Mathematik Matrizenrechnung

Größe: px
Ab Seite anzeigen:

Download "Mathematik Matrizenrechnung"

Transkript

1 Mathematik Matrizenrechnung Einstufige Prozesse Rechenregeln für Matrizen Mehrstufige Prozesse Inverse Matrix Stochastische Prozesse 6 Zyklisches Verhalten

2 Einstufige Prozesse Einstufige Prozesse Zur Beschreibung einstufiger Prozesse durch Matrizen ist lediglich nur eine Matrix nötig Dabei beschreibt diese Matrix A den Prozess eines Ausgangsprodukts zu dessen Endprodukt: Prozess( A) Ausgangsprodukt Endprodukt Mittels eines Gozintographen kann eine Tabelle und aus dieser die notwendige Matrix A erstellt werden Dabei besteht eine solche Matrix immer aus m Zeilen und n Spalten (m x n-matrix): a a a n A a a an am am amn Diese Matrix A wird häufig auch als Prozess- oder Bedarfsmatrix bezeichnet Beispiel: Drei Endprodukte (E, E und E ) sollen aus drei Ausgangsprodukten/Rohstoffen (R, R und R ) gewonnen werden Für E sind eine Einheit R, drei Einheiten R und zwei Einheiten R nötig; für E sind null Einheiten R, eins Einheiten R und eins Einheiten R zu verwenden; und für E sind zwei Einheiten R, eins Einheiten R und null Einheiten R zu gebrauchen Nun soll aus diesen Informationen eine Matrix erstellt werden und die Bedeutung des Eintrags a erklärt werden Um eine Matrix A nun zu erstellen, kann aus einem Gozintographen eine Tabelle angefertigt werden E E E R 0 R R 0 Aus dieser Tabelle folgt unmittelbar die (Prozess-)Matrix A: 0 A 0 Hierbei handelt es sich sogar um eine quadratische Matrix, da sie gleich viele Zeilen wie Spalten enthält Der Eintrag a (dritten Zeile und zweite Spalte) ist in dieser Matrix der Wert Er bedeutet, dass für das Endprodukt (E ) eine Einheit des Rohstoffs (R ) benötigt wird

3 Einstufige Prozesse Soll eine bestimmte Menge an Endprodukten hergestellt werden, gibt man diese in einem Spaltvektor x an Es gilt folgender Zusammenhang: A x y, wobei y die Menge an Ausgangsprodukten angibt Beispiel: Gesucht ist die benötigte Menge an Ausgangsprodukten, wenn im bereits beschriebenen Verfahren 0 Einheiten E, 0 Einheiten E und Einheiten E gebraucht werden Um diesen Bedarf zu bestimmen, muss zunächst der Spaltvektor x bestimmt werden Dieser ergibt sich zu: 0 x 0 Gemäß des Ansatzes A x y folgt für die Menge an Ausgangsprodukten: y 0 0 y, und somit: 0 y 0 Folglich werden für die benötigten Bedarf von 0 Einheiten E, 0 Einheiten E und Einheiten E also 0 Einheiten R, Einheiten R und 0 Einheiten R gebraucht

4 Rechenregeln für Matrizen Rechenregeln für Matrizen () Matrizenaddition Sind zwei Matrizen A und 6 B gegeben, können diese miteinander addiert werden Es folgt: B A Wichtig dabei ist, dass nur Matrizen miteinander addiert werden können, die die gleichen Zeilen- und Spaltenanzahlen haben () Subtraktion von Matrizen Analog zur Matrizenaddition können auch eine Matrix von einer anderen subtrahiert werden Seien die Matrizen 0 A und B gegeben und soll B von A subtrahiert werden, ergibt sich: B A Auch hier sei darauf zu achten, dass nur solche Matrizen voneinander subtrahiert werden können, die sie die gleichen Zeilen- und Spaltenanzahlen haben () s-multiplikation Soll die Matrix A beispielsweise verdoppelt werden, gilt: A A s () Matrizenmultiplikation Sollen die beiden Matrizen 0 A und B miteinander multipliziert werden, gilt: B A Wichtig ist hierbei, dass zwei Matrizen nur dann multipliziert werden können, wenn die eine Matrix so viele Spalten wie die andere Zeilen besitzt

