8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie

Größe: px
Ab Seite anzeigen:

Download "8.1 Arbeit 8.2 Verschiedene Arten mechanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie"

Transkript

1 Inhalt 8 Arbeit, Energie - Leistung 8. Arbeit 8. Verschiedene Arten echanischer Arbeit 8.3 Leistung 8.4 Energie 8.5 Felder 8.6 Satz von der Erhaltung der Energie 8.6. Energieuwandlung 8.7 Stoßprozesse 8.7. Gerader, zentraler, elastischer Stoß 8.7. Gerader, zentraler, inelastischer Stoß 8. Arbeit Die Definition der Arbeit lautet: Wird ein Körper unter Einwirkung einer konstanten Kraft F u einen Weg s verschoben, wird dabei die Arbeit W verrichtet. atheatisch ausgedrückt: W = F s Skalarprodukt von Die Einheit der Arbeit ist [ W] = N = J = Joule a b = ( a b + a b + a b ) x x y y z z F und s Die Arbeit ist ein Skalar, also eine Größe, die nur einen Betrag hat, aber keine Richtung, wie z. B. die Masse, die Länge eines Vektors,... Skalarprodukt:

2 8. Arbeit 3 Kreuzprodukt: ax bx ab y z ab z y a b = ay by = azbx axbz a ab z b z x y ab y x Entsprechend diese inhaltliche Unterschied gibt es auch zwei unterschiedliche Rechenvorschriften, wie die Multiplikation ausgeführt werden soll. W = F s = F s cosα Skalarprodukt v =ω r =ω r sinα Vektorprodukt Das Skalarprodukt wird also axial, wenn beide Vektoren parallel sind, und Null, wenn beide Vektoren senkrecht aufeinander stehen. Dies ist genau ugekehrt zu Vektorprodukt. Beispiel: Welche Arbeit uss geleistet werden, u einen Stein der Masse auf die Höhe h zu heben? 8. Arbeit 4 h = h h = 0 z F = g F = g s Dait wird die Arbeit 0 0 W = F s = g s = 0 0 g h = ( ( g) h) = g h Diese Arbeit uss geleistet werden, u die Masse auf die Höhe h zu heben, deswegen hat sie auch ein negatives Vorzeichen. (Kraft ist antiparallel zu de Weg.) (Ugekehrt wird der Körper von h auf 0 gebracht, dann wird die Arbeit vo Körper verrichtet.) Ist die Kraft längs eines Weges nicht konstant, uss an den Weg in Stücke zerlegen, entlang derer die Kraft konstant ist. Die Gesatarbeit W ges ist dann die Sue der einzelnen Arbeiten W i W ges = Wi i

3 8. Arbeit 5 Als Beispiel nehen wir den einfachen Fall, dass an von zwei gleichen Ziegelsteinen erst einen von h = 0 nach h und dann beide von h nach h heben soll. h h z + F F = g = ( + ) g = g ab hier doppelt so groß Wie groß ist die Gesatarbeit? Wges = W + W = g h ( + ) g h = ( g h+ g h) = 3 g h = 8. Arbeit 6 I Allgeeinen lassen wir zu, dass sich die Kräfte, für die wir geleistete Arbeit berechnen wollen, kontinuierlich verändern. Dann üssen die Wegstücke zu unendlich kleinen Teilwegen werden, und wir koen zur Integralforulierung der Arbeit über den Zwischenschritt W = W = F( s) s i i i i i für endlich viele Teilwege s. I Grenzfall s 0 führt das zu Arbeitsintegral i i W = F ( s) ds allgeeine Definition der Arbeit Arbeit = Linienintegral der Kraft

4 8. Arbeit 7 Beerkungen: Arbeitsdiagrae: Fs ( ) Ist s F, dann ist F s = F s cosα = F s F 0 Arbeit = Fläche unter der Kurve W = F0 s0 i Fs - Diagra s s 0 F ist eine Funktion von s, d. h. F = F( s) Fs ( ) s W = F( s) ds s W = F ( s) ds s s s Arbeit = Fläche unter der Kurve i Fs - Diagra α= 0 8. Arbeit 8 Was passiert, wenn der Körper auf der Höhe h verschoben wird? s 3 h s F s = g h F s3 = g 0+ 0 x = 0 W = F s + F s x F 0, s 0 =, s 3 0 = = g h 0 Bei einer Verschiebung der Masse senkrecht zur Kraft F (d. h. s F) wird keine Arbeit verrichtet.

5 8. Arbeit 9 Die Hubarbeit ist nur abhängig von der Höhendifferenz und nicht vo Weg. h In all diesen drei Fällen uss dieselbe Hubarbeit geleistet werden. 8. Verschiedene Arten von echanischer Arbeit 0 a) Hubarbeit auf der Erde U einen Körper gegen eine konstante Gewichtskraft g u die Höhe h anzuheben, ist die Hubarbeit W H nötig. WH = g h b) Beschleunigungsarbeit U einen Körper zu beschleunigen, uss auf einer Strecke s die Beschleunigungskraft F = a wirken. B s v v dv ds v W = a ds = ds = dv v dv dt = dt = = : v = ( v v ) WB = ( v v ) v s v v v Beschleunigungsarbeit, u den Körper von v auf v zu bringen

6 8. Verschiedene Arten von echanischer Arbeit Sonderfall: v = 0 (d. h. Beschleunigung aus de Stand) W B S x x = v Wie groß ist die Arbeit, die in das Spannen einer Feder gestreckt werden uss, die von ihrer Ruhelage x = 0 bis x = x gespannt werden soll? W = F( x) dx Be.: W B hängt nicht von a und t ab, sondern nur von v. c) Spannarbeit bei einer elastischen Feder Die Kraft einer Feder ist nach de Hooke schen Gesetz F = k x it der Federkonstanten k. 8. Verschiedene Arten von echanischer Arbeit x x x k W = k x d x = k = ( x x) x x Fx ( ) da Arbeit verrichtet werden uss F = k x x W S x x d) Reibarbeit Ein Körper werde auf horizontaler Ebene ( WH = 0) it konstanter Geschwindigkeit v = const. ( WB = 0) bewegt. Zur Überwindung der Reibkraft F =µ g ist Reibarbeit W nötig. R R R F s F entgegengesetzt zu s Minus-Zeichen

7 8. Verschiedene Arten von echanischer Arbeit 3 WR = µ g s Arbeit uss verrichtet/geleistet werden e) Fall, bei de F und snicht parallel sind Welche Arbeit bringt der Motor einer Schiffsschaukel auf, der das Schiff der Masse reibungsfrei aus der Gleichgewichtslage von unten nach oben dreht? Der Abstand von der Achse zur Masse sei r. F G F G Nachde was wir bislang wissen, üssen wir über den Halbkreis integrieren, da sich der Winkel α zwischen der Schwerkraft F und den Wegstückchen ds kontinuierlich ändert. Genauer gesagt, ist F G ϕ y r α F G ds x 8. Verschiedene Arten von echanischer Arbeit 4 it F = FG = g, wobei wir ausgenutzt haben, dass ein kleines Kreisbogenstück gerade gleich Radius al Winkeländerung ist (ds = r d ϕ). Drücken wir α durch ϕ ( α = π ϕ) aus, wird aus unsere Integral π W = g r cos( π ϕ) dϕ 0 it cos( π x) = sin x ergibt dies: π W = g r sin ϕ d ϕ= g r ( cos ϕ ) = g r [ ( )] 0 W = g r Dasselbe Ergebnis hätten wir erhalten, wenn die Schiffsschaukel senkrecht auf die Höhe h = r gehoben hätten. oben π W = F ds = g r dϕ cosα unten 0 Arbeit unabhängig vo zurückgelegten Weg π 0

