grösse eingeführt. E (r) = Q r 4πɛ 0 r 3 Die potentielle Energie der Ladung q im Feld der Ladung Q, normiert auf q = 1 ist das elektrische Potential ϕ, auch Spannung U genannt. Ich verwende in diesem Skript die Begriffe elektrisches Potential und Spannung austauschbar. ϕ(r) = U (r) = Q 1 4πɛ 0 r = E pot (r) q Wichtig ist die Beziehung E pot (r) = qu (r) = qϕ (r) Wie die Kraft aus der potentiellen Energie über die Gradientenbildung hervorgeht, wird das elektrische Feld mit berechnet. E = grad U = grad ϕ

14 Seite 14 Physik Elektrizitätslehre und Magnetismus Zusammenhänge F (r) lim /q q 0 lim q q 0 F dr Edr grad E pot E pot (r) lim /q q 0 lim q q 0 E (r) grad U U (r) = ϕ (r)

15 Potential senkrecht zu einer homogen geladenen Ebene mit U 0 = 2 und σ = 2ɛ. Seite 15 Physik Elektrizitätslehre und Magnetismus Homogen geladene Ebene 2 Homogen geladene Ebene: Potential U(x) 1 0 U x

16 Seite 16 Physik Elektrizitätslehre und Magnetismus Potential eines Kreisringes Das elektrostatische Potential eines Kreisringes mit der Ladung Q und dem Radius R im Abstand x auf der Symmetrieachse soll berechnet werden. U(x) = 1 2π dq 4πɛ 0 r 0 du(x) = 1 4πɛ 0 1 r dq 2π dq = Q 0 = 1 2π 4πɛ 0 0 dq = 1 x 2 + R 2 4πɛ 0 Q x 2 + R Kreisring: Potential entlang der Symmetrieachse U(x) U x Potential eines Kreisringes entlang der Symmetrieachse für eine positive Ladung Q = 4πɛ 0 und dem Radius

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 21. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 21. 04.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 21. 11. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 07. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 07. 07.

Mehr

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb? Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 8. 6. 29 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 8. 6. 29 Exkursion

Mehr

elektrischespotential =

elektrischespotential = Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #6 am 02.05.2007 Vladimir Dyakonov Elektrisches Potential Wieviel Arbeit muss ich aufwenden

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 05.

Mehr

Übungsblatt 04 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 04 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 04 PHYS300 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de). 2. 2003 8. 2. 2003 ufgaben. Mit Kondensatoren der Grösse C wird ein Würfel

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 29. 11. 2004 oder 6. 12. 2004 1 Aufgaben 1. In einer Metall-Hohlkugel (Innenradius

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs www.mint-kolleg.de Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales

Mehr

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst. I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Übungsblatt Elektrodynamik 1 - Musterlösung Besprechung in der Woche vom bis

Übungsblatt Elektrodynamik 1 - Musterlösung Besprechung in der Woche vom bis E2-E2p: Experimentalphysik 2 Prof. J. Lipfert SS 208 Elektrodynamik Übungsblatt Elektrodynamik - Musterlösung Besprechung in der Woche vom 04.06.8 bis 08.06.8 Teil A: Verständnisaufgaben Aufgabe Ladungen

Mehr

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 0 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 4.04.008 Aufgaben. Berechnen Sie, ausgehend vom Coulomb-Gesetz, das elektrische Feld um einen

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 02 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS7057 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmarmarti@uni-ulmde) 9 04 009 Aufgaben Berechnen Sie

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r ) .7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik. .. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot

Mehr

Vorlesungsskript PHYS Elektrizität und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Vorlesungsskript PHYS Elektrizität und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Vorlesungsskript PHYS1100.0 Elektrizität und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Othmar Marti Institut für Experimentelle Physik Universität Ulm veröffentlicht unter Lizenzinformationen

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Für ein solches Gradientenfeld

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht

Mehr

Experimentalphysik I Elektrizität und Magnetismus. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416

Experimentalphysik I Elektrizität und Magnetismus. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416 Experimentalphysik I Elektrizität und Magnetismus Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416 Experimentalphysik I - Elektromagnetismus, Inhalt Vorlesungsinhalte zum

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie Übungsblatt zur Vorlesung EP (Prof. Grüner) im SS 0 0. Mai 00 Aufgabe : Feldlinien a) Richtig oder falsch? Das elektrische Feld einer Punktladung zeigt immer von der Ladung weg. Falsch! Bei negativen Ladungen

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q Felder und Wellen WS 2017/2018 Musterlösung zur 5 Übung 12 Aufgabe Berechnung der allgemeinen Kapazität eines Zylinderkondensators Die elektrische Verschiebungsdichte ist radial gerichtet D = D r Auf einer

Mehr

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt.