5 Mehrstufige Prozesse Mehrstufige Prozesse Zur Beschreibung mehrstufiger Prozesse sind mindestens zwei Matrizen A und B (zweistufige Prozesse) nötig Dabei beschreibt die Matrix A, wie aus bestimmten Ausgangsprodukten zunächst Zwischenprodukte entstehen: Prozess( A) Ausgangsprodukte Zwischenprodukte Die Matrix B beschreibt, wie aus diesen Zwischenprodukten die Endprodukte entstehen: Prozess( B) Zwischenprodukte Endprodukte Um zu wissen, wie viele Ausgangsprodukte nötig sind, um die Endprodukte herzustellen, muss man eine Rohprodukt-Endprodukt-Matrix C erstellen Diese ergibt sich aus der Multiplikation der Matrizen A und B: C A B Beispiel: Gegeben sei zum einen die Gewinnung dreier Zwischenprodukte (Z, Z und Z ) aus drei Ausgangsprodukten/Rohstoffen (R, R und R ) und zum anderen die Gewinnung dreier Endprodukten (E, E und E ) aus den Zwischenprodukten Den folgenden Tabellen können die Informationen zur Gewinnung der Zwischen- und der Endprodukte entnommen werden Z Z Z R 6 R 0 R Tab: Gewinnung der Zwischenprodukten E E E Z 0 Z 6 0 Z Tab: Gewinnung der Endprodukte Gesucht ist nun, wie viele Rohstoffe man für die einzelnen Endprodukte benötigt Um herauszufinden, wie viele Rohstoffe die einzelnen Endprodukte bilden, müssen zunächste zwei Matrizen angefertigt werden Aus der ersten Tabelle lässt sich eine Matrix A erstellen, die die Gewinnung der Zwischenprodukte aus den Rohstoffen beschreibt: 6 A 0 Des Weiteren lässt sich aus der zweiten Tabelle eine Matrix B erstellen, die die Gewinnung der Endprodukte aus den Zwischenprodukten beschreibt: 0 B 6 0 Nun soll eine dritte Matrix C beschreiben, aus wie vielen Rohstoffen die einzelnen Endprodukte hergestellt werden Diese Rohstoff-Endprodukt- Matrix C ergibt sich aus der Multiplikation der Matrizen A und B Es folgt der allgemeine Ansatz: C A B, und somit:

6 Mehrstufige Prozesse 6 0 C Für die Matrix C ergibt sich also: C 0 0 Diese gibt Aufschluss darüber, aus wie vielen Rohstoffen die jeweiligen Endprodukte nun hergestellt werden E zum Beispiel wird aus Einheiten R, 0 Einheiten R und Einheiten R hergestellt Geht man nun von einem Auftrag aus, der eine bestimmte Anzahl jeweiliger Endprodukte benötigt, muss die Rohprodukt-Endprodukt- Matrix C mit einem Spaltenvektor x multipliziert werden: C x y, wobei y dann die notwendige Menge an Ausgangsprodukten/Rohstoffen darstellt, um den benötigten Bedarf an Endprodukten herstellen zu können Beispiel: Gegeben sei bereits beschriebene Gewinnung an Zwischen- und Endprodukten Im folgenden sei die Menge an Rohstoffen gesucht, um den Bedarf von 0 Einheiten E, 0 Einheiten E und Einheiten E herstellen zu können Zunächst muss dazu die Rohprodukt-Endprodukt-Matrix C bestimmt werden Diese ergibt sich aus vorangegangenem Beispiel zu: C 0 0 Anhand des benötigten Bedarfs von 0 Einheiten E, 0 Einheiten E und Einheiten E, lässt sich ein Spaltenvektor x bestimmen: 0 x 0 Um nun herauszufinden, wie viele Rohstoffe denn für diesen Bedarf gebraucht werden, muss die Rohprodukt-Endprodukt-Matrix C mit dem Spaltenvektor x multipliziert werden Es ergibt sich nach dem Ansatz C x y : 6

7 Mehrstufige Prozesse 0 00 C x Für den beschriebenen Bedarf von 0 Einheiten E, 0 Einheiten E und Einheiten E werden also 00 Einheiten R, 00 Einheiten R und 0 Einheiten R benötigt

8 Inverse Matrix Inverse Matrix Kehrt man den normalen Prozess von einem Ausgangsprodukt zu einem Endprodukt um, erhält man über nun ausgehend von den Endprodukten über A - die Ausgangsprodukte: Ausgangsprodukte Pr ozess( A ) Endprodukte Man erhält also über diese inverse Matrix den Schritt zuvor Wird eine quadratische Matrix A mit ihrer inversen Matrix A - multipliziert, erhält man die Einheitsmatrix E Folgender Zusammenhang wird dadurch erkennbar: A A E A A Ob eine Matrix invertierbar ist, zeigt sich, wenn für Determinante D 0 gilt a a Für eine x -Matrix A bestimmt man beispielsweise die a a Determinante gemäß D a a a a Beispiel: Gegeben sei eine Matrix A, die den Prozess zweier Endprodukte E und E aus den Vorstufen Z und Z beschreibt Gesucht werden soll die Anzahl der noch zu produzierenden Endprodukte, wenn alle noch vorhandenen Vorstufen je 000 Einheiten aufgebraucht werden sollen Um diese Anzahl zu bestimmen, muss zunächst die Inverse der Matrix A bestimmt werden Diese ergibt sich zu: 0, 0, A 0, 0, Multipliziert man diese nun mit den Einheiten der noch vorhandenen Vorstufen, folgt gemäß x A y : 0, 0, 000 x, 0, 0, 000 und somit: x Folglich können noch Einheiten E und Einheiten E hergestellt werden, bis alle Vorstufen aufgebraucht sind

9 Stochastische Prozesse Stochastische Prozesse Bei einer Matrix P handelt es sich dann um eine stochastische Matrix (auch Übergangsmatrix genannt), wenn - die Matrix quadratisch ist, - für jedes Element a der Matrix 0 a gilt und - die Summe der Elemente in jeder Spalte beträgt Der zu einer stochastischen Matrix zugehörige Prozess wird Austauschprozess genannt, da bei diesen Prozessen die Gesamtzahlen gleich bleiben (Summe der Elemente in jeder Spalte ist ) und lediglich nur unter verschiedenen Kategorien getauscht wird Da man bei Austauschprozessen oft an langfristigen Entwicklungen interessiert ist, wird immer dieselbe stochastische Matrix P verwendet Hierzu gibt es einen Startvektor x, der die Verteilung am Tag 0 zeigt Multipliziert mit der stochastischen Matrix P ergibt sich die Verteilung am Tag Dies wieder mit P multipliziert ergibt die Verteilung am Tag; usw (Markoff sche Kette) Für die Verteilung zu einem bestimmten Tag kann auch mit P t x (t in Tagen) gerechnet werden Streben die Potenzen von P gegen eine Matrix G, so ist G die Grenzmatrix: lim P t G t * Ist dies der Fall, existieren auch stabile Verteilungen x, die auch Grenzverteilung genannt wird Für diese gilt: * * P x x * Die Elemente des Fixvektors x sind Vielfache der Elemente der Spalte der Grenzmatrix Beispiel: Für drei Tankstellen A, B und C sollen die folgenden Annahmen getroffen werden: Die Kunden von A verteilen sich beim nächsten Tanken auf die Tankstellen A, B und C im Verhältnis : : Die Kunden von B wechseln das nächste Mal je % zu A und zu C 0% der Kunden von C wählen diese Tankstelle auch das nächste Mal, der Rest fährt zu A Jeder Kunde tankt pro Woche genau ein Mal Anhand dieser dieser Aufgabe, soll nun () eine Übergangsmatrix P bestimmt werden, () die Verteilung der Autofahrer auf die drei Tankstellen für die nächsten beiden Wochen [für zehn Wochen] berechnet werden, wenn von den 000 Autofahrer insgesamt in einer Woche 00 bei B und jeweils 00 bei A und bei C tanken, () ein zu der Übergangsmatrix P passender Fixvektor P bestimmt werden und die zugehörige Grenzmatrix ermittelt werden und () die Verteilung berechnet werden, die sich auf lange Sicht einstellt

10 Stochastische Prozesse () Stellt man sich die nebenstehende Tabelle vor, ergibt sich für die Übergangsmatrix P: 0, 0, 0 P 0, 0, 0 0, 0, 0, nach von A B C A 0, 0, 0, B 0, 0, 0 C 0, 0, 0, 00 () Zunächst einmal wird der Startvektor x 00 angegeben Dieser mit 00 der Übergangsmatrix P multipliziert ergibt die Verteilung der Autofahrer auf die drei Tankstelle nach einer Woche Es ergibt sich demnach: 0, 0, 0, 00 0 P x 0, 0, , 0, 0, 00 Folglich tanken nach einer Woche 0 Autofahrer bei A, Autofahrer bei B und Autofahrer bei C 0 Multipliziert man diesen ermittelten Vektor y nun erneut mit der Übergangsmatrix P, so ergibt sich die Verteilung für die zweite Woche: 0, 0, 0, 0 06, P y 0, 0, 0 0, 0, 0,, Demzufolge tanken in der zweiten Woche bereits etwa 06 Autofahrer bei A, Autofahrer bei B und etwa Autofahrer bei C Um die Verteilung nach zehn Wochen zu bestimmen, kann die Übergangsmatrix zehn Mal mit sich selbst und dann mit dem Startvektor x multipliziert werden Es folgt: 0 0, 0, 0, 00 6, 0 P x 0, 0, 0 00, 0, 0, 0, 00, Also tanken nach zehn Wochen etwa 6 Autofahrer bei A, etwa Autofahrer bei B und etwa Autofahrer bei C () Um einen Fixvektor zu bestimmen, gilt der grundsätzliche Ansatz: * * P x x Es folgt also: 0, 0, 0, * * 0, 0, 0 x x, 0, 0, 0, bzw: 0

11 Stochastische Prozesse 0, 0, 0, x x 0, 0, 0 x x 0, 0, 0, x x Für das LGS und dessen Lösung ergibt sich somit: x x 0 x 0,x 0,x 0,x x 0,x 0,x x x x 0 x 0,x 0,x 0,x x 0 0 x t t t Da eben diese 000 die gesamte Anzahl an Autofahrern meint, müssen die Einträge des Fixvektors in der Summe auch 000 ergeben Somit folgt: x x x 000 Und setzt man die Werte des LGS ein, ergibt sich: t t t 000, und demnach: t Wenn für t folgt, kann so auch x zu 6 und x zu bestimmt werden, wenn man das Ergebnis für t in x und x einsetzt * Folglich ergibt sich der Fixvektor x : 6 * x Um nun noch die Grenzmatrix zu erhalten, kann ausgeklammert werden, sodass sich ergibt: Da die Elemente in den Spalten der Grenzmatrix den Elementen des Fixvektors entsprechen, muss für die jeweilige Spalte des Grenzmatrix gelten Für die Grenzmatrix folgt also: G () Da die Grenzmatrix nun bekannt ist, kann diese mit dem Startvektor x multipliziert werden Es ergibt sich also:

12 Stochastische Prozesse 00 6 G x Auf lange Sicht werden also etwa 6 Autofahrer bei A, etwa Autofahrer bei B und etwa 6 Autofahrer bei C tanken

13 6 Zyklisches Verhalten 6 Zyklisches Verhalten Über ein Übergangsdiagramm erhält man für Populationsentwicklungen eine Übergangsmatrix U Diese ist immer nach einem klassischen Schema aufgebaut: 0 0 v U a 0 0, 0 0 b wobei die Vermehrungsrate v 0 ist und die Überlebensraten 0 a, b sind Des Weiteren gilt, wenn - a b v ist, stirbt die Population aus - a b v ist, entwickelt sich die Population zyklisch - a b v ist, nimmt die Population zu Dabei sei darauf zu achten, dass der Zyklus drei Zeiteinheiten beträgt Beispiel: Ein Käfer, der kurz nach der Eiablage stirbt, legt so viele Eier, dass im nächsten Jahr daraus wieder Larven (L) schlüpfen Nur 0% dieser Larven überleben das erste Jahr und verpuppen sich Nach einem weiteren Jahr werden 0% dieser Puppen (P) wieder zu Käfern (K) Anhand dieser Aufgabe soll nun () eine Übergangsmatrix ermittelt werden und () überprüft werden, wie sich die Population entwickelt () Um eine Übergangsmatrix anzugeben, kann am besten zunächst ein Übergangs-diagramm erstellt werden: L P K L (eigentlich: Pfeil von K zu L über P) Hieraus lässt sich über eine Tabelle L P K (siehe nebenstehend) annähernd eine L 0 0 Übergangs-matrix anfertigen P 0, 0 0 Letztlich ergibt sich diese somit zu: K 0 0, U 0, , 0 () Aus dieser Übergangsmatrix lässt sich für v, für a 0, und für b 0, ablesen Um nun zu überprüfen, wie sich diese Population denn entwickeln wird, wird a b v berechnet: a b v 0, 0, Da a b v gilt, handelt es sich bei der Populationsentwicklung um ein zyklisches Verhalten

14 Beispielaufgaben sind dem Schulbuch (Lambacher Schweizer /, Mathematik für Gymnasien, Gesamtband Oberstufe, Niedersachsen; Klett-Verlag) entnommen

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3

B =(b1,1. + b 1,2. + b 1,3 1,3. + b 2,4 + b 3,1. + b 2,2. + b 2,3. + b 3,2. + b 3,3 Matrizen Matrizen sind zunächst einmal einfach eine rechteckige Anordnung von Zahlen, Elementen oder mathematischen Operationen, die lineare Zusammenhänge zwischen verschiedenen Größen übersichtlich darstellen.

Mehr

Wie man Athematik unterrichtet

Wie man Athematik unterrichtet Ba-Wü: BG Neuer Lehrplan athematik odul-5: Prozesse Teil 3b: zyklische Februar und ärz 2016 1 Stoffverteilungsplan 1 Woche Inhalte 1 + 2 Einstufige Prozesse Darstellung mit Tabellen, Graph, atrizen u.

Mehr

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse. Februar und März

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse. Februar und März Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 3a: stochastische Übergangsprozesse Februar und März 216 1 Stoffverteilungsplan 1 Woche Inhalte 1 + 2 Einstufige Prozesse Darstellung mit Tabellen,

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ott Deusch Mathematik für berufliche Gymnasien Lineare Algebra Mathematische Beschreibung von Prozessen durch Matrizen Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab. Auflage 6 ISBN

Mehr

1.2 Ein Institut prüft jährlich die Wasserqualität von Stränden in einer 6P Urlaubsregion und vergibt hierfür ein bis drei Sterne.

1.2 Ein Institut prüft jährlich die Wasserqualität von Stränden in einer 6P Urlaubsregion und vergibt hierfür ein bis drei Sterne. Aufgabe A1/2017 1.1 Ein Unternehmen stellt aus den beiden Rohstoffen und die drei Zwischenprodukte, und her. Aus den drei Zwischenprodukten entstehen die beiden Endprodukte und. Die benötigten Rohstoffe

Mehr

Matrizenrechnung Umfüllprozesse

Matrizenrechnung Umfüllprozesse Matrizenrechnung Umfüllprozesse In Messzylindern A und B befinden sich anfänglich die Flüssigkeitsmengen m und m. Aus A wird der Anteil a entnommen, aus B der Anteil b weitere Gefäße sind daher erforderlich.

Mehr

Populationsentwicklung

Populationsentwicklung Populationsentwicklung Lewis (942) und Leslie (945) entwickelten ein Modell, mit dem die Entwicklung einer Population unter Einbeziehung der Altersstruktur untersucht werden kann. Die Population wird z.b.

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik 2 Dr. Thomas Zehrt Vektoren und Matrizen Inhaltsverzeichnis Vektoren(Wiederholung bzw. Selbststudium 2. Linearkombinationen..............................

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

Lineare Algebra (Zentralabitur 2009: Abibienen) (knappe Lösung)

Lineare Algebra (Zentralabitur 2009: Abibienen) (knappe Lösung) Lineare lgebra (Zentralabitur 2009: bibienen) (knappe Lösung) bibienen Ein aus den fleißigen Bienen mutierter Insektenstamm, die nachtaktiven bibienen", wurde im Jahr 2009 auf der Insel Bremensia" über

Mehr

Demo für Übergangsmatrizen. Matrizenrechnung. Themenheft: Populationsentwicklungen. und zyklische Matrizen

Demo für  Übergangsmatrizen. Matrizenrechnung. Themenheft: Populationsentwicklungen. und zyklische Matrizen Matrizenrechnung Übergangsmatrizen Themenheft: Populationsentwicklungen und zyklische Matrizen Datei 6334 Stand:. Noember INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 633 Übergangsmatrizen Vorwort Eine spezielle

Mehr

Abitur Matrizen und Prozesse (Teil 4 mit Hilfsmittel) Musteraufgaben Lösung A1 1.1 Übergangsmatrix Die Übergangsmatrix lautet (vgl.

