elektrischespotential =
|
|
|
- Heinrich Graf
- vor 9 Jahren
- Abrufe
Transkript
1 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #6 am Vladimir Dyakonov Elektrisches Potential Wieviel Arbeit muss ich aufwenden um eine Ladung vom Unendlichen zu einem Punkt r zu bringen? Durch Verschieben gewinnt Ladung potentielle Energie. Frage: Kann ich ein Größe definieren, die mir ladungsunabhänig den Zustand in einem Punkt beschreibt? Ja das elektrische Potenzial potentielleenergie elektrischespotential = Ladung 1
2 Elektrisches Potential Das elektrische Potenzial gibt an, welche potentielle Energie eine Probeladung in einem Punkt hat, nachdem sie in einem vorgegebenen elektrischen Feld vom Unendlichen zu einem Punkt gebracht wurde. Die Potentialdifferenz ist ein Maß für die Arbeit die aufgewendet werden muss, um eine Ladung in einem elektrischen Feld von einem Punkt zum anderen zu bringen Elektrisches Potential Wieviel Arbeit muss ich aufwenden um eine Ladung vom Unendlichen zu einem Punkt r zu bringen? Durch Verschieben gewinnt Ladung potentielle Energie. Frage: Kann ich ein Größe definieren, die mir ladungsunabhänig den Zustand in einem Punkt beschreibt? Ja das elektrische Potenzial potentielleenergie elektrischespotential = Ladung 2
3 Elektrisches Potential Das elektrische Potenzial gibt an, welche potentielle Energie eine Probeladung in einem Punkt hat, nachdem sie in einem vorgegebenen elektrischen Feld vom Unendlichen zu einem Punkt gebracht wurde. Die Potentialdifferenz ist ein Maß für die Arbeit die aufgewendet werden muss, um eine Ladung in einem elektrischen Feld von einem Punkt zum anderen zu bringen Potential einer Punktladung Wie berechnet man das Potential einer Punktladung Q? Q r q 0 Arbeit um Probeladung q 0 vom Unendlichen auf Abstand r zu bringen 3
4 Potential einer Punktladung 4
5 Potentialdifferenz Potentialdifferenz zwischen zwei Punkten U 12 = ϕ(1) - ϕ(2) Spannung Einheit [U] = J/C Joule pro Coulomb bzw. Nm/As oder V Volt Arbeit W = q U = Ladung mal Potentialdifferenz Eine Probeladung q o im Feld E erfährt eine Kraft; Bewegung der Ladung gegen diese Kraft benötigt die Verrichtung von Arbeit: W = F dr = q o E dr oder W/q o = E dr. Mit E = (1/4πε o ) q 1 /r 2 (Coulomb-Feld): W/q o = E dr = (1/4πε o ) q 1 dr/r 2 = -(1/4πε o ) q 1 /r. Das ist ein Maß für die Arbeit und heißt 'Coulomb-Potential' der Punktladung q 1. Allgemein: die Arbeit bzw. die Energie einer Ladung, geteilt durch die Ladungsmenge, nennt man das elektrische Potential ϕ: ϕ = - E dr. 5
6 Feldlinien und Potential Die elektrischen Feldlinien zeigen in die Richtung, in der das Potential abnimmt. Arbeit im Schwerefeld und im elektrischen Feld positive Probeladung q 0 im elektrisches Feld E, wird in Richtung des Feldstärkevektors beschleunigt Potentielle Energie U nimmt ab Kinetische Energie K nimmt zu 6
7 Äquipotentiallinien / -flächen Höhenlandschaft in der Mechanik Die Höhenkontourlinien (rot) verbinden Punkte der gleichen Höhe h; darauf bewegt sich eine Masse m ohne Arbeit, ihre potentielle Energie mgh bleibt konstant. Linien der maximalen Steigung (grün) zeigen senkrecht zu den Höhenkontouren, eine Masse würde entlang solcher Linien hinunterrollen. Die Kraft zeigt in Richtung der maximalen Steigung und wächst mit wachsender Steigung (d.h. wenn die Höhenkontouren dicht zusammen liegen). 7
8 Äquipotentiallinien Eine elektrische 'Potentiallandschaft' gleicht einer Höhenlandschaft in der Mechanik Merke: Äquipotentiallinien und Feldlinien stehen normal aufeinander Äquipotentialflächen Äquipotentialfläche: Feldstärkevektor Äquipotentialflächen V =constant= 0 8