8 8.3 Leistung 5 Bei technischen Anwendungen spielt oft nicht nur die geleistete Arbeit eine Rolle, sondern auch die Zeit, in der die Arbeit verrichtet wird. Wir führen deshalb den Begriff der Leistung P ( power ) ein. Sie entspricht einer geleisteten Arbiet pro Zeiteinheit, ist ein Skalar und wird it P bezeichnet. W P = t [ P] Für eine sich kontinuierlich ändernde Kraft gibt es einen entsprechenden differentiellen Ausdruck d W( t) Pt () = dt ds Pt () = Ft () = Ft () vt () dt der die oentane Leistung angibt, wenn it einer Kraft F und einer Geschwindigkeit v Arbeit verrichtet wird. Die gesate verrichtete Arbeit ergibt sich wieder aus de Integral über die Leistung dw W = d t = P()d t t = F() t v()d t t dt N J = = = W(att) s s 8.3 Leistung 6 Größenordnungen von Leistungen Kraftwerke 500 MW Flugzeugtriebwerke (Boeing 77) 3 5 MW Lokootiven einige MW Autootoren 0 00 kw ( PS = 736 W) Öfen für Zierheizung 0 kw Dauerleistung eines Menschen 00 W Glühlapen 0 einige 00 W

9 8.4 Energie 7 Einer der wichtigsten Begriffe in der Physik ist Energie. Die an eine abgeschlossenen Syste verrichtete Arbeit wird in irgendeiner For gespeichert. Diese gespeicherte Arbeit heißt Energie. Da die gespeicherte Arbeit wieder freigesetzt werden kann, ist Energie die Fähigkeit, Arbeit zu verrichten. Man vereinbart daher die Vorzeichen bei der Arbeit so, dass an eine Syste geleistete Arbeit dessen Energie vergrößert. Einfaches Beispiel dieses Konzeptes ist die hochgehobene Masse. Lässt an sie los, fällt sie wieder herunter. Mit de Hochheben hat an an ihr Arbeit verrichtet, sie speichert i hochgehobenen Zustand so genannte potentielle Energie. Diese potentielle Energie kann durch Herunterfallen in Bewegungsenergie ugesetzt werden. Die Verwendung des Begriffs potentielle Energie ist nur erlaubt, wenn die Kraft ausschließlich ortsabhängig ist. Kräfte, die diese Eigenschaften haben, werden konservativ genannt. (Beispiele: Gravitationskraft Massenanziehung, Coulobanziehung elektrostatische Anziehung, ) Die Arbeit gegen eine konservative Kraft führt also zur Speicherung in For von potentieller Energie. 8.4 Energie 8 Es gilt denach für die Änderung in der potentiellen Energie E pot Epot = F ds Epot Das Minuszeichen drückt aus, dass wir die Arbeit gegen eine Kraft F verrichten. Für den Fall der Masse, die von h = 0 auf die Höhe h gehoben wird ( F = g), erhöht sich die potentielle Energie u =+ g h Für eine gespannte Feder ist die potentielle Energie Epot =+ k x Wird die Kraft hingegen ausschließlich zur Änderung der Geschwindigkeit verwendet, ist die gespeicherte Energie eine Funktion der Geschwindigkeit. Sie heißt Bewegungsenergie oder kinetische Energie E kin.

10 8.4 Energie 9 kin E = F ds = a ds E E kin kin = v p = Die kinetische Energie nit also quadratisch it der Geschwindigkeit zu. Mit de vorhin definierten Ipuls p: = v können wir die kinetische Energie auch folgenderaßen ausdrücken Be.: Die Reibarbeit WR =µ g s wird nicht in eine der echanischen Energieforen ( E oder E ) gespeichert, sondern in For von Wäreenergie. pot kin WR =µ g s Wäre 8.5 Felder 0 Es gibt noch einen Begriff, den wir zu unserer Erleichterung einführen wollen und zwar ist es der des Feldes. Ein Feld gibt es uns die Möglichkeit, räulich variierende Vektoren zu beschreiben. Für jeden Punkt eines Feldes uss denach eine Richtung und ein Betrag angegeben sein. Ein Beispiel ist das Gravitationsfeld E Gr, bei de die Gravitationskraft ier in Richtung der sie verursachenden Masse zeigt und betragsäßig it de Quadrat des Abstandes abnit. Ein anderes Beispiel ist das elektrische Feld. Vergleich Gravitationsfeld und elektrisches Feld Gravitationskraft (-gesetz): F G r Gr = e F = E E Gr Gr Gr = G e r Gravitationsfeld Coulobgesetz: q q F = e 4πε 0 r F = q E Col Col Col q E elektrische Feldstärke Col = e 4πε0 r

11 8.5 Felder Beschreibt das Feld eine konservative Kraft, ist es ein konservatives Kraftfeld. Für konservative Kraftfelder gelten Besonderheiten: a) Die Arbeit, die gegen ein konservatives Kraftfeld verrichtet wird, ist unabhängig vo eingeschlagenen Weg und dait ausschließlich von Anfangsund Endpunkt bestit. W = F ds = Epot, E pot, für konservative Kraftfelder b) Es folgt die äquidistante Aussage, dass die Arbeit entlang eines geschlossenen Weges in eine konservativen Kraftfeld Null ist. F ds = 0 Be.: Der Feldbegriff ist von der Probeasse bzw. Probeladung unabhängig und beschreibt die Kraftwirkung auf sie (allgeeine Theorien öglich). 8.6 Satz von der Erhaltung der Energie 8.6. Energieuwandlung Die beiden echanischen Energieforen E pot und E kin können schon bei sehr einfachen echanischen Vorgängen ineinander ugewandelt werden. Dabei entsteht i idealen Fall kein Verlust an Energie. Beispiele: a) Fadenpendel h 0 N v 0 E ( U) = E ( N) pot kin g h0 = v0 v0 = g h U, U = Ukehrpunkte E E pot 0 kin = g h = 0 bei Nulldurchgang: E = E = v pot 0 und kin 0

12 8.6 Satz von der Erhaltung der Energie 3 b) Tanzende Stahlkugel Die Kugel wird aus der Höhe h 0 fallengelassen und erreicht nach elastischer Reflexion an der Glasplatte fast wieder die volle Höhe h 0 : h 0 g h v v g h Glasplatte 8.6 Satz von der Erhaltung der Energie 4 Energiesatz (für echanische Größen): In eine abgeschlossenen Syste bleibt die echanische Gesatenergie E ges = E pot + E kin konstant, wenn nur konservative Kräfte walten. Erweiterung zu Allgeeinen: Satz von der Erhaltung der Energie In eine abgeschlossenen Syste bleibt der Gesatenergieinhalt konstant. Die Energie ist eine Erhaltungsgröße. Folgerung: Energie kann weder vernichtet noch aus de nichts erzeugt werden, sie kann nur von einer For in eine andere Energiefor ugewandelt werden. Es gibt kein Perpetuu obile. Art.

13 8.7 Stoßprozesse 5 Bei eine Stoß berühren sich (indestens) zwei Körper kurzzeitig, wobei sie abrupt ihre Bewegungszustände ändern. Typisch ist eine sehr kurze Kontaktzeit, in der eist hohe Kräfte auftreten. Beispiele: Billardstöße, Autounfälle, Stöße zwischen Atoen, Die Einteilung der Stöße erfolgt nach zwei Kriterien: a) nach de geoetrischen Ablauf b) nach der Aufteilung der Geoetrie 8.7. Gerader, zentraler, elastischer Stoß Zwei vollkoen elastische Körper bewegen sich auf einer geraden Linie aufeinander zu und erleiden einen geraden zentralen elastischen Stoß. v v vor de Stoß u u Stoß nach de Stoß 8.7 Stoßprozesse 6 a) Da das Syste abgeschlossen ist, gilt der Ipulssatz: v + v = u + u Ipulssatz, Ipulserhaltung b) Da der Stoß vollkoen elastisch sein soll (ideal), geht keine kinetische Energie verloren. v v u u + = + Annahe: v, v vor de Stoß seien bekannt u, nach de Stoß seien gesucht u zwei Gleichungen, zwei Unbekannte Energiesatz, Energieerhaltung Durch Uforen erhalten wir: aus Energiesatz: ( v u) = ( v u) ( v u ) ( v + u ) = ( v u ) ( v + u )

14 8.7 Stoßprozesse 7 aus Energiesatz: ( v u ) = ( v u ) Division beider Gleichungen ergibt: v + u = u + v v v = ( u u ) ( ) Vo Körper aus gesehen, bewegt sich Körper nach de Stoß it derselben Relativgeschwindigkeit weg ( ), it der er vor de Stoß auf Körper zugelaufen ist. Setzt an ( ) in den Ipulssatz ein, so erhält an: u v v = u v v = Stoßgesetze für den elastischen Stoß 8.7 Stoßprozesse Gerader, zentraler, inelastischer Stoß Sind die beiden Stoßparaeter völlig inelastisch, dann treten bei Stoß keine Rückstellkräfte auf. Nach de Stoß bleiben die beiden Stoßparaeter zusaen und bewegen sich it der geeinsaen Geschwindigkeit u. v v vor de Stoß u + nach de Stoß it de Ipulssatz: v + v u = + v + v = ( + ) u Be.: u lässt sich allein aus de Ipulssatz bestien. Energieerhaltung: v v ( ) u + = + + E E = Verlust an kinetischer Energie (Verforungsarbeit und Wäre)

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie Was ist nergie? nergie ist: eine rhaltungsgröße eine Rechengröße, die es eröglicht, Veränderungen zwischen Zuständen zu berechnen eine Größe, die es erlaubt, dass Vorgänge ablaufen, z.b. das Wasser erwärt

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung 1. Trapolinspringer I Diagra unten siehst du in Abhängigkeit von der Höhe die Energieforen eines Trapolinspringers, der sich in unterschiedlichen

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Energie = Fähigkeit Arbeit zu verrichten 5.1 Arbeit Wird Masse m von Punkt

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Kinematik und Dynamik eines Massepunktes GK

Kinematik und Dynamik eines Massepunktes GK Kineatik und Dynaik eines Massepunktes GK Rotation ) Notiere die Gleichung für a) Drehipuls (L=r v) b) Drehoent (M= r F) ) Erhaltungssätze Ohne äußere Krafteinwirkung gilt: a) Energieerhaltung (Evor =

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. 1 Tutorium Physik 1. Arbeit, Energie, Leistung. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

10. Arbeit, Energie, Leistung

10. Arbeit, Energie, Leistung 0. Arbeit, Energie, Leistung Peter Riegler, FH Wolfenbüttel 0.0 Matheatische Grundlagen à Skalarprodukt Das Skalarprodukt a ÿ b = a x b x + a b + a b =» a»»b» coshgl ist das Produkt der Länge des Vektors

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. November 2015 HSD. Physik. Energie

Hochschule Düsseldorf University of Applied Sciences. 12. November 2015 HSD. Physik. Energie Physik Energie Skalarprodukt Vektormultiplikation Typ Name Schreibweise Resultat Skalar mal Vektor Produkt mit einem Skalar ~a 0 = c ~a Vektor Vektor mal Vektor Skalarprodukt (inneres Produkt) s = ~a ~b

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 9.015 Tutorium Physik 1 Arbeit, Energie, Leistung Großmann 3 3. ARBEIT, ENERGIE, LEISTUNG 9.015 Tutorium Physik

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. Tutorium Physik 1. Arbeit, Energie, Leistung. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 2 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Physik 1. Energie, Arbeit & Leistung.

Physik 1. Energie, Arbeit & Leistung. 2 Physik 1. Energie, Arbeit & Leistung. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Lösung zu Übungsblatt 2

Lösung zu Übungsblatt 2 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsblatt konservative Kräfte, Vielteilchensystee und ausgedehnte Körper 1. Potential der Gravitationskraft

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Federpendel. Einführung. Das Federpendel. Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS

Federpendel. Einführung. Das Federpendel.  Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS www.schullv.de Basiswissen > Mechanische Schwingungen > Federpendel Federpendel Skript PLUS Einführung Wärst du utig genug für einen Bungee-Sprung? Oder hast du gar schon einen geacht? Wenn ja, hast du

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie 38 KAPITEL. DYNAMIK EINES MASSENPUNKTES.3 Arbeit und Energie Wenn sich ein Massenpunkt in einem Kraftfeld bewegt so wird er entweder beschleunigt oder abgebremst. Man sagt auch an ihm wird vom Kraftfeld

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Übungen zur Theoretischen Physik I: Mechanik

Übungen zur Theoretischen Physik I: Mechanik Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz 5. Teilchensystee und Ipulserhaltung 5. Massenittelpunkt 5. Ipuls als Bewegungsgröße 5.3 Ipulserhaltungssatz 5.4 Stoßprozesse R. Girwidz 5. Massenittelpunkt Spezialfall di. Welt: V: Wagen auf Balken R.

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen! ÜBUNGEN ZUR EINFÜHRUNG IN DIE PHYSIK I WS 2008/09 PROBEKLAUSUR 05.12.2008 Kennwort :... Übungsgruppe (Tag/Uhrzeit) Kennzahl : nur für die Korrektoren: Studienziel (bitte ankreuzen): Aufgabe Punkte Physik

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experientalphysik I (echanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-echanik.htl Übungsblatt 9 Lösungen Nae des Übungsgruppenleiters und Gruppenbuchstabe: Naen

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe weiß (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe weiß (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet Institut für Analysis und Scientific Computing WS / O. Koch P R A K T I S C H E M A T H E M A T I K I F Ü R T P H. Haupttest (6. Dezember ) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium / MatrNr

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 )

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 ) Zu 5. Kinetik: Ableitung der Gesetze aus den Axioen ( Blat ) Massenpunkt: Axio (Newtonsches Grundgesetz): Fres = a. () F res : Geäß de (bereits in der Statik eingeführten) Parallelograaxio gebildete resultierende

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse Blatt 0 09.0.2008 Physik Departent E8 Seite Aufgabe : Plasaanalyse Nebenstehende Skizze zeigt eine Anordnung zur Plasaanalyse. Ein Zähler Z erzeugt bei Durchgang eines ionisierenden Teilchens (Masse, Ladung

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2

v(t) = r(t) v(t) = a(t) = Die Kraft welche das Teilchen auf der Bahn hält muss entgegen dessen Trägheit wirken F = m a(t) E kin = m 2 v(t) 2 Aufgabe 1 Mit: und ( x r(t) = = y) ( ) A sin(ωt) B cos(ωt) v(t) = r(t) t a(t) = 2 r(t) t 2 folgt nach komponentenweisen Ableiten ( ) Aω cos(ωt) v(t) = Bω sin(ωt) a(t) = ( ) Aω2 sin(ωt) Bω 2 cos(ωt) Die

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 27.11.2017 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 486428 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 03.12.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 189263 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 28.11.2016 Heute: - Wiederholung und Fortsetzung: Arbeit, Energie, Leistung - Impuls - Stöße: elastisch und inelastisch http://xkcd.com/1758/ Prof. Dr. Jan

Mehr

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung )

Institut für Analysis und Scientific Computing WS 2013/14 O. Koch. 1. Haupttest (13. Dezember 2013) Gruppe bunt (mit Lösung ) Institut für Analysis und Scientific omputing WS 13/1 O. Koch P R A K T I S H E M A T H E M A T I K I F Ü R T P H 1. Haupttest (13. Dezember 13) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium /

Mehr

Serie 140, Musterlösung

Serie 140, Musterlösung Serie 40, Musterlösung Brückenkurs Physik donat.adams@fhnw.ch www.adams-science.org Brückenkurs Physik Datum: 0. September 208. Hubarbeit (Nr. 5) 6WTDMB Ein Fass von 200 kg wird eine Rampe hinaufgerollt.

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 28.11.2016 Heute: - Wiederholung und Fortsetzung: Arbeit, Energie, Leistung - Impuls - Stöße: elastisch und inelastisch http://xkcd.com/1758/ Prof. Dr. Jan

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Physik 1 für Chemiker und Biologen 6. Vorlesung

Physik 1 für Chemiker und Biologen 6. Vorlesung Physik 1 für Chemiker und Biologen 6. Vorlesung 03.12.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 189263 Hammer and feather drop, revisited Für den Fall (vom Loslassen bis zum Aufschlag)

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten Joachim Stiller Über die Stoßgesetze Alle Rechte vorbehalten Über die Stoßgesetze Der Impulssatz 1. Der Impulssatz für abgeschlossene Systeme Zwei Billardkugeln stoßen aufeinander. Will man die Geschwindigkeit

Mehr