Abitur Matrizen und Prozesse (Teil 4 mit Hilfsmittel) Musteraufgaben Lösung A1 1.1 Übergangsmatrix Die Übergangsmatrix lautet (vgl. Lösung A1 1.1 Übergangsmatrix Die Übergangsmatrix lautet (vgl. Diagramm): 0,4 0,2 0,1 0,5 0,7 0,5 0,4 0,1 0,1 0,4 0,2 0,1 0,5 0,1 0,7 0,4 Verteilung der Haushalte im Jahr 2015 Stand 2014: 1000 Haushalte

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Die Verfasser: Roland Ott Studium der Mathematik an der Universität Tübingen

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Stochastische Prozesse Einführung

Stochastische Prozesse Einführung Stochastische Prozesse Einführung Der Kurs wird in 2 Gruppen aufgeteilt siehe Excel-Blatt, z.b. A = 2 und B = 20, und es werden die Wechsel-Anteile festgelegt: Pro Takt wechseln z.b. 4 von A nach B und

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württemberg: Fachhochschulreife 203 www.mathe-aufgaben.com Hauptprüfung Fachhochschulreife 203 Baden-Württemberg Aufgabe 5 Wirtschaftliche Anwendungen Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg

Mehr

Medikamentenherstellung

Medikamentenherstellung Aufgabennummer: B_36 Medikamentenherstellung Technologieeinsatz: möglich erforderlich T Ein Pharmaunternehmen stellt ein Medikament E aus den Rohstoffen R 1, und R 3 her, die bei der Produktion zu Zwischenprodukten

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizengleichungen Matrizen und Determinanten In Abschnitt 3.3 wird gezeigt, wie man ein lineares Gleichungssystem in Form einer Matrixgleichung anschreiben und anschließend mithilfe der Matrizenrechnung

Mehr

Wirtschaftsmathematik - Übungen SS 2019

Wirtschaftsmathematik - Übungen SS 2019 Wirtschaftsmathematik - Übungen SS 9 Blatt : Lineare Algebra. Gegeben ist eine eine 3 3 Matrix C = (c ij ) mit und eine Matrix B = ( a) Schreiben Sie die Matrix C an! j i für i < j c ij = () i j für i

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 11 1. Juni 2010 Rechenregeln für Determinanten Satz 62. (Determinanten von Dreiecksmatrizen) Es sei A eine obere oder untere n n-dreiecksmatrix.

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

9.1 ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR

9.1 ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR Matrizen 9. ADDIEREN UND SUBTRAHIEREN VON MATRIZEN MULTIPLIKATION EINER MATRIX MIT EINEM SKALAR 9.. Definition der Matrizenaddition, der Matrizensubtraktion und der Multiplikation einer Matrix mit einem

Mehr

Analytische Geometrie

Analytische Geometrie Der fx-991 DE X im Mathematik- Unterricht Analytische Geometrie Station 1 Schnittgerade zweier Ebenen Da der Taschenrechner nur eindeutige Lösungen eines Gleichungssystems liefert, kann er nur Schnittpunkte

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Formale Matrizenrechnung

Formale Matrizenrechnung LINEARE ALGEBRA Formale Matrizenrechnung Grundlagen: Formales Rechnen mit Matrizen Datei Nr. 6 Stand 3. September 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Matrizenrechnung: Grundlagen

Mehr

Matrizen Definition: Typ einer Matrix

Matrizen Definition: Typ einer Matrix Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Übergangsmatrizen. October 27, 2014

Übergangsmatrizen. October 27, 2014 Übergangsmatrizen October 27, 214 Der Begriff Übergangsmatrix wird (unter anderem) für die Matrizen, die das Wechselverhalten von z.b. Käufern oder Wählern darstellen. Bei Wikipedia wird eine Übergangsmatrix

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A =

Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A = Chr.Nelius: Lineare Algebra SS 28 4: Matrizenrechnung 4. DEF: a Die Summe A + B zweier m n Matrizen A a ik und B b ik ist definiert als m n Matrix C c ik, wobei c ik : a ik + b ik für alle i, 2,..., m

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Aufgaben zu Kapitel 16

Aufgaben zu Kapitel 16 Aufgaben zu Kapitel 16 1 Aufgaben zu Kapitel 16 Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Klausur 2 Kurs 13Ma1e Mathematik

Klausur 2 Kurs 13Ma1e Mathematik 29--24 Klausur 2 Kurs Mae Mathematik Lösung Version 29-2-5 Gegeben sind zwei Ebenen E und E 2 : E : 2 x x 2 x =6 E 2 : x = a) Berechnen Sie die Gleichung der Schnittgerade der beiden Ebenen. Plan: E 2

Mehr

MATRIZEN. 1. Einführung. Matrizen 161

MATRIZEN. 1. Einführung. Matrizen 161 Matrizen 6 MATRIZEN. Einführung In der Wirtschaftsmathematik treten häufig Zusammenhänge auf, die sich durch eine rechteckige Anordnung von Zahlen beschreiben lassen. Beispiele für wirtschaftliche Zusammenhänge:

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Zweistufige Produktion

Zweistufige Produktion Aufgabennummer: B_163 Zweistufige Produktion Technologieeinsatz: möglich erforderlich T In einem Unternehmen werden 3 Endprodukte E 1, E 2 und E 3 über 3 Zwischenprodukte Z 1, Z 2 und aus 2 verschiedenen

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2011 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB./7. November 2008 Prof. Dr. H.-R. Metz (Matrix) Matrizen 1 Ein System von Zahlen a ik, die rechteckig in m Zeilen und n Spalten angeordnet

Mehr

) (1 BE) 1 2 ln 2. und somit

) (1 BE) 1 2 ln 2. und somit 1 Aufgaben aus dem Aufgabenpool 1 1.1 Analysis A1_1 Eine Funktion f ist durch 1 x f(x) e 1, x IR, gegeben. Ermitteln Sie die Nullstelle der Funktion f. ( ) b) Die Tangente an den Graphen von f im Punkt

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen

A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen A.5.1 Die Matrix und elementare wirtschaftsrelevante Anwendungen Eine Matrix vom Typ M mxn (oder eine (m x n)-matrix) ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Im folgenden Beispiel

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: Zweistufige Prozesse mit Kosten- u. Bedarfsermittlung. Februar und März

Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: Zweistufige Prozesse mit Kosten- u. Bedarfsermittlung. Februar und März Ba-Wü: BG Neuer Lehrplan Mathematik Modul-5: Prozesse Teil 2b: mit Kosten- u. Bedarfsermittlung Februar und März 2016 1 Stoffverteilungsplan 1 Woche Inhalte 1 + 2 Einstufige Prozesse Darstellung mit Tabellen,

Mehr

Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen

Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen R. Brinkmann http://brinkmann-du.de Seite 1 13.02.2014 Casio fx-cg20 Matrix eingeben, editieren, löschen und einfache Matrizenrechnungen Matrix eingeben Bevor die Daten einer Matrix eingegeben werden können,

Mehr

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs. Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen)

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs. Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2009 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Austauschprozesse Kapitalfluss

Austauschprozesse Kapitalfluss Austauschprozesse Kapitalfluss Zwischen den Filialen F und F 2 einer Bank findet pro Monat ein Kapitalfluss statt. Die Übergangsmatrix lautet: 4 A = Der Startvektor sei z.b. x 0 = 4 F F 2 4 (in Millionene.

Mehr

Prüfungsteil 2, Aufgabe 6 Lineare Algebra

Prüfungsteil 2, Aufgabe 6 Lineare Algebra Abitur Mathematik: Prüfungsteil 2, Aufgabe 6 Lineare Algebra Nordrhein-Westfalen 2012 LK Aufgabe a 1. SCHRITT: ÜBERGANGSDIAGRAMM ZEICHNEN 2. SCHRITT: ÜBERGANGSMATRIX ERSTELLEN von: nach: 0,75 0,2 0,57

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07032016-11032016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Abbildungen 2 11 Homomorphismus 2 12 Kern

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Matrizenrechnung. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Matrizenrechnung Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra: Matrizenrechnung

Mehr

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU Hans Humenberger Das PageRank-System von Google eine aktuelle Anwendung im MU Google und seine Gründer Google etwas Riesengroßes nach der unglaublichen Fülle des WWW Googol = 10^100 1938 durch E. Kasner

Mehr

Skript Lineare Algebra

Skript Lineare Algebra Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

ANHANG A. Matrizen. 1. Die Definition von Matrizen

ANHANG A. Matrizen. 1. Die Definition von Matrizen ANHANG A Matrizen 1 Die Definition von Matrizen Wir haben bereits Vektoren kennen gelernt; solche Paare reeller Zahlen haben wir benutzt, um Punkte in der Ebene zu beschreiben In der Geometrie brauchen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

Stochastische Prozesse

Stochastische Prozesse Stochastische Prozesse September 2016 Autoren: Uli Brauner, Simon Eickels, Nils Hammelrath, Matthias Heming, Melanie Jankord, Bastian Klappert, Matthias Lippert Comenius Gymnasium, Datteln / Röntgen Gymnasium,

Mehr

Ferienkurs Mathematik für Physiker I Blatt 3 ( )

Ferienkurs Mathematik für Physiker I Blatt 3 ( ) Ferienkurs Mathematik für Physiker I WS 6/7 Ferienkurs Mathematik für Physiker I Blatt 3 (9.3.7) Aufgabe : Matrizenrechung 3 (a) Ermitteln Sie für die Matrix A = 3 4 den Ausdruck A + A + A + 6 A3. 3 4

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Grenzmatrix und Fixvektor Modellierung eines Umschüttvorgangs

Grenzmatrix und Fixvektor Modellierung eines Umschüttvorgangs S 1 Grenzmatrix und Fixvektor interessante Entdeckungen bei der Modellierung eines Umschüttvorgangs Dr. Peter Scholl, Siegburg M 1 Leckerer Milchkaffee einen Umschüttvorgang modellieren In einem Krug sind

Mehr

Kurs Grundlagen der Linearen Algebra und Analysis

Kurs Grundlagen der Linearen Algebra und Analysis Aufgabe B0513 Lineare Optimierung Ein Unternehmen stellt drei Endprodukte P 1,P und P 3 her. Die jeweils zur Produktion einer Mengeneinheit des jeweiligen Endproduktes benötigten Mengeneinheiten des Zwischenproduktes

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden = = 83 79

In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden = = 83 79 Matrixpotenzen n Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden. a) terative Berechnung = 2 = 2 2 2 5 = 7 = 2 2 2 2 = 5 4 4 5 = 5 4 4 5 5 = 29 25 = 5 4 4 5 2 3 = 4 2 3

Mehr

A Geometrische Abbildungen und Matrizen. B Prozesse und Matrizen

A Geometrische Abbildungen und Matrizen. B Prozesse und Matrizen A Geometrische Abbildungen und Matrizen Seite Geometrische Abbildungen und Abbildungsgleichungen... 4 Affine Abbildungen... 6 3 Affine Abbildungen durch Matrizen... 0 4 Spezielle Kongruenz- und Ähnlichkeitsabbildungen...

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Bereich Schwierigkeit Thema Matrizen XXX Übergangsprozesse. Rinderzucht II (aus Abi 2010) Mögliche Lösung

Bereich Schwierigkeit Thema Matrizen XXX Übergangsprozesse. Rinderzucht II (aus Abi 2010) Mögliche Lösung Matrizen XXX Übergangsprozesse Rinderzucht II (aus Abi 21) Bei der Aufzucht von Rindern unterscheidet man zwischen Neugeborenen (N), ein- jährigen Kälbern (K) und geschlechtsreifen erwachsenen Tieren (E).

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION

BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION BEISPIELAUFGABEN ZUM ONLINE-KURS MATHEMATIK-ÜBUNGEN - MATRIZEN - MULTIPLIKATION Dieser Kurs beinhaltet: * Matrizen multiplizieren * bestimmte Elemente einer Produktmatrix bestimmen * Umformung eines linearen

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

(A T ) T = A. Eigenschaft:

(A T ) T = A. Eigenschaft: Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Lösung 1. 65% A 20% 5% 15% 5% 25% 90%B C 70% 5% 2. A= 28,25% B=35,5% C=21,25%

Lösung 1. 65% A 20% 5% 15% 5% 25% 90%B C 70% 5% 2. A= 28,25% B=35,5% C=21,25% Felix Hasenau, Q2, 2015/16 X Übergangsmatrizen Einen Monat vor den undestagswahlen liegt die Partei in Umfragen bei 40%, die Partei bei 25 % und die Partei bei 20%. Die restlichen 15% verteilen sich auf

Mehr

DisMod-Repetitorium Tag 3

DisMod-Repetitorium Tag 3 DisMod-Repetitorium Tag 3 Markov-Ketten 21. März 2018 1 Markov-Ketten Was ist eine Markov-Kette? Was gehört alles dazu? Darstellung als Graph und als Matrix Stationäre Verteilung und Grenzverteilung Ergodizität

Mehr

Manfred Burghardt. Allgemeine Hochschulreife in den Bereichen Erziehung und Soziales

Manfred Burghardt. Allgemeine Hochschulreife in den Bereichen Erziehung und Soziales Manfred Burghardt Allgemeine Hochschulreife in den Bereichen Erziehung und Soziales Version 0/04 Inhaltsverzeichnis I Inhaltsverzeichnis Inhaltsverzeichnis I Einstufige Prozesse und ihre Modellierung durch

Mehr