9 Experimentelle Bestimmung von Potentiallinien 15V/5A v A Tableau B Tisch F Messfühler F5 B5 PM V Messspitze F6 B6 - x y Beispiel: Potential in einem Plattenkondensator E Feld + Plattenkondensator Elektrisches Feld E homogen d.h. überall gleich nach Betrag und Richtung E( r) = E = U/d U angelegte Spannung d Abstand d U ϕ = U E (x )dx = Ex = x + const d Äquipotentiallinien ϕ = Konstant Parallele Linien in y-richtung 9
10 Potential Plattenkondensator U=8V Äquipotentiallinien für ϕ = 2V Potentialnullpunkt frei gewählt!!! A Arbeit im Plattenkondensator x y Welche Arbeit muss zum Transport einer Ladung q von Punkt A nach Punkt B aufgewendet werden? B Arbeit hängt nur von der Potentialdifferenz ab, und ist wegunabhängig. W AB = q (ϕ A - ϕ B ) Arbeit entlang x und y Richtung: Arbeit = F r = q E r Vektorprodukt A B = A B wenn A B A B = 0 wenn A B y Richtung normal zu E-Feld und parallel zu Äquipotentiallinien W y = 0 x Richtung parallel zu E-Feld und Normal zu Äquipotentiallinien W x = q E x 10
11 Zusammenhang E-Feld und Potential Wir können die obige Beziehung zwischen Potential und Feld umkehren, um das Feld aus dem Potential zu berechnen: E(r) = -d/dr [ϕ(r)] (eindimensional; z.b. beim Feld einer Punktladung oder homogenes Feld in Richtung r); oder (dreidimensional): E(r) = - ϕ(r) ist die Abkürzung für eine dreidimensionale Ableitung, die als Vektor in Richtung maximaler Steigung zeigt. Man nennt dies 'Gradientenbildung' und schreibt : E(r) = -grad [ϕ(r)]. 11
Das elektrische Potential
Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #5 am 27.04.2007 Vladimir Dyakonov Frage des Tages Kupfermünze hat die Masse 0.003 kg Atomzahl
Elektrisches Potenzial Kapitel 25
Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen
Vorkurs Physik des MINT-Kollegs
www.mint-kolleg.de Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales
5 Elektrizität und Magnetismus
5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011
Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip
Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen
Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz
KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld
Kräfte zwischen Ladungen: quantitative Bestimmung
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #3 am 25.04.2007 Vladimir Dyakonov Kräfte zwischen Ladungen: quantitative Bestimmung Messmethode:
r = F = q E Einheit: N/C oder V/m q
1 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = 1.6 10 19 C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = 8.99 10 9 Nm 2 C 2 Elektrische
Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche?
Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? A r r ( ) Φ ΨA = E r A r da Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, HumboldtUniversität
Ableitungen von skalaren Feldern Der Gradient
Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle
10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft
Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten
Potential und Spannung
Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von
1.4 Gradient, Divergenz und Rotation
.4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.
Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )
Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien
2 Das elektrostatische Feld
Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
Physik. Abiturwiederholung. Das Elektrische Feld
Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,
E2: Wärmelehre und Elektromagnetismus 12. Vorlesung
E2: Wärmelehre und Elektromagnetismus 12. Vorlesung 28.05.2018 Heute: - Elektrische Ladungen - Coulomb-Gesetz - Elektrische Felder - Gaußscher Satz - Elektrisches Potential https://xkcd.com/567/ Prof.
Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.
I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
5 Harmonische Funktionen
5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung
Skalarfelder. 1-1 Ma 2 Lubov Vassilevskaya
Skalarfelder 1-1 Ma 2 Lubov Vassilevskaya Einführendes Beispiel r P + q F (P) + Q Abb. 1-1: Kraftwirkung auf eine positive Ladung Wir betrachten das elektrische Feld in der Umgebung einer positiven Punktladung
5. Arbeit und Energie
Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer
Physik für Naturwissenschaften (HS 2016) Lösungen
Physik für Naturwissenschaften (HS 2016) Lösungen students4students [email protected] 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................
Energie und Energieerhaltung
Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen
y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel
103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von
= Dimension: = (Farad)
Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere
1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9
8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position
Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron
Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz
Inhalt. Kapitel 3: Elektrisches Feld
Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,
12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
Elektrische Feldlinien ****** 1 Motivation
6.1.13 ****** 1 Motivation Die elektrischen Feldlinien unterschiedlich angeordneter elektrisch geladener Leiter werden durch dünne Polyamidfasern sichtbar gemacht. 2 xperiment Abbildung 1: Versuchsaufbau
Überblick Physik 4-stündig - kurz vor dem Abi
Überblick Physik 4-stündig - kurz vor dem Abi Teil I: E- und B-Felder März 2004 / Februar 2010 Inhalt Elektrisches Feld Magnetisches Feld Teilchen in E- und B-Feldern + - E-Feld (1) Einführung des E-Feldes
Schaltung von Messgeräten
Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #18 am 25.05.2007 Vladimir Dyakonov Schaltung von Messgeräten Wie schließt man ein Strom- bzw.
Formelsammlung Physik
Energie, Arbeit, Leistung: Arbeit [J] W = F s Wärme [J] Q = c m Δθ Elektrische Energie [J] E = U I t Spannenergie [J] E = 1 2 Ds Kinetische Energie [J] E "# = 1 2 mv Potentielle Energie [J] E "# = mgh
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................
Othmar Marti Experimentelle Physik Universität Ulm
PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003
Versuch 10. Die Potentialwaage. Sommersemester Daniel Scholz. Gruppe: 13
Physikalisches Praktikum für das Hauptfach Physik Versuch 10 Die Potentialwaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: [email protected] Gruppe: 13 Assistent: Sarah
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.
11.3 Elektrische Feldstärke Hat man eine Ladung Q und bringt in deren Nähe eine zweite Ladung q so erfährt die zweite Ladung eine abstoßende bzw. anziehende Kraft F C. Da diese Kraft an jeder Stelle in
1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle Energie eines geladenen Teilchens im homogenen elektrischen Feld
1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle nergie eine geladenen Teilchen im homogenen elektrichen Feld Die Charakteriierung eine elektrichen Felde in einem Raumpunkt durch Angabe
5.5 Elektrisches Zentralfeld, Coulombsches Gesetz
5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)
Elektromagnetismus und Optik
Elektromagnetismus und Optik Bilder, Diagramme und Tabellen zur Vorlesung PHYSIK-II -Elektromagnetismus und Optik- SS 2004, Universität Freiburg Prof. Dr. K. Jakobs Physikalisches Institut Universität
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
Übungsblatt 03 Grundkurs IIIb für Physiker
Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, ([email protected]) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante
I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9
I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall
17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik
17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung
Das statische elektrische Feld
Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld
E2: Wärmelehre und Elektromagnetismus 13. Vorlesung
E2: Wärmelehre und Elektromagnetismus 13. Vorlesung 04.06.2018 Heute: - Elektrisches Potential - Feld in Leitern; Faradayscher Käfig - Anwendungen von Hochspannung - Kapazitäten - Dielektrika https://xkcd.com/1991/
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
5. Arbeit und Energie
5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit
Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab
Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt
Othmar Marti Experimentelle Physik Universität Ulm
PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003
Beschreibung Magnetfeld
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei
Experimentalphysik I Elektrizität und Magnetismus. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416
Experimentalphysik I Elektrizität und Magnetismus Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416 Experimentalphysik I - Elektromagnetismus, Inhalt Vorlesungsinhalte zum
12. Elektrodynamik. 12. Elektrodynamik
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik
11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker
11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter
Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?
Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,
1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer
TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,
3.8 Das Coulombsche Gesetz
3.8 Das Coulombsche Gesetz Aus der Mechanik ist bekannt, dass Körper sich auf Kreisbahnen bewegen, wenn auf sie eine Zentripetalkraft in Richtung Mittelpunkt der Kreisbahn wirkt. So bewegt sich beispielsweise
Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )
.7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei
E-Feld & Co. Michael Kopp Version α 1
E-Feld & o Michael Kopp Version α Zusammenfassung Dem einen oder anderen, dem noch ein Abitur in Physik bevorsteht, mag das hier ganz hilfreich sein... Inhaltsverzeichnis I Basics Definitionen zu Strom
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld
Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
1.1 Wiederholung des Grundwissens der Mittelstufe. In der Atomhülle befinden sich die negativ geladenen Elektronen.
Kapitel 1 Statisches elektrisches Feld 1.1 Wiederholung des Grundwissens der Mittelstufe 1.1.1 Elektrisch geladene Teilchen und Körper Alle Körper sind aus Atomen bzw. Molekülen aufgebaut, wobei Moleküle
Ferienkurs Sommersemester 2011
Ferienkurs Sommersemester 2011 Experimentalphysik II Elektrostatik - Übung Steffen Maurus 1 1 Elektrostatik Eine primitive Möglichkeit Ladungen zu messen, ist sie auf 2 identische leitende Kugeln zu verteilen,
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov [email protected] Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus
Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie
Übungsblatt zur Vorlesung EP (Prof. Grüner) im SS 0 0. Mai 00 Aufgabe : Feldlinien a) Richtig oder falsch? Das elektrische Feld einer Punktladung zeigt immer von der Ladung weg. Falsch! Bei negativen Ladungen
18. Vorlesung III. Elektrizität und Magnetismus
18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E3 WS 0/ Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 0.0.,
Funktionen mit mehreren Variablen. Voraussetzungen:
Funktionen mit mehreren Variablen Voraussetzungen: Grundlegende Kenntnisse über Ableiten (Zu inden in dem Artikel Dierential und Integralrechnung au www.antigauss.de), sowie eine Vorstellung davon, was
Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion
Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke
Elektrostaitische Felder
Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
Beispiel 23 - Elektrisches Feld und Potentialfeld
Beispiel - Elektrisches Feld und Potentialfeld Elektrisches Feld Die allgemeine vektorielle Notation diskreter Ladungen in beliebiger Materie liefert das Coulomb - Kraftfeld wie folgt : E(P) = Q P p Π
Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation
22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
Experimentalphysik II
Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14
Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B
Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung
Rechenübungen zum Physik Grundkurs 2 im SS 2010
Rechenübungen zum Physik Grundkurs 2 im SS 2010 1. Klausur (Abgabe Mi 2.6.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID1) ist: 122 Hinweise: Studentenausweis: Hilfsmittel:
Physik (m. e. A.) - Jahrgang 12 P. HEINECKE. (In Arbeit)
Physik (m. e. A.) - Jahrgang 12 P. HEINECKE (In Arbeit) Stand: 27. September 2008 Inhaltsverzeichnis 1 Elektronen in Feldern 3 1.1 Das elektrische Feld..................................... 3 1.1.1 Feldlinienmodell..................................
Übungsblatt 03 (Hausaufgaben)
Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen
9. Elektrostatik Physik für Informatiker. 9. Elektrostatik
9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.