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. 1. Superposition und Gauß scher Satz (a Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. E = E 1 + E 1 = 1 ( q 4πɛ 0 2 q = 1 8q (1 2 93a 2 4πɛ 0 9a 2

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 2. Vorlesung 25.4.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

X. Elektrostatik und Magnetostatik in Materie

X. Elektrostatik und Magnetostatik in Materie X. Elektrostatik und Magnetostatik in Materie Dieses Kapitel befasst sich mit den elektromagnetischen Feldern in Materie im stationären Regime, d.h. wenn die mikroskopischen und makroskopischen Felder

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 23. 04. 2009

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Vorlesungsskript PHYS3100 Physik IIIb für Physiker, Wirtschaftsphysiker und Lehramtskandidaten. Othmar Marti Abteilung Experimentelle Physik

Vorlesungsskript PHYS3100 Physik IIIb für Physiker, Wirtschaftsphysiker und Lehramtskandidaten. Othmar Marti Abteilung Experimentelle Physik Vorlesungsskript PHYS3100 Physik IIIb für Physiker, Wirtschaftsphysiker und Lehramtskandidaten Othmar Marti Abteilung Experimentelle Physik Universität Ulm 12. Mai 2003 2 Inhaltsverzeichnis 1 Mitteilungen

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

3.8 Das Coulombsche Gesetz

3.8 Das Coulombsche Gesetz 3.8 Das Coulombsche Gesetz Aus der Mechanik ist bekannt, dass Körper sich auf Kreisbahnen bewegen, wenn auf sie eine Zentripetalkraft in Richtung Mittelpunkt der Kreisbahn wirkt. So bewegt sich beispielsweise

Mehr

Vorlesungsskript PHYS Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Vorlesungsskript PHYS Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Vorlesungsskript PHYS 70357 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Othmar Marti Institut für Experimentelle Physik Universität Ulm 13. Oktober 2011

Mehr

ELEKTRISCHER DIPOL (5.1)

ELEKTRISCHER DIPOL (5.1) @ 3 4 4 Kapitel 5 ELEKTRISCHER DIPOL Wegen der Linearität der Poisson leichung, φ = ρ/ɛ gilt das Superpositionsprinip: φ( R) = f c i Q i R r i (5.) Für Ladungen, die im Raum kontinuierlich verteilt sind

Mehr

Elektromagnetismus und Optik

Elektromagnetismus und Optik Elektromagnetismus und Optik Bilder, Diagramme und Tabellen zur Vorlesung PHYSIK-II -Elektromagnetismus und Optik- SS 2004, Universität Freiburg Prof. Dr. K. Jakobs Physikalisches Institut Universität

Mehr

Elektrischer Feldvektor, Skalarfeld/Vektorfeld, Elektrische Feldlinien

Elektrischer Feldvektor, Skalarfeld/Vektorfeld, Elektrische Feldlinien Telekommunikation/lektrotechnik, Physik /2, T. Borer Übung 7-2005/06 Übung 7 lektrisches Feld lektrischer Feldvektor, Skalarfeld/Vektorfeld, lektrische Feldlinien Lernziele - den Zusammenhang zwischen

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre Coulombgesetz Durchgeführt am 1.6.6 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Marcel Müller Marius Schirmer Inhaltsverzeichnis 1 Ziel des

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Probeklausur Technische Universität München 1 Fakultät für Physik Aufgabe 1: Punktförmige Ladungsverteilung 1. Ein Elektron in der Nähe der Erdoberfläche wird durch ein

Mehr

2. Grundlagen der Elektrostatik

2. Grundlagen der Elektrostatik 2. Grundlagen der Elektrostatik 2.0 Wichtige Integralsätze Im folgenden werden wir wiederholt die folgenden beiden Integralsätze im R 3 benötigen (in der ektoranalysis werden sie in allgemeinerer orm bzw.

Mehr

Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters. ds H ds H ds H 2 r

Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters. ds H ds H ds H 2 r Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters Seite 1.1 von 1.10 H ds H ds H ds H Umlauf-Integral Länge der magnetischen Feldlinie, hier der Kreisumfang Durchflutung, Magnetische Spannung,

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr